Increased Diversity of Rhizosphere Bacterial Community Confers Adaptability to Coastal Environment for Sapium sebiferum Trees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. DNA Extraction
2.3. Library Construction and Sequencing
2.4. Processing of Sequencing Data
2.5. Alpha and Beta Diversity Analyses
2.6. LEfSe Analysis
3. Results
3.1. Quality Metrics of the Sequencing Analysis
3.2. Alpha Rarefaction Curves and Alpha Diversity
3.3. Beta Diversity
3.4. Taxonomic Distribution
3.5. Biomarkers of the Bacterial Microbiome in Rhizosphere Soils
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Mao, Y.; Huang, S.; Ni, J.; Lu, W.; Hou, J.; Wang, Y.; Zhao, W.; Li, M.; Wang, Q.; et al. Selection of Suitable Reference Genes for Quantitative Real-time PCR in Sapium sebiferum. Front. Plant. Sci. 2017, 8, 637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boldor, D.; Kanitkar, A.; Terigar, B.G.; Leonardi, C.; Lima, M.; Breitenbeck, G.A. Microwave Assisted Extraction of Biodiesel Feedstock from the Seeds of Invasive Chinese Tallow Tree. Environ. Sci. Technol. 2010, 44, 4019–4025. [Google Scholar] [CrossRef] [PubMed]
- Barrilleaux, T.C.; Grace, J.B. Growth and invasive potential of Sapium sebiferum (Euphorbiaceae) within the coastal prairie region: The effects of soil and moisture regime. Am. J. Bot. 2000, 87, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Tao, J. Recent advances on the development and regulation of flower color in ornamental plants. Front. Plant. Sci. 2015, 6, 261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, R.H.; McLeod, K.W. Growth and photosynthetic responses to a range of light environments in Chinese tallowtree and Carolina ash seedlings. For. Sci. 1990, 36, 851–862. [Google Scholar]
- Shah, F.A.; Wei, X.; Wang, Q.; Liu, W.; Wang, D.; Yao, Y.; Hu, H.; Chen, X.; Huang, S.; Hou, J.; et al. Karrikin improves osmotic and salt stress tolerance via the regulation of the redox homeostasis in the oil plant Sapium sebiferum. Front. Plant. Sci. 2020, 11, 216. [Google Scholar] [CrossRef]
- Conner, W.H. The Effect of Salinity and Waterlogging on Growth and Survival of Baldcypress and Chinese Tallow Seedlings. J. Coast. Res. 1994, 10, 1045–1049. [Google Scholar]
- Conner, W.H.; McLeod, K.W.; McCarron, J.K. Flooding and salinity effects on growth and survival of four common forested wetland species. Wetl. Ecol. Manag. 1997, 5, 99–109. [Google Scholar] [CrossRef]
- Conner, W.H.; George, R.A. Impact of Saltwater Flooding on Red Maple, Redbay, and Chinese Tallow Seedlings. Castanea 1993, 58, 214–219. [Google Scholar]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006, 72, 5069–5072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozupone, C.A.; Knight, R. Global patterns in bacterial diversity. Proc. Natl. Acad. Sci. USA 2007, 104, 11436–11440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, B.; Gong, J. Biotechnology. A meta-analysis of the publicly available bacterial and archaeal sequence diversity in saline soils. World J. Microbiol. Biotechnol. 2013, 29, 2325–2334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shen, H.; He, X.; Thomas, B.W.; Lupwayi, N.Z.; Hao, X.; Thomas, M.C.; Shi, X. Fertilization shapes bacterial community structure by alteration of soil pH. Front. Microbiol. 2017, 8, 1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Liao, X.; Huang, L.; Shan, Q.; Hu, A.; Yan, D.; Zhang, J.; Long, X.-E. Sediments. Soil profile rather than reclamation time drives the mudflat soil microbial community in the wheat-maize rotation system of Nantong, China. J. Soils Sediments 2021, 21, 1672–1687. [Google Scholar] [CrossRef]
- Coutinho, F.H.; Cabello-Yeves, P.J.; Gonzalez-Serrano, R.; Rosselli, R.; López-Pérez, M.; Zemskaya, T.I.; Zakharenko, A.S.; Ivanov, V.G.; Rodriguez-Valera, F. New viral biogeochemical roles revealed through metagenomic analysis of Lake Baikal. Microbiome 2020, 8, 163. [Google Scholar] [CrossRef]
- Umezawa, K.; Kojima, H.; Kato, Y.; Fukui, M. Disproportionation of inorganic sulfur compounds by a novel autotrophic bacterium belonging to Nitrospirota. Syst. Appl. Microbiol. 2020, 43, 126110. [Google Scholar] [CrossRef]
- Umezawa, K.; Kojima, H.; Kato, Y.; Fukui, M. Dissulfurispira thermophila gen. nov., sp. nov., a thermophilic chemolithoautotroph growing by sulfur disproportionation, and proposal of novel taxa in the phylum Nitrospirota to reclassify the genus Thermodesulfovibrio. