Characteristics of Soil Mites Communities Structure under Vegetation Vertical Gradient in the Shibing World Natural Heritage Property, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Research Methodology
2.2.1. Sample Selection and Settings
2.2.2. Sample Collection and Processing
2.2.3. Data Calculation and Analysis
- (1)
- Community dominance [24,25]: more than 10% of the total catch in the number of individuals is the dominant group (++++), 1~10% of the total catch in the number of individuals is the common group (+++), 0.5~1% of the total catch in the number of individuals is the rare group (++), and less than 0.5% of the total catch in the number of individuals is the most rare group (+).
- (2)
- Community structure analysis [26]: the Shannon–Winner diversity index (H), Margalef richness index (SR), and Pielou evenness index (J) were used to characterize the community jointly.
- (3)
- Analysis of community similarity and variability [27] using Jaccard’s similarity coefficient:
- (4)
- (5)
- MGP analysis of the ecological structure of oribatid mites (Acari:Oribatid): The ecological groups of oribatid mites were analyzed using the MGP analysis of mites [21,31,32], M-Macropylina, G-Gymnonota, and P-Poronota. The percentage of genera of each group was calculated for MGP I analysis and the percentage of individuals of each group was calculated for MGP II analysis, respectively. The criteria for community type classification are shown in Table 2.
- (6)
- Statistical analysis: The data were statistically organized using Microsoft Excel 2020 statistical software; IBM SPSS 22.0 was used to analyze the data, and for data obeying normal distribution, one-way ANOVA was used to compare the differences in the number of soil mite genera, number of individuals, diversity index, richness index, evenness index, etc., under the vertical zone spectrum of vegetation in the heritage sites. The LSD test was used for the significance of the differences between sites (significant difference: p < 0.05); log(x + 1) transformation was performed for the data that did not obey normal distribution, and if they still did not follow the normal distribution, the test was performed with non-parametrics [33,34]. The above analysis and graphing were completed using Origin 2021.0 and IBM SPSS 22.0.
3. Results and Analysis
3.1. Soil Mite Community Composition and Dominance
3.1.1. General Composition and Dominance of Soil Mite Communities
3.1.2. Community Composition and Dominance of Soil Mites under Different Vegetation Types
3.2. Soil Mites Community Structure
3.2.1. Horizontal and Vertical Distribution of the Number of Genera and Individuals of Soil Mites
3.2.2. Community Diversity
3.2.3. Community Similarities and Differences
3.3. Ecological Group of Predatory Gamasid Mites (Mesostigmata: Gamasina)
3.4. Ecological Group of Oribatid Mites (Acari:Oribatid)
3.5. Trophic Structure of Oribatid Mites (Acari:Oribatid)
- (1)
- Carnivorous and omnivorous oribatid mites.
- (2)
- Secondary decomposers.
- (3)
- Primary decomposers.
- (4)
- Phycophagous and fungivorous oribatid mites.
4. Discussion
4.1. Differences in Soil Mite Groups in Different Montane Forest Environments
4.2. Variation in Vegetation along the Elevation Gradient Affects Soil Mite Community Structure
4.3. Ecological Groups of Soil Mites as Indicators of the Forest Soil Environment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, X.; Li, J.H.; Wang, Y. Comparative Study on the Mountains on the World Heritage List and Suggestions about Submission of Natural World Heritage in China. Geol. Rev. 2007, 53, 165–170. (In Chinese) [Google Scholar]
- Unesco, P.E. Convention Concerning the Protection of the World Cultural and Natural Heritage. Mus. Int. 1973, 25, 1–6. [Google Scholar]
- Li, X.N.; Xiong, K.N.; Chen, H.; Rong, L.; Xiang, G.; Guo, Z.Y.; Zhou, J. Biodiversit yand world heritage values of Shibing dolomite karst area in Qiandongnan. J. Guizhou Norm. Univ. (Nat. Sci.) 2010, 28, 13–18. (In Chinese) [Google Scholar]
