Facing Multiple Environmental Challenges through Maximizing the Co-Benefits of Nature-Based Solutions at a National Scale in Italy
Abstract
:1. Introduction
2. Case Study
3. Materials and Methods
3.1. Environmental Challenges in Italy and Their Combination in Spatial Groups
3.2. Calculating the Nature Based Solutions Performance in Dealing with Challenges
3.3. Classification of Nature Based Solutions for Land Covers
4. Results
5. Discussion
5.1. Nature Based Solutions Implementable in Impervious Land Cover
5.2. Nature Based Solutions Implementable in Permeable Land Cover
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
- European Commission. Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities. Final Report of the Horizon 2020 Expert Group on “Nature-Based Solutions and Re-Naturing Cities”; Publications Office of the European Union: Luxembourg, 2015; ISBN 978-92-79-46051-7. [Google Scholar]
- Snep, R.P.H.; Voeten, J.G.W.F.; Mol, G.; Van Hattum, T. Nature Based Solutions for Urban Resilience: A Distinction between No-Tech, Low-Tech and High-Tech Solutions. Front. Environ. Sci. 2020, 8, 259. [Google Scholar] [CrossRef]
- Dawson, R.; Wyckmans, A.; Heidrich, O.; Köhler, J.; Dobson, S.; Feliu, E. Understanding Cities: Advances in Integrated Assessment of Urban Sustainability; Centre for Earth Systems Engineering Research (CESER), Newcastle University: Newcastle, UK, 2014; ISBN 9780992843700. [Google Scholar]
- European Union. EU Law and Related Documents. Available online: http://eur-lex.europa.eu (accessed on 12 January 2022).
- Dumitru, A.; Wendling, L. Evaluating the Impact of Nature-Based Solutions: A Handbook for Practitioners; European Commission (EC): Brussels, Belgium, 2021; ISBN 9789276229612. [Google Scholar]
- Khomenko, S.; Cirach, M.; Pereira-Barboza, E.; Mueller, N.; Barrera-Gómez, J.; Rojas-Rueda, D.; de Hoogh, K.; Hoek, G.; Nieuwenhuijsen, M. Premature mortality due to air pollution in European cities: A health impact assessment. Lancet Planet. Health 2021, 5, e121–e134. [Google Scholar] [CrossRef]
- Wild, T.C.; Henneberry, J.; Gill, L. Comprehending the multiple ‘values’ of green infrastructure—Valuing nature-based solutions for urban water management from multiple perspectives. Environ. Res. 2017, 158, 179–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balzan, M.V.; Tomaskinova, J.; Collier, M.; Dicks, L.; Geneletti, D.; Grace, M.; Longato, D.; Sadula, R.; Stoev, P.; Sapundzhieva, A. Building capacity for mainstreaming nature-based solutions into environmental policy and landscape planning. Res. Ideas Outcomes 2020, 6, e58970. [Google Scholar] [CrossRef]
- Kabisch, N.; Korn, H.; Stadler, J.; Bonn, A. Nature-Based Solutions to Climate Change Adaptation in Urban Areas; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Theory and Practice of Urban Sustainability Transitions; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-53750-4. [Google Scholar]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef] [Green Version]
- Escobedo, F.J.; Giannico, V.; Jim, C.Y.; Sanesi, G.; Lafortezza, R. Urban forests, ecosystem services, green infrastructure and nature-based solutions: Nexus or evolving metaphors? Urban For. Urban Green. 2019, 37, 3–12. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Andrade, A.; Dalton, J.; Dudley, N.; Jones, M.; Kumar, C.; Maginnis, S.; Maynard, S.; Nelson, C.R.; Renaud, F.G.; et al. Core principles for successfully implementing and upscaling Nature-based Solutions. Environ. Sci. Policy 2019, 98, 20–29. [Google Scholar] [CrossRef]
- Albert, C.; Schröter, B.; Haase, D.; Brillinger, M.; Henze, J.; Herrmann, S.; Gottwald, S.; Guerrero, P.; Nicolas, C.; Matzdorf, B. Addressing societal challenges through nature-based solutions: How can landscape planning and governance research contribute? Landsc. Urban Plan. 2019, 182, 12–21. [Google Scholar] [CrossRef]
- Raymond, C.M.; Pam, B.; Breil, M.; Nita, M.R.; Kabisch, N.; de Bel, M.; Enzi, V.; Frantzeskaki, N.; Geneletti, D.; Cardinaletti, M.; et al. An Impact Evaluation Framework to Support Planning and Evaluation of Nature-based Solutions Projects; Centre for Ecology and Hydrology: Wallingford, UK, 2017; ISBN 9781906698621. [Google Scholar]
- Faivre, N.; Fritz, M.; Freitas, T.; de Boissezon, B.; Vandewoestijne, S. Nature-Based Solutions in the EU: Innovating with nature to address social, economic and environmental challenges. Environ. Res. 2017, 159, 509–518. [Google Scholar] [CrossRef]
- Kooijman, E.D.; McQuaid, S.; Rhodes, M.L.; Collier, M.J.; Pilla, F. Innovating with nature: From nature-based solutions to nature-based enterprises. Sustainability 2021, 13, 1263. [Google Scholar] [CrossRef]
- Frantzeskaki, N.; McPhearson, T.; Collier, M.J.; Kendal, D.; Bulkeley, H.; Dumitru, A.; Walsh, C.; Noble, K.; Van Wyk, E.; Ordóñez, C.; et al. Nature-based solutions for urban climate change adaptation: Linking science, policy, and practice communities for evidence-based decision-making. Bioscience 2019, 69, 455–466. [Google Scholar] [CrossRef]
- The World Bank. Implementing Nature Based Flood Protection; The World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Mendonça, R.; Roebeling, P.; Fidélis, T.; Saraiva, M. Policy instruments to encourage the adoption of nature-based solutions in urban landscapes. Resources 2021, 10, 81. [Google Scholar] [CrossRef]
- Sarabi, S.E.; Han, Q.; Romme, A.G.L.; de Vries, B.; Wendling, L. Key enablers of and barriers to the uptake and implementation of nature-based solutions in urban settings: A review. Resources 2019, 8, 121. [Google Scholar] [CrossRef] [Green Version]
- Chausson, A.; Turner, B.; Seddon, D.; Chabaneix, N.; Girardin, C.A.J.; Kapos, V.; Key, I.; Roe, D.; Smith, A.; Woroniecki, S.; et al. Mapping the effectiveness of nature-based solutions for climate change adaptation. Glob. Chang. Biol. 2020, 26, 6134–6155. [Google Scholar] [CrossRef] [PubMed]
- European Commission. The 3 Billion Tree Planting Pledge for 2030; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Seymour, F. Seeing the Forests as well as the (Trillion) Trees in Corporate Climate Strategies. One Earth 2020, 2, 390–393. [Google Scholar] [CrossRef]
- Goffner, D.; Sinare, H.; Gordon, L.J. Correction to: The great Green Wall for the Sahara and the Sahel initiative as an opportunity to enhance resilience in Sahelian landscapes and livelihoods. Reg. Environ. Chang. 2019, 19, 2139–2140. [Google Scholar] [CrossRef] [Green Version]
- McDonald, R.; Aljabar, L.; Aubuchon, C.; Birnbaum, H.; Chandler, C.; Toomey, B.; Daley, J.; Jimenez, W.; Trieschman, E.; Paque, J.; et al. Funding Trees for Health: An Analysis of Finance and Policy Actions to Enable Tree Planting for Public Health; Nature Conservancy: Arlington, VA, USA, 2017. [Google Scholar]
- Stagakis, S.; Somarakis, G.; Chrysoulakis, N. ThinkNature Nature Based Solutions Handbook; ThinkNature Project Funded by EU Horizon 2020 Research and Innovation Program; European Union: Brussels, Belgium, 2019; 226p. [Google Scholar]
