Effects of Silvicultural Adaptation Measures on Carbon Stock of Austrian Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data of the Austrian National Forest Inventory (ANFI)
2.2. Scenarios of Forest Management
2.2.1. Business-as-Usual (BAU)
2.2.2. Change in Tree Species Composition (CSC)
2.2.3. Shorter Rotation Cycles (SRC)
2.3. Model Ensemble Used for Scenario Analysis
- General economy;
- Forest product markets;
- Timber supply from Austrian forests;
- Round wood markets defined as interactions between the modules “Timber supply from Austrian forests” and “Forest product markets”;
- Forest resources in terms of forest area, growing stock, and CAI;
2.4. Climate Data
2.5. Simulation Protocol
- No harvesting in set-aside areas (e.g., core zones of national parks);
- In the fringe of set-aside areas and in protective forests only single tree selection was allowed for final felling (no clear felling), and tree selection started with the largest trees;
- Thinning and tending in stands younger than 60 years was based on stem number guidelines, and trees for removal were randomly selected;
- According to the Austrian forest act, crown closure after thinning, tending, or single tree selection had to be at least 0.6;
2.6. Calculation of Carbon Stock
- CSL, CSD = respective carbon stock in megatons (Mt = 109 kg)
- VS = solid tree volume of a sample tree (m3)
- β = shrinkage factor (%)
- ρ = wood density (oven dry mass over oven dry volume; Mt/m3)
- BNDM = branch and needle dry matter of a sample tree (Mt)
- RDM = root dry matter of a sample tree (Mt)
- EF = expansion factor of a sample tree for scaling up to total forest area
- fC = carbon fraction of biomass dry matter (0.5)
2.7. Analyses
3. Results
3.1. Development of Carbon Stock in Austrian Forests
3.2. Annual Harvesting Rates
3.3. Current Annual Increment (CAI)
3.4. Salvage Logging caused by Wind, Snow, and Bark Beetles
3.5. Forest Structure
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderl, M.; Friedrich, A.; Gangl, M.; Haider, S.; Köther, T.; Kriech, M.; Kuschel, V.; Lampert, C.; Mandl, N.; Matthews, B.; et al. Austria’s National Inventory Report 2021—Submission under the United Nations Framework Convention on Climate Change and under the Kyoto Protocol; Rep-0761; Environment Agency: Vienna, Austria, 2021; 653p. [Google Scholar]
- Gschwantner, T. Holzvorrat auf neuem Höchststand. BFW-Praxisinf. 2019, 50, 8–12. [Google Scholar]
- Ergebnisse der Zwischenauswertung 2016/18. Available online: https://bfw.ac.at/rz/wi.home (accessed on 15 December 2021).
- De Vries, W.; Reinds, G.J.; Gundersen, P.; Sterba, H. The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Glob. Chang. Biol. 2006, 12, 1151–1173. [Google Scholar] [CrossRef]
- De Vries, W.; Posch, M.; Simpson, D.; Reinds, G.J. Modelling long-term impacts of changes in climate, nitrogen deposition and ozone exposure on carbon sequestration of European forest ecosystems. Sci. Total Environ. 2017, 605–606, 1097–1116. [Google Scholar] [CrossRef] [PubMed]
- Pretzsch, H.; Biber, P.; Schütze, G.; Uhl, E.; Rötzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 2014, 5, 4967. [Google Scholar] [CrossRef] [Green Version]
- Pretzsch, H.; del Río, M.; Biber, P.; Arcangeli, C.; Bielak, K.; Brang, P.; Dudzinska, M.; Forrester, D.I.; Klädtke, J.; Kohnle, U.; et al. Maintenance of long-term experiments for unique insights into forest growth dynamics and trends: Review and perspectives. Eur. J. For. Res. 2019, 138, 165–185. [Google Scholar] [CrossRef] [Green Version]
- Gschwantner, T.; Prskawetz, M. Sekundäre Nadelwälder in Österreich. BFW-Praxisinf. 2005, 6, 11–13. [Google Scholar]