- Li, G.C.; Xiong, K.N.; Xiao, S.Z.; Zhou, M.Z. Research on World Heritage Geomorphologic Value of the Shibing Kars. Trop. Geogr. 2013, 33, 562–569. (In Chinese) [Google Scholar]
- Yan, N.; Zhang, T.; Xiong, K.N.; Chen, Q.; Guo, D.L.; Liu, Z.W. Terrestrial algal diversity of the two World Natural Heritage sites in China. Acta Ecol. Sin. 2021, 41, 9593–9603. (In Chinese) [Google Scholar]
- Zhao, P.D.; Chen, H.; Li, X.N.; Wang, Y. Analysis of riodiversity about rare and endangered plants resources in shibing karst. J. Guizhou Norm. Univ. (Nat. Sci.) 2013, 31, 13–18. (In Chinese) [Google Scholar]
- Li, X.N.; Long, M.Z.; Liu, Y.; Lu, Y.Y. Bryoflora Characteristics of Shibing Karst World Natural Heritage Nominated Property in Guizhou. Plant Divers. Resour. 2014, 36, 271–278. (In Chinese) [Google Scholar]
- Zhang, Y.; Jin, D.C.; Zhou, Y.; Feng, Y.; Yang, G.P.; Liang, W.Q. Community composition and diversity of soil oribatid mites (Acari: Oribatida) in karst forests in Shibing, Guizhou, Southwestern China. Acta Entomol. Sin. 2015, 58, 791–799. [Google Scholar]
- Duarte, A.; Moreira, G.F.; Cunha, U.; Siqueira, P.; Moraes, G. Edaphic mesostigmatid mites (Parasitiformes, Mesostigmata) in a region of the Pampa biome of the state of Rio Grande do Sul, Brazil. Ciênc. Rural 2020, 50, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Manu, M. Diversity of soil mites (Acari: Mesostigmata: Gamasina) in various deciduous forest ecosystems of Muntenia region (southern Romania). Biol. Lett. 2013, 50, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Hernández, E.C.; Balanzategui, I.; Iturrondobeitia, J.C. Effect of progressive drying of pedunculate oak (Quercus robur L.) and holm oak (Quercus rotundifolia Lam.) forest soils on the composition of the oribatid mite community (Acari: Oribatida) in laboratory conditions. Int. J. Acarol. 2016, 42, 358–365. [Google Scholar] [CrossRef]
- Wardle, D.A.; Bardgett, R.D.; Klironomos, J.N.; Setala, H.; Van, W.H. Ecological linkages between aboveground and belowground biota. Science 2004, 304, 1629–1633. [Google Scholar] [CrossRef]
- Sackett, T.E.; Classen, A.T.; Sanders, N.J. Linking soil food web structure to above and belowground ecosystem processes: A meta-analysis. Oikos 2010, 119, 1984–1992. [Google Scholar] [CrossRef]
- Carrillo, Y.; Ball, B.A.; Bradford, M.A.; Jordan, C.F.; Molina, M. Soil fauna alter the effects of litter composition on nitrogen cycling in a mineral soil. Soil Biol. Biochem. 2011, 43, 1440–1449. [Google Scholar] [CrossRef]
- Janzen, H.H. The soil carbon dilemma: Shall we hoard it or use it? Soil Biol. Biochem. 2006, 38, 419–424. [Google Scholar] [CrossRef]
- Wang, S.J.; Ruan, H.H. Feedback mechanisms of soil biota to aboveground biology in terrestrial ecosystems. Biodivers. Sci. 2008, 16, 407–416. (In Chinese) [Google Scholar]
- Yin, X.Q.; Song, B.; Dong, W.H.; Xin, M.D. A review on the eco-geography of soil fauna in China. Acta Geogr. Sin. 2010, 65, 91–102. (In Chinese) [Google Scholar] [CrossRef]
- Wardle, D.A.; Bonner, K.I.; Barker, G.M.; Yeates, G.W.; Nicholson, K.S.; Bardgett, R.D.; Ghani, W.A. Plant removals in perennial grassland: Vegetation dynamics, decomposers, soil biodiversity and ecosystem properties. Ecol. Monogr. 1999, 69, 535–568. [Google Scholar] [CrossRef]
- Chen, W.; Xiao, J.F.; Jiao, W.L.; Li, Y.T.; Tang, Z.Q.; Liu, L.Y. Types and characteristics of geological relics of Yuntaishan World Natural Heritage in Shibing, Guizhou. Geogr. Environ. Sci. 2020, 38, 62–70. (In Chinese) [Google Scholar]
- Ying, W.Y. Pictorical Keys to Soil Animals of China; Science Press: Beijing, China, 1998; pp. 163–242, 527–562. (In Chinese) [Google Scholar]
- Li, L.S.; Li, Y.R. Acarology; Chongqing Press: Chongqing, China, 1989; pp. 264–419. (In Chinese) [Google Scholar]
- Krantz, G.W.; Walter, D.E. A Manual of Acarology, 3rd ed.; Texas Tech University Press: Lubbock, TX, USA, 2009; pp. 1–794. [Google Scholar]
- Yin, S.G.; Bei, N.X.; Chen, W.P. Soil Gamasid Mites in Northeast China; China Agriculture Press: Beijing, China, 2013; pp. 8–340. (In Chinese) [Google Scholar]
- Zhen, X.; Biao, Y.X.; Kong, J.M. Preliminary study of large soil fauna communities in broad-leaved forests in the North Mountains of Jinhua. Soils 2005, 37, 83–88. (In Chinese) [Google Scholar]
- Peet, R.K. The Measurement of Species Diversity. Annu. Rev. Ecol. Syst. 1974, 5, 285–307. [Google Scholar] [CrossRef]
- Yeates, G.W. Abundance, diversity, and resilience of nematode assemblages in forest soils. Can. J. Forest. Res 2007, 37, 216–225. [Google Scholar] [CrossRef]
- Fu, S.R.; Yin, W.Y. The Preliminary Study of Soli Animial in FuNiu Mountain Area, Henan Province. Zool. Res. 1999, 20, 396–398. (In Chinese) [Google Scholar]
- Rousseau, R. Jaccard similarity leads to the Marczewski-Steinhaus topology in IR. Inf. Process. Manag. 1998, 34, 87–94. [Google Scholar] [CrossRef]
- Ruf, A. A maturity index for predatory soil mites (Mesostigmata: Gamasina) as an indicator of environmental impacts of pollution on forest soils. Appl. Soil Ecol. 1998, 9, 447–452. [Google Scholar] [CrossRef]
- Wu, D.H.; Zhang, B.; Pu, Z.Y.; Chen, P. The characteristics of community structure of soil mites from different habitats in Changchun area. Acta Ecol. Sin. 2006, 26, 16–25. (In Chinese) [Google Scholar] [CrossRef]
- Xie, G.L.; Fu, X.R.; Liu, J.L.; Wang, C.R.; Zheng, J.J. The community distribution of soil oribatida in Heze Peony Garden. Acta Ecol. Sin. 2004, 24, 693–699. (In Chinese) [Google Scholar]
- Aoki, J. Analysis of oribatid communities by relative abundance in the species and individual numbers of the three major groups (MGP-analysis). Bull. Ins. Environ. Sci. Technol. 1983, 10, 171–176. [Google Scholar]
- Zhou, Y.Z.; Wu, P.F. Diversity and spatiotemporal distribution of soil microarthropod communities in forests on the eastern slope of Gongga Mountain. Chin. J. Ecol. 2020, 39, 586–599. (In Chinese) [Google Scholar]
- Pazliya, H.L.L.; Omar, A.B.L.Z.; Aliya, S.D.K. Correlation between the diversity of soil mite communities and environmental factors in Tianshan Forest Park in Xinjiang, China. Acta Ecol. Sin. 2019, 39, 1639–1652. (In Chinese) [Google Scholar]
- Chen, H.; Jin, D.C.; Weng, Z.H. Differences in soil mite communities in Karst Areas with different degrees of rocky desertification. Chin. J. Appl. Entomol. 2018, 55, 711–724. (In Chinese) [Google Scholar]
- Chen, H.; Jin, D.C.; Lin, D.D.; Wang, P.J.; Zhou, Z. Change of community structure of soil mites in the early stage of ecological restoration in moderate rocky desertification of Karst area, Guizhou Province, China. Chin. J. Appl. Ecol. 2018, 29, 13. (In Chinese) [Google Scholar]
- David, C.; Fu, S.; Hendrix, P.; Deryee, C. Soil foodwebs in agroecosystems: Impacts of herbivory and tillage management. Eur. J. Soil Biol. 2002, 38, 21–28. [Google Scholar]
- Seastedt, T.R.; Reddy, M.V.; Cline, S.P. Microarthropods in decaying wood from temperate coniferous and deciduous forests. Pedobiologia 1989, 33, 69–77. [Google Scholar]
- Schneider, K.; Migge, S.; Norton, R.A.; Stefan, S.; Reinhard, L.; August, R.; Mark, M. Trophic niche differentiation in soil microarthropods (Oribatida, Acari): Evidence from stable isotope ratios (15N/14N). Soil Biol. Biochem. 2004, 36, 1769–1774. [Google Scholar] [CrossRef]
- Moore, J.C.; Walter, D.E.; Hunt, H.W. Arthropod regulation of micro- and mesobiota in belowground detrital food webs. Annu. Rev. Entomol. 1988, 33, 419–439. [Google Scholar] [CrossRef]
- Kaneko, N. Feeding habits and cheliceral size of oribatid mites in cool temperate forests in Japan. Rev. Ecol. Biol. Sol. 1988, 25, 353–363. [Google Scholar]
- Jung, C.; Lee, J.H.; Choi, S.S. Potential of using Oribatid mites (Acari: Oribatida) as biological indicators of forest soil acidification. Korean J. Agric. For. Meteorol. 2002, 4, 213–218. [Google Scholar]