- Collier, M.J.; Connop, S.; Foley, K.; Nedović-Budić, Z.; Newport, D.; Corcoran, A.; Crowe, P.; Dunne, L.; de Moel, H.; Kampelmann, S.; et al. Urban transformation with TURAS open innovations; opportunities for transitioning through transdisciplinarity. Curr. Opin. Environ. Sustain. 2016, 22, 57–62. [Google Scholar] [CrossRef]
- ThinkNature. Nature Based Solutions—Technical Handbook; Part II; European Union: Brussels, Belgium, 2019. [Google Scholar]
- Castellar, J.A.C.; Popartan, L.A.; Pueyo-Ros, J.; Atanasova, N.; Langergraber, G.; Säumel, I.; Corominas, L.; Comas, J.; Acuña, V. Nature-based solutions in the urban context: Terminology, classification and scoring for urban challenges and ecosystem services. Sci. Total Environ. 2021, 779, 146237. [Google Scholar] [CrossRef] [PubMed]
- Wild, T.; Bulkeley, H.; Naumann, S.; Vojinovic, Z.; Calfapietra, C.; Whiteoak, K. Nature-Based Solutions: State of the Art in EU-Funded Projects; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-17334-2. [Google Scholar]
- Davis, M.; Abhold, K.; Mederake, L.; Knoblauch, D. NBS in European and National Policy Framework. Naturvation 2018, 50, 1–52. [Google Scholar]
- UNEP. Smart, Sustainable and Resilient Cities: The Power of Nature-based Solutions; UNEP: Nairobi, Kenya, 2021; pp. 1–32. [Google Scholar]
- IUCN. Global Standard for Nature-Based Solutions: A User-Friendly Framework for the Verification, Design and Scaling Up of NbS: First edition; International Union for Conservation of Nature (IUCN): Gland, Switzerland, 2020. [Google Scholar]
- Nesshöver, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haase, D.; Jones-Walters, L.; Keune, H.; Kovacs, E.; et al. The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef] [PubMed]
- Albert, C.; Fürst, C.; Ring, I.; Sandström, C. Research note: Spatial planning in Europe and Central Asia—Enhancing the consideration of biodiversity and ecosystem services. Landsc. Urban Plan. 2020, 196, 103741. [Google Scholar] [CrossRef]
- Veerkamp, C.; Ramieri, E.; Romanovska, L.; Zandersen, M.; Förster, J.; Rogger, M.; Martinsen, L. Assessment Frameworks of Nature-Based Solutions for Climate Change Adaptation and Disaster Risk Reduction; European Topic Centre on Climate Change Impacts, Vulnerability and Adaptation (ETC/CCA): Wageningen, The Netherlands, 2021. [Google Scholar]
- Grace, M.; Balzan, M.; Collier, M.; Geneletti, D.; Tomaskinova, J.; Abela, R.; Borg, D.; Buhagiar, G.; Camilleri, L.; Cardona, M.; et al. Priority knowledge needs for implementing nature-based solutions in the Mediterranean islands. Environ. Sci. Policy 2021, 116, 56–68. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.; Lionello, P.; Lla-sat, M.; Paz, S.; et al. Risks associated to climate and environmental changes in the Mediterranean region. Br. J. Psychiatry 2019, 111, 1009–1010. [Google Scholar]
- Meerow, S. The politics of multifunctional green infrastructure planning in New York City. Cities 2020, 100, 102621. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P. Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landsc. Urban Plan. 2017, 159, 62–75. [Google Scholar] [CrossRef]
- Di Pirro, E.; Sallustio, L.; Sgrigna, G.; Marchetti, M.; Lasserre, B. Strengthening the implementation of national policy agenda in urban areas to face multiple environmental stressors: Italy as a case study. Environ. Sci. Policy 2022, 129, 1–11. [Google Scholar] [CrossRef]
- Fischer, E.M.; Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 2010, 3, 398–403. [Google Scholar] [CrossRef]
- WMO. Summer of Extremes: Floods, Heat and Fire. Available online: https://public.wmo.int/en/media/news/summer-of-extremes-floods-heat-and-fire (accessed on 15 September 2021).
- European Environment Agency (EEA). Air Quality in Europe—2020 Report; EEA: Copenhagen, Denmark, 2020; ISBN 978-92-9480-292-7. [Google Scholar]
- Sicard, P.; Agathokleous, E.; De Marco, A.; Paoletti, E.; Calatayud, V. Urban population exposure to air pollution in Europe over the last decades. Environ. Sci. Eur. 2021, 33, 28. [Google Scholar] [CrossRef] [PubMed]
- SNPA. Consumo di Suolo, Dinamiche Territoriali e Servizi Ecosistemici; SNPA: Roma, Italy, 2019; Volume 8. [Google Scholar]
- Sallustio, L.; Munafò, M.; Riitano, N.; Lasserre, B.; Fattorini, L.; Marchetti, M. Integration of land use and land cover inventories for landscape management and planning in Italy. Environ. Monit. Assess. 2016, 188, 48. [Google Scholar] [CrossRef]
- Romano, B.; Zullo, F.; Fiorini, L.; Ciabò, S.; Marucci, A. Sprinkling: An Approach to Describe Urbanization Dynamics in Italy. Sustainability 2017, 9, 97. [Google Scholar] [CrossRef] [Green Version]
- Amato, F.; Maimone, B.; Martellozzo, F.; Nolè, G.; Murgante, B. The Effects of Urban Policies on the Development of Urban Areas. Sustainability 2016, 8, 297. [Google Scholar] [CrossRef] [Green Version]
- Sallustio, L.; Quatrini, V.; Geneletti, D.; Corona, P.; Marchetti, M. Assessing land take by urban development and its impact on carbon storage: Findings from two case studies in Italy. Environ. Impact Assess. Rev. 2015, 54, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Di Pirro, E.; Sallustio, L.; Capotorti, G.; Marchetti, M.; Lasserre, B. A scenario-based approach to tackle trade-offs between biodiversity conservation and land use pressure in Central Italy. Ecol. Modell. 2021, 448, 109533. [Google Scholar] [CrossRef]
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafò, M.; Vizzarri, M.; Marchetti, M. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef]
- Capotorti, G.; Guida, D.; Siervo, V.; Smiraglia, D.; Blasi, C. Ecological classification of land and conservation of biodiversity at the national level: The case of Italy. Biol. Conserv. 2012, 147, 174–183. [Google Scholar] [CrossRef]
- Marchetti, M.; Motta, R.; Salbitano, F.; Vacchiano, G. Planting trees in Italy for the health of the planet. Where, how and why. For. Riv. Selvic. Ed. Ecol. For. 2019, 16, 59–65. [Google Scholar] [CrossRef]
- Decree on Climate, Decreto Clima—Decreto Legge 14 Ottobre 2019, n. 111 (GU Serie Generale n.241 del 14-10-2019). 2019. Available online: https://www.gazzettaufficiale.it/eli/id/2019/10/14/19G00125/sg (accessed on 10 June 2021).
- Air Quality Directive, Directive 2008/50/EC of The European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Available online: http://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32008L0050 (accessed on 10 January 2021).
- Salbitano, F.; Sanesi, G. Decree on Climate 2019. What resources support forests and silviculture in our cities? For. Riv. Selvic. Ed. Ecol. For. 2019, 16, 74–76. [Google Scholar] [CrossRef]
- MATTM. Strategia Nazionale del Verde Urbano; Ministero Della Transizione Ecologica: Roma, Italy, 2018. [Google Scholar]
- Sallustio, L.; Lasserre, B.; Blasi, C.; Marchetti, M. Infrastrutture verdi contro il consumo di suolo. Reticula 2020, 25, 21–31. [Google Scholar]
- Di Napoli, C.; Pappenberger, F.; Cloke, H.L. Verification of heat stress thresholds for a health-based heat-wave definition. J. Appl. Meteorol. Climatol. 2019, 58, 1177–1194. [Google Scholar] [CrossRef]
- Baró, F.; Haase, D.; Gómez-Baggethun, E.; Frantzeskaki, N. Mismatches between ecosystem services supply and demand in urban areas: A quantitative assessment in five European cities. Ecol. Indic. 2015, 55, 146–158. [Google Scholar] [CrossRef] [Green Version]
- Trigila, A.; Iadanza, C.; Bussettini, M.; Lastoria, B. Rapporto sul Dissesto Idrogeologico in Italia; ISPRA: Rome, Italy, 2018. [Google Scholar]
- Horálek, J.; Schreiberová, M.; Schneider, P.; Kurfürst, P.; Schovánková, J.; Ďoubalová, J. European Air Quality Maps for 2017; European Topic Centre on Air Pollution, Noise and Industrial Pollution: Bilthoven, The Netherlands, 2019. [Google Scholar]
- European Environment Agency Copernicus Land Monitoring Service High Resolution Land Cover Characteristics. Imperviousness 2018, Imperviousness Change 2015–2018 and Built-Up 2018. 2018. Permalink: 7860bc42f4c1494599f1e135c832788c. Available online: https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-eu-dem (accessed on 15 September 2021).
- Congedo, L.; Sallustio, L.; Munafò, M.; Ottaviano, M.; Marchetti, M.; Congedo, L.; Sallustio, L.; Munafò, M.; Ottaviano, M. Copernicus high-resolution layers for land cover classification in Italy. J. Maps 2016, 12, 1195–1205. [Google Scholar] [CrossRef] [Green Version]
- Eggermont, H.; Balian, E.; Azevedo, J.M.N.; Beumer, V.; Brodin, T.; Claudet, J.; Fady, B.; Grube, M.; Keune, H.; Lamarque, P.; et al. Nature-based solutions: New influence for environmental management and research in Europe. Gaia 2015, 24, 243–248. [Google Scholar] [CrossRef]
- Kremer, P.; Hamstead, Z.; Haase, D.; McPhearson, T.; Frantzeskaki, N.; Andersson, E.; Kabisch, N.; Larondelle, N.; Rall, E.L.; Voigt, A.; et al. Key insights for the future of urban ecosystem services research. Ecol. Soc. 2016, 21, 2. [Google Scholar] [CrossRef] [Green Version]
- Marando, F.; Salvatori, E.; Sebastiani, A.; Fusaro, L.; Manes, F. Regulating Ecosystem Services and Green Infrastructure: Assessment of Urban Heat Island effect mitigation in the municipality of Rome, Italy. Ecol. Modell. 2019, 392, 92–102. [Google Scholar] [CrossRef]
- Capotorti, G.; Del Vico, E.; Anzellotti, I.; Celesti-Grapow, L. Combining the Conservation of Biodiversity with the Provision of Ecosystem Services in Urban Green Infrastructure Planning: Critical Features Arising from a Case Study in the Metropolitan Area of Rome. Sustainability 2016, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Manes, F.; Marando, F.; Capotorti, G.; Blasi, C.; Salvatori, E.; Fusaro, L.; Ciancarella, L.; Mircea, M.; Marchetti, M.; Chirici, G.; et al. Regulating Ecosystem Services of forests in ten Italian Metropolitan Cities: Air quality improvement by PM10 and O3 removal. Ecol. Indic. 2016, 67, 425–440. [Google Scholar] [CrossRef]
- Croeser, T.; Garrard, G.; Sharma, R.; Ossola, A.; Bekessy, S. Choosing the right nature-based solutions to meet diverse urban challenges. Urban For. Urban Green. 2021, 65, 127337. [Google Scholar] [CrossRef]
- Stovin, V. The potential of green roofs to manage urban stormwater. Water Environ. J. 2010, 24, 192–199. [Google Scholar] [CrossRef]
- Zölch, T.; Henze, L.; Keilholz, P.; Pauleit, S. Regulating urban surface runoff through nature-based solutions—An assessment at the micro-scale. Environ. Res. 2017, 157, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Carter, T.; Jackson, C.R. Vegetated roofs for stormwater management at multiple spatial scales. Landsc. Urban Plan. 2007, 80, 84–94. [Google Scholar] [CrossRef]
- Tallis, M.; Taylor, G.; Sinnett, D.; Freer-Smith, P. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landsc. Urban Plan. 2011, 103, 129–138. [Google Scholar] [CrossRef]
- Sgrigna, G.; Baldacchini, C.; Dreveck, S.; Cheng, Z.; Calfapietra, C. Relationships between air particulate matter capture efficiency and leaf traits in twelve tree species from an Italian urban-industrial environment. Sci. Total Environ. 2020, 718, 137310. [Google Scholar] [CrossRef] [PubMed]
- Armson, D.; Stringer, P.; Ennos, A.R. The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban For. Urban Green. 2012, 11, 245–255. [Google Scholar] [CrossRef]
- Livesley, S.J.; McPherson, E.G.; Calfapietra, C. The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale. J. Environ. Qual. 2016, 45, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Cabral, I.; Costa, S.; Weiland, U.; Bonn, A. Etta Urban Gardens as Multifunctional Nature-Based Solutions for Societal Goals in a Changing Climate; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Theory and Practice of Urban Sustainability Transitions; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-53750-4. [Google Scholar]
- Ysebaert, T.; Koch, K.; Samson, R.; Denys, S. Green walls for mitigating urban particulate matter pollution—A review. Urban For. Urban Green. 2021, 59, 127014. [Google Scholar] [CrossRef]
- Kántor, N.; Gál, C.V.; Gulyás, Á.; Unger, J. The Impact of Façade Orientation and Woody Vegetation on Summertime Heat Stress Patterns in a Central European Square: Comparison of Radiation Measurements and Simulations. Adv. Meteorol. 2018, 2018, 2650642. [Google Scholar] [CrossRef]
- Blanco, I.; Schettini, E.; Vox, G. Effects of vertical green technology on building surface temperature. Int. J. Des. Nat. Ecodyn. 2018, 13, 384–394. [Google Scholar] [CrossRef] [Green Version]
- Susca, T.; Gaffin, S.R.; Dell’Osso, G.R. Positive effects of vegetation: Urban heat island and green roofs. Environ. Pollut. 2011, 159, 2119–2126. [Google Scholar] [CrossRef]
- Salbitano, F.; Borelli, S.; Conigliaro, M.; Chen, Y. Guidelines on Urban and Peri-Urban Forestry; FAO: Rome, Italy, 2016; Volume 178, ISBN 9789251094426. [Google Scholar]
- Capotorti, G.; De Lazzari, V.; Ortí, M.A. Local Scale Prioritisation of Green Infrastructure for Enhancing Biodiversity in Peri-Urban Agroecosystems: A Multi-Step Process Applied in the Metropolitan City of Rome (Italy). Sustainability 2019, 11, 3322. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Rupprecht, C.D.D.; Furuya, K. Typology and Perception of Informal Green Space in Urban Interstices: A Case Study of Ichikawa City, Japan. Int. Rev. Spat. Plan. Sustain. Dev. 2020, 8, 4–20. [Google Scholar] [CrossRef] [Green Version]
- NRWM. Infiltration Basins; 2014. Project Publications are Available. Available online: http://www.nwrm.eu (accessed on 15 January 2022).
