Simulating Biomass Production and Water Use of Poplars in a Plantation Using a STELLA-Based Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. STELLA Model Description
Parameter | Value or Empirical Equation | Source |
---|---|---|
Curve number (CN) in Equation (2) | 81 | USDA [30] |
Storage capacity (Sc) in Equation (3) | 3.5 | Calibrated |
a1 in Equation (5) | 0.034 | Calculated based on data from Lee and Jose [29] |
a2 in Equation (5) | 4345 | Calculated based on data from Lee and Jose [29] |
a3 in Equation (5) | 2800 | Calculated based on data from Lee and Jose [29] |
a4 in Equation (6) | 0.627 | Calculated based on data from Lee and Jose [29] |
a5 in Equation (10) | 3.473 | Edmondson et al. [35] |
a6 in Equation (10) | 8760 | Edmondson et al. [35] |
a7 in Equation (10) | 0.59 | Edmondson et al. [35] |
Rainfall (cm/h) | Time series measurements | Local weather station |
Irrigation (cm/h) | 0.3 | Lee and Jose [29] |
Soil area (cm2) | 1,000,000,000 (or one hectare) | Lee and Jose [29] |
Soil depth (cm) | 200 | Lee and Jose [29] |
Soil porosity (cm3/cm3) | 0.35 | Ouyang et al. [26] |
Field capacity | 0.3 | Ouyang et al. [26] |
Drainage coefficient (cm/h) | 0.005 | Calibrated |
Initial soil water (cm3) | 33,600,000,000 | Calculated based on soil volume and water content |
Initial root water (cm3) | 2,450,000,000 | Estimated from Jenkins et al. [35] and Lee and Jose [29] |
Initial stem water (cm3) | 816,666,667 | Estimated from Stem volume index [29] |
Initial leaf water (cm3) | 816,666,667 | Estimated from Jenkins et al. [35] and Lee and Jose [29] |
Transpiration (cm3/h/tree) | 0.016 | Lee and Jose [29] |
Plant density (tree/ha) | 229 | Lee and Jose [29] |
Forest cover factor | 0.85 | Assumed based on our observations |
β0 in Equation (9) | −1 | Jenkins et al. [34] |
β1 in Equation (9) | 2.1 | Jenkins et al. [34] |
2.2. Data Acquisition
2.3. Model Calibration
3. Results and Discussion
3.1. Soil Hydrological Processes
3.2. Poplar Water Dynamics
3.3. Biomass Production and Water Use Efficiency
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farm Energy and Wood Energy, Poplar (Populus spp.) Trees for Biofuel Production. Farm Energy, Wood Energy 6 May 2014 (20140506). Available online: https://farm-energy.extension.org/poplar-populus-spp-trees-for-biofuel-production/ (accessed on 27 September 2021).
- Berguson, W.E.; Eaton, J.; Stanton, B. Development of hybrid poplar for commercial production in the United States: The Pacific Northwest and Minnesota experience. In Sustainable Alternative Fuel Feedstock Opportunities, Challenges and Roadmaps for Six U.S. Regions; Braun, R., Karlen, D., Johnson, D., Eds.; Soil and Conservation Society: Ankeny, IA, USA, 2010. [Google Scholar]
- Stanton, B.; Eaton, J.; Johnson, J.; Rice, D.; Schuette, B.; Moser, B. Hybrid poplar in the Pacific Northwest: The effects of market-driven management. J. Forestry 2002, 100, 28–33. [Google Scholar]
- González-García, S.; Gasol, C.M.; Gabarrell, X.; Rieradevall, J.; Moreira, M.T.; Feijoo, G. Environmental profile of ethanol from poplar biomass as transport fuel in Southern Europe. Renew. Energy 2010, 35, 1014–1023. [Google Scholar] [CrossRef]
- Langeveld, H.; Quist-Wessel, F.; Dimitriou, I.; Aronsson, P.; Baum, C.; Schulz, U.; Bolte, A.; Baum, S.; Köhn, J.; Weih, M.; et al. Assessing Environmental Impacts of Short Rotation Coppice (SRC) Expansion: Model Definition and Preliminary Results. BioEnergy Res. 2012, 5, 621–635. [Google Scholar] [CrossRef]
- Rizvi, R.H.; Singh, M.; Kumar, A.; Srivastava, S. Valuation of carbon sequestration by poplar based agroforestry systems in Yamunanagar, Haryana. Indian J. Agric. Sci. 2020, 90, 312–315. [Google Scholar]
- Hansen, E.; Moore, L.; Netzer, D.; Ostry, M.; Phipps, H.; Zavitkovski, J. Establishing Intensively Cultured Hybrid Poplar Planations for Fuel and Fiber; USDA Forest Service General Technical Report NC-78; Department of Agriculture, Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 1983.