- Chen, H.; Jin, D.C.; Zhang, Y. Community structure of soil mites under Quercus variabilis forests in small watershed of karst area, Guizhou, China. Chin. J. Appl. Ecol. 2018, 29, 1667–1676. (In Chinese) [Google Scholar]
- Liu, G.F.; Yang, M.F. Preliminary research on the soil oribatid fauna of Fanjing Mountain in the genus level. Life Sci. Res. 2012, 16, 149–152. (In Chinese) [Google Scholar]
- Zhang, Y.; Jin, D.C. A preliminary study on soil oribatid mites (Acari: Oribatida) from the Chishui Alsophila Natural Reserve. Acta Arachno Sin. 2008, 17, 21–24. (In Chinese) [Google Scholar]
- Chen, G.D.; Li, M.D.; Wen, Z.G. An investigation on the distribution habitat of oribatid mites and their altitude in Huangshan Mountain. Nanjing Railw. Med. Coll. 1992, 11, 17–23. (In Chinese) [Google Scholar]
- Murvanidze, M.; Mumladze, L.; Arabuli, T.; Barjadze, S.; Salakaia, M. Oribatida diversity in different microhabitats of Mtirala National Park. J. Acarol. Soc. Jpn. 2016, 25, 35–49. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.D.; Chen, H.; Chen, H.; Liu, P.P.; Liu, Q.S. Soil mite community structure in the evergreen, broad-leaved forest of Fanjing mountain, China. Chin. J. Appl. Environ. Biol 2018, 24, 1185–1194. (In Chinese) [Google Scholar]
- Wang, P.J.; Chen, H.; Zhou, Z.; Lin, D.D.; Wu, R.X.; Zhu, J.Y. Soil Mite Community Structure in Mixed Evergreen and Deciduous Broad-leaved Forest of Fanjingshan. Soils 2018, 50, 9. (In Chinese) [Google Scholar]
- Wang, S.J.; Ruan, H.H.; Wang, J.S.; Xu, Z.K.; Wu, Y.Y. Composition structure of soil fauna community under the typical vegetations in the Wuyi Mountains, China. Acta Ecol. Sin. 2010, 30, 5174–5184. (In Chinese) [Google Scholar]
- Erdmann, G.; Scheu, S.; Maraun, M. Regional factors rather than forest type drive the community structure of soil living oribatid mites (Acari, Oribatida). Exp. Appl. Acarol. 2012, 57, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Ajar, Q.K.; Omar, A.B.L.Z.; Fazliya, H.L.L. Community diversity of soil mites in the Manas River Basin, Xinjiang. Acta Ecol. Sin. 2017, 37, 8385–8396. (In Chinese) [Google Scholar]
- Dirilgen, T.; Arroyo, J.; Dimmers, W.J.; Faber, J.; da Silva, P.M.; Carvalho, F.; Schmelz, R.; Griffiths, B.S.; Francisco, R.; Creamer, R.E.; et al. Mite community composition across a European transect and its relationships to variation in other components of soil biodiversity. Appl. Soil Ecol. 2016, 97, 86–97. [Google Scholar] [CrossRef]
- Alatalo, J.M.; Jägerbrand, A.K.; Molau, U. Impacts of different climate change regimes and extreme climatic events on an alpine meadow community. Sci. Rep. 2017, 6, 21720. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.Y.; Zhu, Y.H.; Mao, W.Q.; Bai, Y.P. Distribution Characteristics of soil humus and fauna along the vertical natural belt of Lushan Mountain. Chin. J. Soil Sci. 2021, 52, 620–628. (In Chinese) [Google Scholar]
- Xiao, N.W.; Liu, X.H.; Ge, F.; Ouyang, Z.Y. Research on soil faunal community composition and structure in the Gaoligong Mountains National Nature Reserve. Acta Ecol. Sin. 2009, 29, 9. (In Chinese) [Google Scholar]
- Whittaker, R.H.; Niering, W.A. Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, Production, and Diversity along the Elevation Gradient. Ecology 1975, 56, 771–790. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.Q.; Xu, G.R.; Zhang, S.; Zhang, Y.X.; Ma, K.M. Altitudinal pattern of soil fauna-plant interaction in Dongling Mountain, Beijing. Acta Ecol. Sin. 2021, 42, 1–10. (In Chinese) [Google Scholar]
- Hasegawa, M.; Ito, M.T.; Kitayama, K. Community structure of oribatid mites in relation to elevation and geology on the slope of Mount Kinabalu, Sabah, Malaysia. Eur. J. Soil Biol. 2006, 42 (Suppl. S1), S191–S196. [Google Scholar] [CrossRef]
- Qin, H.L.; Yang, X.D. Community Structure and Variation of Soil Fauna Among the Different Elevations in Evergreen Broad-leaf Forest. Chin. Agric. Sci. Bull. 2014, 30, 66–74. (In Chinese) [Google Scholar]
- Tan, B.; Yin, R.; Zhang, J.; Xu, Z.F.; Liu, Y.; He, S.Q.; Li, Z.; Li, H.; Wang, L.X.; Liu, S.L.; et al. Temperature and Moisture Modulate the Contribution of Soil Fauna to Litter Decomposition via Different Pathways. Ecosystems 2020, 24, 1–15. [Google Scholar] [CrossRef]
- Stebaeva, S. Collembolan communities of the Ubsu-Nur Basin and adjacent mountains (Russia, Tuva). Pedobiologia 2003, 47, 341–356. [Google Scholar] [CrossRef]
- Leonov, V.D.; Rakhleeva, A.A.; Sidorchuk, E.A. Distribution of oribatid mites (Acari: Oribatida) along an altitudinal profile of Mount Vud’yavrchorr (the Khibiny Mountains). Eurasian Soil Sci. 2015, 48, 1257–1267. [Google Scholar] [CrossRef]
- Zhang, D.F.; Wang, S.J.; Li, R.L. Study on the eco-environmental vulnerability in Guizhou Karst Mountains. Geogr. Territ. Res. 2002, 18, 77–79. (In Chinese) [Google Scholar]
- Wang, S.J. The most serious eco-geologically environmental problem in southwestern China -karst rocky desertification. Petrol. Geochem. 2003, 22, 120–126. [Google Scholar]
- Maribie, C.W.; Nyamasyo, G.H.N.; Ndegwa, P.N.; Mung’atu, J.K.; Lagerl, F.J.; Gikungu, M. Abundance and diversity of soil mites (Acari) along a gradient of land use types in Taita Taveta, Kenya. Trop. Subtrop. Agroecosyst. 2011, 13, 11–27. [Google Scholar]
- Chen, H.; Jin, D.C.; Chen, H.; Wang, P.J.; Zhou, Z.; Lin, D.D. Differences in soil mite communities under different modes of vegetation restoration in an intense rocky desertification area, Guizhou, China. Acta Ecol. Sin. 2018, 38, 12. (In Chinese) [Google Scholar]
- Fischer, B.M.; Schatz, H. Biodiversity of oribatid mites (Acari: Oribatida) along an altitudinal gradient in the Central Alps. Zootaxa 2013, 3626, 429–454. [Google Scholar] [CrossRef] [Green Version]
- Zaitsev, A.S.; Chauvat, M.; Wolters, V. Spruce forest conversion to a mixed beech-coniferous stand modifies oribatid community structure. Appl. Soil Ecol. 2014, 76, 60–67. [Google Scholar] [CrossRef]
Forest Type | Altitude | Slope | Latitude and Longitude | Main Plants |
---|---|---|---|---|
CBF1 | 991 m | Hilltop | 27°9′4.08″ N, 108°6′56.61″ E | Tree layer:Pinus massoniana, Pinus taiwanensis, Cupressus funebris, etc., the main dominant species are Pinus massoniana and Pinus tai-wanensis; Shrub layer: Coti-nus coggygria, Quercus phillyreoides, Cam-ellia oieifera, Myrsine africana, etc.; Herb layer: Carex, Miscanthus sin-ensis. |
CBF2 | 1021 m | Hilltop | 27°9′47.57″ N, 108°7′41.20″ E | |
CBF3 | 952 m | Hilltop | 27°6′34.76″ N, 108°6′26.95″ E | |
EBF1 | 912 m | Mid-Upper Slope | 27°6′34.99″ N, 108°6′18.07″ E | Tree layer:Lindera communis, Pinus taiwanensis, Eurya japonica, Loro-petalum chine-nse, etc., the main dominant species are Lindera com-munis and Pinus taiwanensis; Shrub layer: Lindera communis, Querc-us phillyreoides, Ligustrum lucidum, Rhodode-ndron simsii, etc.; Herb layer: Iris tectorum, Ophiopogon bodinieri, etc. |
EBF2 | 925 m | Mid-Upper Slope | 27°6′40.18″ N, 108°6′28.86″ E | |
EBF3 | 940 m | Mid-Upper Slope | 27°6′29.20″ N, 108°6′30.29″ E | |
DBF1 | 890 m | Lower Middle Slope | 27°6′29.20″ N, 108°16′30.29″ E | Tree layer:Cunninghamia lanceolata, Pittosporum tobira, Cyclobalanops-is glauca, the main dominant species is Cunninghamia lanceolata. etc.; Shrub layer: Lindera gla-uca, Machilus microcarpa Hemsl, Michelia martinii, etc.; Herb layer: Selaginella tam-ariscina, Ophiorrhiza mungos, Pilea notata, etc. |
DBF2 | 939 m | Lower Middle Slope | 27°6′28.90″ N, 108°6′20.01″ E | |
DBF3 | 911 m | Lower Middle Slope | 27°6’34.85″ N, 108°6’30.60″ E | |
RBS1 | 560 m | River Valley | 27°4′45.28″ N, 108°4′47.86″ E | Tree layer:Dendrobenthamia angustata, Sloanea sinensis, etc.; Shrub layer:Distyl-ium dunnianum, Boehmeria nivea, Boehmeria penduliflora, Rubus corchorifolius, etc., the main dominant species is Distylium dunnianum.; Herb layer:Ficus tikoua, Pogonatherum crinitum, Pronep-hrium gymnopteridifrons, Selaginella uncinata, etc. |