- Valeri, S.; Zavattero, L.; Capotorti, G. Ecological connectivity in agricultural green infrastructure: Suggested criteria for fine scale assessment and planning. Land 2021, 10, 807. [Google Scholar] [CrossRef]
- Capotorti, G.; Alós Ortí, M.M.; Copiz, R.; Fusaro, L.; Mollo, B.; Salvatori, E.; Zavattero, L. Biodiversity and ecosystem services in urban green infrastructure planning: A case study from the metropolitan area of Rome (Italy). Urban For. Urban Green. 2019, 37, 87–96. [Google Scholar] [CrossRef]
- Zhang, Z.; Meerow, S.; Newell, J.P.; Lindquist, M. Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban For. Urban Green. 2019, 38, 305–317. [Google Scholar] [CrossRef]
- Endreny, T.; Santagata, R.; Perna, A.; De Stefano, C.; Rallo, R.F.; Ulgiati, S. Implementing and managing urban forests: A much needed conservation strategy to increase ecosystem services and urban wellbeing. Ecol. Modell. 2017, 360, 328–335. [Google Scholar] [CrossRef]
- Hale, J.D.; Pugh, T.A.M.; Sadler, J.P.; Boyko, C.T.; Brown, J.; Caputo, S.; Caserio, M.; Coles, R.; Farmani, R.; Hales, C.; et al. Delivering a multi-functional and resilient urban forest. Sustainability 2015, 7, 4600–4624. [Google Scholar] [CrossRef] [Green Version]
- McDonald, A.G.; Bealey, W.J.; Fowler, D.; Dragosits, U.; Skiba, U.; Smith, R.I.; Donovan, R.G.; Brett, H.E.; Hewitt, C.N.; Nemitz, E. Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmos. Environ. 2007, 41, 8455–8467. [Google Scholar] [CrossRef]
- Marvuglia, A.; Koppelaar, R.; Rugani, B. The effect of green roofs on the reduction of mortality due to heatwaves: Results from the application of a spatial microsimulation model to four European cities. Ecol. Modell. 2020, 438, 109351. [Google Scholar] [CrossRef]
- Romano, B.; Zullo, F.; Fiorini, L.; Marucci, A. Molecular No Smart-Planning in Italy: 8000 Municipalities in Action throughout the Country. Sustainability 2019, 11, 6467. [Google Scholar] [CrossRef] [Green Version]
- Fiorini, L.; Zullo, F.; Marucci, A.; Romano, B. Land take and landscape loss: Effect of uncontrolled urbanization in Southern Italy. J. Urban Manag. 2019, 8, 42–56. [Google Scholar] [CrossRef]
- Bodnaruk, E.W.; Kroll, C.N.; Yang, Y.; Hirabayashi, S.; Nowak, D.J.; Endreny, T.A. Where to plant urban trees? A spatially explicit methodology to explore ecosystem service tradeoffs. Landsc. Urban Plan. 2016, 157, 457–467. [Google Scholar] [CrossRef] [Green Version]
- Almenar, J.B.; Rugani, B.; Geneletti, D.; Brewer, T. Integration of ecosystem services into a conceptual spatial planning framework based on a landscape ecology perspective. Landsc. Ecol. 2018, 33, 2047–2059. [Google Scholar] [CrossRef] [Green Version]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef] [PubMed]
Groups | Area (km2) | Permeable (km2) | Impervious (km2) | Population (n° inhab) | Pop Dens (inhab/km2) |
---|---|---|---|---|---|
AIR | 141,044 | 136,310 | 4734 | 12,974,163 | 91 |
CLIM | 12,582 | 10,345 | 2237 | 13,468,447 | 1036 |
WAT | 477 | 435 | 42 | 130,275 | 254 |
AIR-CLIM | 97,769 | 89,603 | 8166 | 21,377,514 | 213 |
AIR-WAT | 3352 | 2904 | 448 | 1,238,194 | 326 |