- Berndes, G.; Hoogwijk, M.; van den Broek, R. The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass Bioenergy 2003, 25, 1–28. [Google Scholar] [CrossRef]
- Aylott, M.J.; Casella, E.; Tubby, I.; Street, N.R.; Smith, P.; Taylor, G. Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. New Phytol. 2008, 178, 358–370. [Google Scholar] [PubMed]
- Bloemen, J.; Egi, R.; Ichot, S.F.; Horemans, J.A.; Broeckx, L.S.; Verlinden, M.S.; Zenone, T.; Ceulemans, R. Water use of a multigenotype poplar short-rotation coppice from tree to stand scale. GCB Bioenergy 2017, 9, 370–384. [Google Scholar] [CrossRef] [Green Version]
- Ashworth, K.; Wild, O.; Hewitt, C.N. Impacts of biofuel cultivation on mortality and crop yields. Nat. Clim. Chang. 2013, 5, 492–496. [Google Scholar] [CrossRef]
- Allen, S.J.; Hall, R.L.; Rosier, P.T.W. Transpiration by two poplar varieties grown as coppice for biomass production. Tree Physiol. 1999, 19, 493–501. [Google Scholar] [PubMed] [Green Version]
- Navarro, A.; Facciotto, G.; Campi, P.; Mastrorilli, M. Physiological adaptations of five poplar genotypes grown under SRC in the semi-arid Mediterranean environment. Trees 2014, 28, 983–994. [Google Scholar] [CrossRef]
- Fischer, M.; Trnka, M.; Kučera, J.; Deckmyn, G.; Orság, M.; Sedlák, P.; Žalud, Z.; Ceulemans, R. Evapotranspiration of a high-density poplar stand in comparison with a reference grass cover in the Czech–Moravian Highlands. Agric. For. Meteorol. 2013, 181, 43–60. [Google Scholar] [CrossRef]
- Bungart, R.; Hüttl, R.F. Growth dynamics and biomass accumulation of 8-year-old hybrid poplar clones in a short-rotation plantation on a clayey sandy mining substrate with respect to plant nutrition and water budget. Eur. J. For. Res. 2004, 123, 105–115. [Google Scholar] [CrossRef]
- Petzold, R.; Schwarzel, K.; Feger, K.H. Transpiration of a hybrid poplar plantation in Saxony (Germany) in response to climate and soil conditions. Eur. J. For. Res. 2011, 130, 695–706. [Google Scholar] [CrossRef]
- Linderson, M.L.; Iritz, Z.; Lindroth, A. The effect of water availability on standlevel productivity, transpiration, water use efficiency and radiation use efficiency of field-grown willow clones. Biomass Bioenergy 2007, 31, 460–468. [Google Scholar] [CrossRef]
- Tricker, P.J.; Pecchiari, M.; Bunn, S.M.; Vaccari, F.P.; Peressotti, A.; Miglietta, F.; Taylor, G. Water use of a bioenergy plantation increases in a future high CO2 world. Biomass Bioenergy 2009, 33, 200–208. [Google Scholar] [CrossRef]
- Miller, R.O.; Bender, B.A. Proceedings from Sun Grant National Conference for Biomass Feedstock Production and Utilization, New Orleans, LA, USA. Available online: https://bioenergykdf.net/content/proceedings-2012-sun-grant-national-conference-science-biomass-feedstock-production-and (accessed on 25 December 2021).