RBS2 | 549 m | River Valley | 27°4′50.18″ N, 108°4′42.21″ E | |
RBS3 | 584 m | River Valley | 27°4′44.34″ N, 108°4′41.34″ E |
Community Types | Abbreviation | Value Ranges of Mites (Oribatida) Group |
---|---|---|
Macropylina type | M | M > 50% |
Gymnonota type | G | G > 50% |
Poronota type | P | P > 50% |
Overall type | O | 20% < M, G, P < 50% |
Macropylina-Gymnonota type | MG | M, G = 20~50%, P < 20% |
Gymnonota-Poronota type | GP | G, P = 20~50%, M < 21% |
Macropylina-Poronota type | MP | M, P = 20~50%, G < 22% |
Family | Genus | CBF | EBF | DBF | RBS | Total |
---|---|---|---|---|---|---|
Mesostigmata (Order) | ||||||
Trachytidae | Trachytes | 1 (+) | 6 (+) | 3 (+) | 10 (+) | |
Uropoda | 2 (+) | 1 (+) | 3 (+) | |||
Discourella | 2 (+) | 1 (+) | 3 (+) | |||
Trematuridae | Nenteria | 66 (+++) | 17 (+++) | 64 (+++) | 5 (+) | 152 (+++) |
Dinychidae | Dinychus | 5 (+) | 9 (+) | 14 (+) | ||
Uroobovella | 9 (+) | 1 (+) | 15 (++) | 2 (+) | 27 (+) | |
Oplitidae | Oplitis | 2 (+) | 9 (+) | 5 (+) | 16 (+) | |
Epicrius | 2 (+) | 2 (+) | ||||
Zerconidae | Metazercon | 3 (+) | 3 (+) | |||
Parazercon | 4 (+) | 2 (+) | 6 (+) | |||
Prozercon | 2 (+) | 2 (+) | ||||
Xenozercon | 2 (+) | 2 (+) | ||||
Syskenozercon | 1 (+) | 1 (+) | ||||
zercon | 5 (+) | 2 (+) | 7 (+) | |||
Parasitidae | Neogamasus | 18 (++) | 23 (+++) | 65 (+++) | 26 (++) | 132 (+++) |
Vulgarogamasus | 8 (+) | 6 (+) | 3 (+) | 17 (+) | ||
Cornigamasus | 1 (+) | 1 (+) | ||||
Parasitus | 116 (+++) | 47 (+++) | 50 (+++) | 24 (++) | 237 (+++) | |
Veigaiidae | Veigaia | 2 (+) | 2 (+) | 4 (+) | 8 (+) | |
Rhodacaridae | Gamasellus | 3 (+) | 3 (+) | |||
Dendrolaelaps | 4 (+) | 12 (++) | 17 (++) | 2 (+) | 35 (+) | |
Rhodacarus | 5 (+) | 5 (+) | 97 (+++) | 21 (++) | 128 (+++) | |
Rhodacarellus | 1 (+) | 1 (+) | ||||
Ologamasidae | Gamasiphis | 1 (+) | 2 (+) | 3 (+) | ||
Macrochelidae | Glyptholaspis | 2 (+) | 13 (++) | 15 (+) | ||
Macrocheles | 26 (+++) | 20 (+++) | 20 (++) | 2 (+) | 68 (++) | |
Parholaspididae | Gamasholaspis | 2 (+) | 8 (+) | 10 (+) | ||
Krantzholaspis | 6 (+) | 14 (++) | 20 (+) | |||
Parholaspulus | 71 (+++) | 67 (+++) | 75 (+++) | 34 (++) | 247 (+++) | |
Pachylaelapidae | Pachylaelaps | 29 (+++) | 43 (+++) | 28 (++) | 21 (++) | 121 (+++) |
Pachyseius | 4 (+) | 4 (+) | 18 (++) | 7 (+) | 33 (+) | |
Phytoseiidae | Amblyseius | 2 (+) | 2 (+) | |||
Ascidae | Asca | 1 (+) | 15 (+++) | 16 (+) | ||
Ameroseiidae | Ameroseius | 3 (+) | 11 (++) | 7 (+) | 4 (+) | 25 (+) |
Polyaspididae | Allosuctobelba | 1 (+) | 1 (+) | |||
Podocinidae | Podocinum | 8 (++) | 11 (+) | 19 (+) | ||
Blattisociidae | Cheiroseius | 14 (++) | 10 (++) | 8 (+) | 32 (+) | |
Lasioseius | 44 (+++) | 6 (+) | 54 (+++) | 76 (+++) | 180 (+++) | |
Proctolaelaps | 2 (+) | 2 (+) | ||||
Laelapidae | Cosmolaelaps | 18 (++) | 18 (+++) | 25 (++) | 61 (++) | |
Geolaelaps | 27 (+++) | 26 (+++) | 23 (++) | 8 (+) | 84 (++) | |
Laelaspis | 1 (+) | 1 (+) | 2 (+) | |||
Ololaelaps | 1 (+) | 1 (+) | ||||
Alloparasitus | 4 (+) | 2 (+) | 6 (+) | |||
Labidostomatidae | Labidostoma | 6 (+) | 4 (+) | 10 (+) | ||
Cunaxidae | Cunaxa | 1 (+) | 1 (+) | |||
Dactyloscirus | 1 (+) | 1 (+) | ||||
Trombidiformes (Order) | ||||||
Erythraeidae | Balaustium | 6 (+) | 6 (+) | |||
Microtrombidiidae | Echinothrombium | 4 (+) | 2 (+) | 6 (+) | ||
Microtrombidium | 6 (+) | 4 (+) | 19 (++) | 11 (+) | 40 (+) | |
Stigmaeidae | Stigmaeus | 1 (+) | 5 (+) | 6 (+) | ||
Sarcoptiformes(Order) | ||||||
Mesoplophoridae | Archoplophora | 96 (+++) | 75 (+++) | 10 (+) | 12 (+) | 193 (+++) |
Hypochthoniidae | Nehypochthon | 7 (+) | 7 (+) | |||
Eohypochthonius | 15 (+++) | 15 (+) | ||||
Hypochthonius | 51 (+++) | 4 (+) | 55 (++) | |||
Hypochthoniella | 2 (+) | 2 (+) | ||||
Lohmanniidae | Meristacarus | 4 (+) | 4 (+) | |||
Mixacarus | 7 (+) | 1 (+) | 8 (+) | |||
Papillacarus | 40 (+++) | 40 (+) | ||||
Lohmannia | 4 (+) | 4 (+) | ||||
Eulohmaimiidae | Eulohmannia | 1 (+) | 1 (+) | |||