CLIM-WAT | 1043 | 790 | 253 | 1,152,988 | 1086 |
ALL | 22,875 | 20,446 | 2429 | 6,163,604 | 258 |
NoChal | 18,393 | 17,639 | 754 | 2,802,590 | 150 |
Nature Based Solutions | Performance Score (PS) | ||||||
---|---|---|---|---|---|---|---|
I-NBS | AIR | CLIM | WAT | AIR-CLIM | AIR-WAT | CLIM-WAT | ALL |
Extensive green roofs | 0.5 | ▲0.9 | 0.6 | ▲0.7 | 0.5 | ▲0.7 | ▲0.7 |
Green walls system | ▲1.0 | ▲0.8 | 0.0 | ▲0.9 | 0.5 | 0.4 | 0.6 |
Green façades | ▲1.0 | ▲1.0 | 0.2 | ▲1.0 | 0.6 | 0.6 | ▲0.7 |
Intensive green roofs | 0.7 | ▲0.9 | ▲0.8 | ▲0.8 | ▲0.8 | ▲0.9 | ▲0.8 |
Planter green walls | 0.5 | 0.5 | 0.0 | 0.5 | 0.3 | 0.3 | 0.3 |
Pocket gardens/parks | 0.6 | 0.6 | ▲0.8 | 0.6 | ▲0.7 | ▲0.7 | ▲0.7 |
Private gardens | 0.5 | ▲1.0 | ▲0.8 | ▲0.8 | 0.6 | ▲0.9 | ▲0.8 |
Raingardens | 0.4 | 0.3 | ▲0.8 | 0.4 | 0.6 | 0.6 | 0.5 |
Semi-intensive green roofs | ▲0.7 | ▲0.8 | ▲1.0 | ▲0.8 | ▲0.8 | ▲0.9 | ▲0.8 |
Street trees | ▲0.8 | ▲0.9 | 0.4 | ▲0.8 | 0.6 | ▲0.7 | ▲0.7 |
Swales | 0.6 | 0.2 | ▲0.9 | 0.4 | ▲0.7 | 0.5 | 0.6 |
Vegetated grid paves | 0.2 | 0.5 | ▲0.8 | 0.3 | 0.5 | 0.6 | 0.5 |
Vegetated pergola | 0.5 | ▲0.8 | 0.3 | 0.6 | 0.4 | 0.5 | 0.5 |
Vertical mobile garden | ▲1.0 | ▲0.9 | 0.0 | ▲1.0 | 0.5 | 0.5 | 0.6 |
P-NBS | |||||||
(Wet)Retention Ponds | ▲0.8 | 0.6 | ▲1.0 | ▲0.7 | ▲0.9 | ▲0.8 | ▲0.8 |
Community gardens | 0.3 | 0.5 | ▲0.8 | 0.4 | 0.6 | ▲0.7 | 0.6 |
Constructed wetlands | 0.0 | 0.3 | ▲1.0 | 0.1 | 0.5 | 0.6 | 0.4 |
Green Corridors | ▲1.0 | ▲1.0 | ▲0.7 | ▲1.0 | ▲0.8 | ▲0.8 | ▲0.9 |
Heritage gardens | ▲1.0 | ▲1.0 | ▲1.0 | ▲1.0 | ▲1.0 | ▲1.0 | ▲1.0 |
Infiltration basins | ▲0.8 | ▲0.8 | ▲1.0 | ▲0.8 | ▲0.9 | ▲0.9 | ▲0.9 |
Large urban parks | ▲1.0 | ▲1.0 | ▲0.9 | ▲1.0 | ▲1.0 | ▲1.0 | ▲1.0 |
Shelters for biodiversity | ▲0.8 | 0.0 | ▲0.7 | 0.4 | ▲0.7 | 0.3 | 0.5 |
Urban forests | ▲1.0 | ▲0.9 | ▲0.8 | ▲0.9 | ▲0.9 | ▲0.9 | ▲0.9 |
Urban orchards | 0.3 | 0.2 | 0.5 | 0.3 | 0.4 | 0.3 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Pirro, E.; Sallustio, L.; Castellar, J.A.C.; Sgrigna, G.; Marchetti, M.; Lasserre, B. Facing Multiple Environmental Challenges through Maximizing the Co-Benefits of Nature-Based Solutions at a National Scale in Italy. Forests 2022, 13, 548. https://doi.org/10.3390/f13040548
Di Pirro E, Sallustio L, Castellar JAC, Sgrigna G, Marchetti M, Lasserre B. Facing Multiple Environmental Challenges through Maximizing the Co-Benefits of Nature-Based Solutions at a National Scale in Italy. Forests. 2022; 13(4):548. https://doi.org/10.3390/f13040548
Chicago/Turabian StyleDi Pirro, Elena, Lorenzo Sallustio, Joana A. C. Castellar, Gregorio Sgrigna, Marco Marchetti, and Bruno Lasserre. 2022. "Facing Multiple Environmental Challenges through Maximizing the Co-Benefits of Nature-Based Solutions at a National Scale in Italy" Forests 13, no. 4: 548. https://doi.org/10.3390/f13040548
APA StyleDi Pirro, E., Sallustio, L., Castellar, J. A. C., Sgrigna, G., Marchetti, M., & Lasserre, B. (2022). Facing Multiple Environmental Challenges through Maximizing the Co-Benefits of Nature-Based Solutions at a National Scale in Italy. Forests, 13(4), 548. https://doi.org/10.3390/f13040548