- Zamora, D.; Wyatt, G.; Apostol, K.; Tschirner, U. Biomass yield, energy values, and chemical composition of 21/25 hybrid poplar in short rotation woody crops production and native perennial grasses in Minnesota, USA. Biomass Bioenergy 2013, 49, 222–230. [Google Scholar] [CrossRef]
- Zalesny, R.S., Jr.; Hall, R.B.; Zalesny, J.A.; McMahon, B.G.; Berguson, W.E.; Stanosz, G.R. Biomass and genotype environment interactions of Populus energy crops in the Midwestern United States. BioEnergy Res. 2009, 2, 106–122. [Google Scholar] [CrossRef]
- Davis, J.M. Genetic improvement of poplar (Populus spp.) as a bioenergy crop. In Genetic Improvement of Bioenergy Crops; Vermerris, W., Ed.; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- Sampson, D.A.; Ceulemans, R. SECRETS: Simulated carbon fluxes from a mixed coniferous/deciduous Belgian forest. In Forest Ecosystem Modelling, Upscaling and Remote Sensing; Ceulemans, R.J.M., Veroustraete, F., Gond, V., Van Rensbergen, J.B.H.F., Eds.; SPB Academic Publishing: The Hague, The Netherlands, 2000; pp. 95–108. [Google Scholar]
- Deckmyna, G.; Laureysensa, I.; Garciab, J.; Muysb, B.; Ceulemansa, R. Poplar growth and yield in short rotation coppice: Model simulations using the process model SECRETS. Biomass Bioenergy 2004, 26, 221–227. [Google Scholar] [CrossRef]
- Hart, Q.J.; Tittmann, P.W.; Bandaru, V.; Jenkins, B.M. Modeling poplar growth as a short rotation woody crop for biofuels in the Pacific Northwest. Biomass Bioenergy 2015, 79, 12–27. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, Y.; Zhang, J.E.; Leininger, T.D.; Frey, B. A STELLA model to estimate water and nitrogen dynamics in a short-rotation woody crop plantation. J. Environ. Qual. 2015, 44, 200–209. [Google Scholar] [CrossRef]
- Ouyang, Y.; Feng, G.; Renninger, H.; Leininger, T.D.; Parajuli, P.; Grace, J.M. A STELLA-Based Model to Simultaneously Predict Hydrological Processes, N Uptake and Biomass Production in a Eucalyptus Plantation. Forests 2021, 12, 515. [Google Scholar] [CrossRef]
- Ouyang, Y.; Zhang, J.E.; Lin, D.; Liu, D.G. A STELLA model for the estimation of atrazine runoff, leaching, adsorption, and degradation from an agricultural land. J. Soils Sediments 2010, 10, 263–271. [Google Scholar] [CrossRef]
- Lee, K.H.; Jose, S. Nitrate leaching in cottonwood and loblolly pine biomass plantations along a nitrogen fertilization gradient. Agric. Ecosyst. Environ. 2005, 105, 615–623. [Google Scholar] [CrossRef]
- USDA-SCS. National Engineering Handbook; USDA–SCS: Washington, DC, USA, 1973.
- Mullins, J.A.; Carsel, R.F.; Scarbrough, J.E.; Ivery, A.M. PRZM-2, a Model for Predicting Pesticides Fate in the Crop Root and Unsaturated Soil Zones: User Manual for Release 2.0; US-EPA; U.S. Department of Energy Office of Scientific and Technical Information: Athens, GA, USA, 1993.
- Baiamonte, G. Simplified Interception/Evaporation Model. Hydrology 2021, 8, 99. [Google Scholar] [CrossRef]
- Nobel, P.S. Biophysical Plant Physiology and Ecology; Freeman and Company: San Francisco, CA, USA, 1983. [Google Scholar]
- Jenkins, J.C.; Chojnacky, D.C.; Heath, L.S.; Birdsey, R.A. Comprehensive Database of Diameter-Based Biomass Regressions for North American Tree Species; General Technical Report NE-319; USDA, Forest Service: Newtown Square, PA, USA, 2003.
- Edmondson, J.; Friedman, J.; Meko, D.; Touchan, R.; Scott, J.; Edmondson, A. Dendroclimatic potential of plains cottonwood (Populus deltoides subsp. monilifera) from the northern great plains, USA. Tree Ring Res. 2014, 70, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Henderson, D.E.; Jose, S. Biomass production potential of three short rotation woody crop species under varying nitrogen and water availability. Agrofor. Syst. 2010, 80, 259–273. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, Y.; Dev, S.; Grace III, J.M.; Amatya, D.M.; Leininger, T.D. Simulating Biomass Production and Water Use of Poplars in a Plantation Using a STELLA-Based Model. Forests 2022, 13, 547. https://doi.org/10.3390/f13040547
Ouyang Y, Dev S, Grace III JM, Amatya DM, Leininger TD. Simulating Biomass Production and Water Use of Poplars in a Plantation Using a STELLA-Based Model. Forests. 2022; 13(4):547. https://doi.org/10.3390/f13040547
Chicago/Turabian StyleOuyang, Ying, Satyanarayan Dev, Johnny M. Grace III, Devendra M. Amatya, and Theodor D. Leininger. 2022. "Simulating Biomass Production and Water Use of Poplars in a Plantation Using a STELLA-Based Model" Forests 13, no. 4: 547. https://doi.org/10.3390/f13040547
APA StyleOuyang, Y., Dev, S., Grace III, J. M., Amatya, D. M., & Leininger, T. D. (2022). Simulating Biomass Production and Water Use of Poplars in a Plantation Using a STELLA-Based Model. Forests, 13(4), 547. https://doi.org/10.3390/f13040547