Epilohmanniidae | Epilohmannia | 123 (+++) | 7 (+) | 206 (+++) | 336 (+++) | |
Euphtliiracaiidae | Acrotritia | 3 (+) | 3 (+) | |||
Microtritia | 3 (+) | 1 (+) | 4 (+) | |||
Rhysotritia | 183 (+++) | 74 (+++) | 99 (+++) | 55 (+++) | 411 (+++) | |
Synichotritiidae | Synichotritia | 1 (+) | 1 (+) | |||
Phthiracaridae | Steganacarus | 20 (++) | 2 (+) | 22 (+) | ||
Hoplophthiracarus | 8 (+) | 1 (+) | 2 (+) | 11 (+) | ||
Phthiracarus | 2 (+) | 5 (+) | 7 (+) | |||
Camisiidae | Camisia | 42 (+++) | 15 (++) | 12 (+) | 69 (++) | |
Platynothrus | 2 (+) | 1 (+) | 3 (+) | |||
Heminothrus | 33 (+++) | 26 (++) | 59 (++) | |||
Nothridae | Nothrus | 100 (+++) | 11 (++) | 57 (+++) | 169 (+++) | 337 (+++) |
Crotonioidea | Crotonia | 20 (++) | 20 (+) | |||
Holonothrus | 2 (+) | 2 (+) | ||||
Trhypochthoniidae | Archegozetes | 3 (+) | 17 (+) | 20 (+) | ||
Allonothrus | 1 (+) | 61 (+++) | 62 (++) | |||
Afronothrus | 10 (+) | 1 (+) | 3 (+) | 14 (+) | ||
Trhypochthoniellus | 1 (+) | 1 (+) | ||||
Trhypochthonius | 8 (+) | 19 (+++) | 1 (+) | 3 (+) | 31 (+) | |
Malaconothridae | Malaconothrus | 1 (+) | 4 (+) | 1 (+) | 6 (+) | |
Trimalaconothrus | 1 (+) | 3 (+) | 4 (+) | |||
Nanhermanniidae | Crythermannia | 14 (++) | 6 (+) | 1 (+) | 21 (+) | |
Nanhermannia | 2 (+) | 16 (+++) | 18 (+) | |||
Hermanniidae | Hermannia | 9 (+) | 3 (+) | 3 (+) | 15 (+) | |
Hennaiiniellidae | Hermanniella | 1 (+) | 6 (+) | 7 (+) | ||
Plasmobatidae | Plasmobates | 2 (+) | 2 (+) | |||
Damaeidae | Damaeus | 1 (+) | 1 (+) | |||
Epidamaeus | 14 (++) | 2 (+) | 5 (+) | 6 (+) | 27 (+) | |
Eremulidae | Eremulus | 14 (+) | 30 (++) | 44 (+) | ||
Eremobelbidae | Eremobelba | 43 (+++) | 2 (+) | 20 (++) | 17 (+) | 82 (++) |
Liacaridae | Liacarus | 1 (+) | 3 (+) | 6 (+) | 10 (+) | |
Carabodidae | Carabodes | 1 (+) | 1 (+) | |||
Otocepheidae | Dolicheremaeus | 1 (+) | 1 (+) | |||
Eremaeidae | Eremaeus | 4 (+) | 6 (+) | 10 (+) | ||
Ctenobelbidae | Ctenobelba | 6 (+) | 6 (+) | |||
Peloppiidae | Ceratoppia | 17 (++) | 5 (+) | 1 (+) | 41 (+++) | 64 (++) |
Austroceratoppia | 6 (+) | 6 (+) | ||||
pyroppia | 1 (+) | 1 (+) | 2 (+) | |||
Astegistidae | Cultroribula | 42 (+++) | 14 (++) | 489 (++++) | 545 (+++) | |
Gustaviidae | Gustavia | 19 (++) | 1 (+) | 15 (+) | 35 (+) | |
Suctobelbidae | Polyaspinus | 4 (+) | 4 (+) | |||
Suctobelba | 26 (+++) | 8 (++) | 2 (+) | 36 (+) | ||
Parisuctobelba | 1 (+) | 1 (+) | ||||
Oppiidae | Lasiobelba | 16 (++) | 8 (+) | 60 (+++) | 84 (++) | |
Lauroppia | 1 (+) | 3 (+) | 4 (+) | |||
Medioppia | 1 (+) | 2 (+) | 3 (+) | |||
Oppia | 2 (+) | 3 (+) | 2 (+) | 16 (+) | 23 (+) | |
Oppiella | 19 (++) | 32 (+++) | 36 (+++) | 17 (+) | 104 (++) | |
Ramusella | 1 (+) | 17 (+++) | 3 (+) | 21 (+) | ||
Phauloppia | 2 (+) | 2 (+) | ||||
Arcoppia | 11 (++) | 11 (+) | ||||
Microppia | 5 (+) | 5 (+) | ||||
Nippobodidae | Nippobodes | 2 (+) | 4 (+) | 6 (+) | ||
Tectocepheidae | Tectocepheus | 3 (+) | 83 (+++) | 338 (+++) | 424 (+++) | |
Scutoverticidae | Scutovertex | 42 (+++) | 7 (+) | 3 (+) | 1 (+) | 53 (++) |
Parakalumniidae | Neoribates | 5 (+) | 14 (++) | 4 (+) | 41 (+++) | 64 (++) |
Scheloribatidae | Perscheloribates | 260 (++++) | 113 (+++) | 499 (++++) | 561 (++++) | 1433 (++++) |
Scheloribates | 78 (+++) | 41 (+++) | 181 (+++) | 812 (++++) | 1112 (++++) | |
Mochlozetidae | Mochlozetes | 1 (+) | 6 (+) | 7 (+) | ||
Haplozetidae | Incabates | 11 (++) | 11 (+) | |||
Paraxylobates | 1 (+) | 1 (+) | ||||
Peloribates | 141 (+++) | 56 (+++) | 166 (+++) | 62 (+++) | 425 (+++) | |
Perxylobates | 2 (+) | 2 (+) | ||||
Rostrozetes | 50 (+++) | 6 (+) | 51 (+++) | 107 (+++) | ||
Setoxylobates | 10 (+) | 28 (+++) | 3 (+) | 96 (+++) | 137 (+++) | |
Vilhenabates | 151 (+++) | 29 (+++) | 31 (+++) | 296 (+++) | 507 (+++) | |
Xylobatidae | Xylobates | 57 (+++) | 21 (+++) | 179 (+++) | 230 (+++) | 487 (+++) |
Protoribatidae | Protoribates | 22 (+++) | 22 (+) | |||
Ceratozetidae | Ceratozetes | 19 (++) | 44 (+++) | 30 (++) | 93 (++) | |