- Ledermann, T. Ein Modell zur Abschätzung der Zufallsnutzungen in Österreich. In Beiträge zur Jahrestagung 2017 in Untermarchtal/Baden-Württemberg; Klädtke, J., Kohnle, U., Eds.; Deutscher Verband Forstlicher Forschungsanstalten—Sektion Ertragskunde: Freiburg, Germany, 2017; pp. 9–19. [Google Scholar]
- Seidl, R.; Rammer, W. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landsc. Ecol. 2017, 32, 1485–1498. [Google Scholar] [CrossRef] [Green Version]
- Forzieri, G.; Girardello, M.; Ceccherini, G.; Spinoni, J.; Feyen, L.; Hartmann, H.; Beck, P.S.A.; Camps-Valls, G.; Chirici, G.; Mauri, A.; et al. Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 2021, 12, 1081. [Google Scholar]
- Von Lüpke, B. Risikominderung durch Mischwälder und naturnaher Waldbau: Ein Spannungsfeld. Forstarchiv 2004, 75, 43–50. [Google Scholar]
- Schütz, J.P.; Götz, M.; Schmid, W.; Mandallaz, D. Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. Eur. J. For. Res. 2006, 125, 291–302. [Google Scholar] [CrossRef]
- Knoke, T.; Ammer, C.; Stimm, B.; Mosandl, R. Admixing broadleaved to coniferous tree species: A review on yield, ecological stability and economics. Eur. J. For. Res. 2008, 127, 89–101. [Google Scholar] [CrossRef]
- Seidl, R.; Rammer, W.; Lexer, M.J. Adaptation options to reduce climate change vulnerability of sustainable forest management in the Austrian Alps. Can. J. For. Res. 2011, 41, 694–706. [Google Scholar] [CrossRef] [Green Version]
- Nabuurs, G.J.; Delacote, P.; Ellison, D.; Hanewinkel, M.; Hetemäki, L.; Lindner, M.; Ollikainen, M. By 2050 the Mitigation Effects of EU Forests Could Nearly Double through Climate Smart Forestry. Forests 2017, 8, 484. [Google Scholar] [CrossRef] [Green Version]
- Harmon, M.E.; Marks, B. Effects of silvicultural practices on carbon stores in Douglas-fir—Western hemlock forests in the Pacific Northwest, U.S.A.: Results from a simulation model. Can. J. For. Res. 2002, 32, 863–877. [Google Scholar] [CrossRef] [Green Version]
- Ludvig, A.; Braun, M.; Hesser, F.; Ranacher, L.; Fritz, D.; Gschwantner, T.; Jandl, R.; Kindermann, G.; Ledermann, T.; Pölz, W.; et al. Comparing policy options for carbon efficiency in the wood value chain: Evidence from Austria. J. Clean. Prod. 2021, 292, 125985. [Google Scholar] [CrossRef]
- Seidl, R.; Rammer, W.; Jäger, D.; Curr, W.S.; Lexer, M.J. Assessing trade-offs between carbon sequestration and timber production within a framework of multi-purpose forestry in Austria. For. Ecol. Manag. 2007, 248, 64–79. [Google Scholar] [CrossRef]
- Bruce, D. Yield differences between research plots and managed forests. J. For. 1977, 75, 14–17. [Google Scholar]
- Bitterlich, W. Die Winkelzählprobe. Allg. Forst Holzwirtaschtsztg 1948, 59, 4–5. [Google Scholar] [CrossRef]
- Mayer, H. Waldbau auf Soziologisch-Ökologischer Grundlage, 3rd ed.; Gustav Fischer Verlag: Stuttgart, Germany, 1984; 514p. [Google Scholar]
- Ledermann, T.; Kindermann, G.; Gschwantner, T. National woody biomass projection systems based on forest inventory in Austria. In Forest Inventory-Based Projection Systems for Wood and Biomass Availability; Barreiro, S., Schelhaas, M.J., McRoberts, R.E., Kändler, G., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 79–95. [Google Scholar]
- Liski, J.; Tuomi, M.; Rasinmäki, J. Yasso07 User-Interface Manual; Finnish Environment Institute: Helsinki, Finland, 2009; p. 14. [Google Scholar]
- Liski, J.; Palosuo, T.; Peltoniemi, M.; Sievänen, R. Carbon and decomposition model Yasso for forest soils. Ecol. Model. 2005, 189, 168–182. [Google Scholar] [CrossRef]
- Viskari, T.; Laine, M.; Kulmala, L.; Mäkelä, J.; Fer, I.; Liski, J. Improving Yasso15 soil carbon model estimates with ensemble adjustment Kalman filter state data assimilation. Geosci. Model. Dev. 2020, 13, 5959–5971. [Google Scholar] [CrossRef]
- Allinger-Csollich, W.; Hackl, J.; Heckl, F.; Hochbichler, E.; Schwarzbauer, P.; Schwarzl, B. Papierrecycling—Wald. In Papierrecycling—Forstwirtschaft—Wald: Darstellung Möglicher Zusammenhänge; Monographien—Band 131; Environment Agency: Vienna, Austria, 2000; 234p. [Google Scholar]
- Schwarzbauer, P.; Rametsteiner, E. The impact of SFM-certification on forest product markets in Western Europe—An analysis using a forest sector simulation model. For. Policy Econ. 2001, 16, 241–256. [Google Scholar] [CrossRef]
- Braun, M.; Fritz, D.; Weiss, P.; Braschel, N.; Büchsenmeister, R.; Freudenschuß, A.; Gschwantner, T.; Jandl, R.; Ledermann, T.; Neumann, M.; et al. A holistic assessment of greenhouse gas dynamics from forests to the effects of wood products use in Austria. Carbon Manag. 2016, 7, 271–283. [Google Scholar] [CrossRef]
- Ledermann, T. Description of PROGNAUS for Windows 2.2. In Sustainable Forest Management—Growth Models for Europe; Hasenauer, H., Ed.; Springer: Berlin, Germany, 2006; pp. 71–78. [Google Scholar]
- Monserud, R.; Sterba, H. A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria. For. Ecol. Manag. 1996, 80, 57–80. [Google Scholar] [CrossRef]
- Stage, A.R. Prognosis Model for Stand Development; Res. Pap. INT-RP-137; USDA Forest Service: Ogden, UT, USA, 1973; Volume 137, 32p.
- Kindermann, G. Eine Klimasensitive Weiterentwicklung des Kreisflächenzuwachsmodells aus PROGNAUS. Austrian J. For. Sci. 2010, 127, 147–178. [Google Scholar]
- Gschwantner, T.; Kindermann, G.; Ledermann, T. Weiterentwicklung des Wachstumssimulators PROGNAUS durch Einbindung Klimarelevanter Parameter. In Auswirkungen des Klimawandels auf Österreichs Wälder—Entwicklung und Vergleichende Evaluierung Unterschiedlicher Prognosemodelle; Neumann, M., Ed.; Research Report A760631; Climate and Energy Fund: Vienna, Austria, 2010; 150p. [Google Scholar]
- Ledermann, T. Ein Einwuchsmodell aus den Daten der Österreichischen Waldinventur 1981–1996. Austrian J. For. Sci. 2002, 119, 40–77. [Google Scholar]
- Northway, S.; Bull, G.Q.; Nelson, J.D. Forest Sector Partial Equilibrium Models: Processing Components. For. Sci. 2013, 59, 151–156. [Google Scholar]
- Schwarzbauer, P.; Stern, T. Energy vs. material: Economic impacts of a “wood-for-energy scenario” on the forest-based sector in Austria—A simulation approach. For. Policy Econ. 2010, 12, 31–38. [Google Scholar] [CrossRef]
- Schwarzbauer, P.; Huber, W.; Stern, T.; Hasenauer, H. Reduction of Forest Areas Available for Wood Supply (FAWS)—Impacts on the Economic Situation of the Austrian Forest-Based Sector. Austrian J. For. Sci. 2013, 130, 61–83. [Google Scholar]
- Schwarzbauer, P.; Weinfurter, S.; Stern, T.; Koch, S. Economic crises: Impacts on the forest-based sector and wood-based energy use in Austria. For. Policy Econ. 2013, 27, 13–22. [Google Scholar] [CrossRef]
- Stern, T.; Ledl, C.; Braun, M.; Hesser, F.; Schwarzbauer, P. Biorefineries’ impacts on the Austrian forest sector: A system dynamics approach. Technol. Forecast. Soc. Chang. 2015, 91, 311–326. [Google Scholar] [CrossRef]
- Chimani, B.; Heinrich, G.; Hofstätter, M.; Kerschbaumer, M.; Kienberger, S.; Leuprecht, A.; Lexer, A.; Peßenteiner, S.; Poetsch, M.S.; Salzmann, M.; et al. Endbericht ÖKS15—Klimaszenarien für Österreich-Daten-Methoden-Klimaanalyse; Version 1; CCCA Data Centre: Vienna, Austria, 2016; 353p. [Google Scholar]
- ÖNORM B 3012. Wood Species—Characteristic Values to Terms and Symbols of ÖNORM EN 13556; Edition 2003-12-01; Österreichisches Normungsinstitut: Vienna, Austria, 2003; 32p. [Google Scholar]
- Weiss, P. Austrian biomass functions. Austrian J. For. Sci. 2006, 123, 1–101. [Google Scholar]
- Offenthaler, I.; Hochbichler, E. Estimation of root biomass of Austrian forest tree species. Austrian J. For. Sci. 2006, 123, 65–86. [Google Scholar]
- Perruchoud, D.; Kienast, F.; Kaufmann, E.; Bräker, O.U. 20th Century Carbon Budget of Forest Soils in the Alps. Ecosystems 1999, 2, 320–337. [Google Scholar] [CrossRef] [Green Version]
- Jandl, R.; Ledermann, T.; Kindermann, G.; Freudenschuss, A.; Gschwantner, T.; Weiss, P. Strategies for climate-smart forest management in Austria. Forests 2018, 9, 592. [Google Scholar] [CrossRef] [Green Version]
- Jandl, R.; Ledermann, T.; Kindermann, G.; Weiss, P. Soil Organic Carbon Stocks in Mixed-Deciduous and Coniferous Forests in Austria. Front. For. Glob. Chang. 2021, 4, 688851. [Google Scholar] [CrossRef]
- Ledermann, T.; Kindermann, G. Modelle für die Künftige Bewirtschaftung der Fichte. BFW-Praxisinf. 2013, 31, 16–19. [Google Scholar]
- Marschall, J. Hilfstafeln für die Orsteinrichtung, 5th ed.; Österreichischer Agrarverlag: Vienna, Austria, 1992; 204p. [Google Scholar]
- Schodterer, H. Verjüngung im Österreichischen Wald: Defizite im Schutzwald. BFW-Praxisinf. 2011, 24, 10–14. [Google Scholar]
- Duncker, P.S.; Raulund-Rasmussen, K.; Gundersen, P.; Katzensteiner, K.; De Jong, J.; Ravn, H.P.; Smith, M.; Eckmüllner, O.; Spiecker, H. How forest management affects ecosystem services, including timber production and economic return: Synergies and trade-offs. Ecol. Soc. 2012, 17, 50. [Google Scholar] [CrossRef] [Green Version]
- Churkina, G.; Organschi, A.; Reyer, C.P.O.; Ruff, A.; Vinke, K.; Liu, Z.; Reck, B.K.; Graedel, T.E.; Schellnhuber, H.J. Buildings as a global carbon sink. Nat. Sustain. 2020, 3, 269–276. [Google Scholar] [CrossRef]
Mean Temperature | Tree Species |
---|---|
<6 °C | Conifers (Picea abies, Abies alba, Larix decidua, Pinus sylvetris) |
6–7 °C | Conifers, Maple (Acer pseudoplatanus) |
7–8 °C | Conifers, Maple, Beech (Fagus sylvatica) |
8–11 °C | Maple, Beech, Oak (Quercus petrea/robur) |
11–12 °C | Maple, Oak |
>12 °C | Oak |
Scenario/Year | Conifers | Broadleaved Trees |
---|---|---|
Status 2010 | 78 | 22 |
Business-as-usual (BAU) 2150 | 78 | 22 |
Change in species composition (CSC) 2150 | 26 | 74 |
Shorter rotation cycles (SRC) 2150 | 79 | 21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ledermann, T.; Braun, M.; Kindermann, G.; Jandl, R.; Ludvig, A.; Schadauer, K.; Schwarzbauer, P.; Weiss, P. Effects of Silvicultural Adaptation Measures on Carbon Stock of Austrian Forests. Forests 2022, 13, 565. https://doi.org/10.3390/f13040565
Ledermann T, Braun M, Kindermann G, Jandl R, Ludvig A, Schadauer K, Schwarzbauer P, Weiss P. Effects of Silvicultural Adaptation Measures on Carbon Stock of Austrian Forests. Forests. 2022; 13(4):565. https://doi.org/10.3390/f13040565
Chicago/Turabian StyleLedermann, Thomas, Martin Braun, Georg Kindermann, Robert Jandl, Alice Ludvig, Klemens Schadauer, Peter Schwarzbauer, and Peter Weiss. 2022. "Effects of Silvicultural Adaptation Measures on Carbon Stock of Austrian Forests" Forests 13, no. 4: 565. https://doi.org/10.3390/f13040565
APA StyleLedermann, T., Braun, M., Kindermann, G., Jandl, R., Ludvig, A., Schadauer, K., Schwarzbauer, P., & Weiss, P. (2022). Effects of Silvicultural Adaptation Measures on Carbon Stock of Austrian Forests. Forests, 13(4), 565. https://doi.org/10.3390/f13040565