Galumnidae | Galumna | 22 (++) | 17 (+++) | 23 (++) | 62 (++) | |
Pergalumna | 6 (+) | 14 (++) | 20 (+) | |||
Protokalumna | 3 (+) | 13 (++) | 5 (+) | 21 (+) | ||
Trichogalumna | 94 (+++) | 101 (+++) | 408 (++++) | 31 (++) | 634 (+++) | |
Porogalumnella | 125 (+++) | 2 (+) | 127 (+++) | |||
Galumnella | 5 (+) | 5 (+) | ||||
Histiostomatidae | Histiotoma | 7 (+) | 1 (+) | 20 (++) | 28 (+) | |
Total number of taxa | 90 | 90 | 81 | 59 | 320 | |
Total number of individuals | 2314 | 1431 | 2980 | 3838 | 10,563 |
Community Parameter | CBF | EBF | DBF | RBF | Mean | P |
---|---|---|---|---|---|---|
Genus numbers | 56.33 ± 1.76 a | 56 ± 5.03 a | 51.67 ± 6.74 a | 34.67 ± 5.24 b | 49.67 ± 3.43 | 0.048 |
Individual numbers | 540.33 ± 80.77 ab | 376.33 ± 28.62 b | 725.67 ± 186.11 ab | 856 ± 134.56 a | 624.58 ± 75.78 | 0.099 |
Forest Type | CBF | EBF | DBF | RBS |
---|---|---|---|---|
CBF | 1 | 0.4173 | 0.5 | 0.4466 |
EBF | 1 | 0.4492 | 0.3796 | |
DBF | 1 | 0.4737 | ||
RBS | 1 |
Family | K Value | Family | r Value |
---|---|---|---|
Pachylaelapidae | 1 | Laelapidae | 1 |
Parholaspididae | 2 | Ologamasidae | 1 |
Veigaiidae | 2 | Podocinidae | 1 |
Rhodacaridae | 2 | Ascidae | 2 |
Epicriidae | 3 | Blattisociidae | 2 |
Ameroseiidae | 3 | Phytoseiidae | 2 |
Zerconidae | 3 | Parasitidae | 4 |
Sampling Layer | CBF | EBF | DBF | RBS | ||||
---|---|---|---|---|---|---|---|---|
MI | Group | MI | Group | MI | Group | MI | Group | |
L | 0.4651 | r | 0.4242 | r | 0.4222 | r | 0.5 | K/r |
S | 0.4242 | r | 0.3846 | r | 0.4286 | r | 0.4762 | r |
Total | 0.4894 | r | 0.4865 | r | 0.4902 | r | 0.5 | K/r |
Forest Type | Genera Percent (%) | Community Types | Individual Percent (%) | Community Types | ||||
---|---|---|---|---|---|---|---|---|
Macropyline | Gymnonota | Poronota | Macropyline | Gymnonota | Poronota | |||
CBF | 35.71 | 39.29 | 25.00 | O | 34.13 | 13.73 | 52.14 | P |
EBF | 27.59 | 39.66 | 32.76 | O | 26.08 | 22.05 | 51.87 | P |
DBF | 33.33 | 35.56 | 31.11 | O | 21.88 | 4.75 | 73.37 | P |
RBS | 32.43 | 35.14 | 32.43 | O | 10.19 | 29.10 | 60.71 | P |
Oribatid Mite Groups | Feeding Guild | Food Materials |
---|---|---|
Hypochthonius, Lasiobelba, Lauroppia, Medioppia, Oppia, Oppiella, Ramusell, Phauloppia, Arcoppia, Microppia, Nothrus, Galumna, Pergalumna, Protokalumna, Trichogalumna, Porogalumnella, Galumnella (17) | Carnivores/Scavengers/Omnivores | Living and dead animals (nematodes, collembolans) and fungi |
Perscheloribates, Scheloribates, Crythermannia, Nanhermannia, Malaconothrus, Carabodes (6) | Secondary decomosers | Predominantly fungi, in part litter |
Liacarus, Tectocepheus, Heminothrus (3) | Primary decomposers | Predominantly litter |
Eremobelba, Cultroribula, Ceratozetes, Mochlozetes (4) | Phycophages/ Fungivores | Lichens and algae |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Wei, Q.; Xiao, N.; Huang, J.; Gong, T.; Fei, Y.; Shi, Z.; Chen, H. Characteristics of Soil Mites Communities Structure under Vegetation Vertical Gradient in the Shibing World Natural Heritage Property, China. Forests 2022, 13, 598. https://doi.org/10.3390/f13040598
Zhou Y, Wei Q, Xiao N, Huang J, Gong T, Fei Y, Shi Z, Chen H. Characteristics of Soil Mites Communities Structure under Vegetation Vertical Gradient in the Shibing World Natural Heritage Property, China. Forests. 2022; 13(4):598. https://doi.org/10.3390/f13040598
Chicago/Turabian StyleZhou, Yuanyuan, Qiang Wei, Niejia Xiao, Ju Huang, Tong Gong, Yifan Fei, Zheng Shi, and Hu Chen. 2022. "Characteristics of Soil Mites Communities Structure under Vegetation Vertical Gradient in the Shibing World Natural Heritage Property, China" Forests 13, no. 4: 598. https://doi.org/10.3390/f13040598
APA StyleZhou, Y., Wei, Q., Xiao, N., Huang, J., Gong, T., Fei, Y., Shi, Z., & Chen, H. (2022). Characteristics of Soil Mites Communities Structure under Vegetation Vertical Gradient in the Shibing World Natural Heritage Property, China. Forests, 13(4), 598. https://doi.org/10.3390/f13040598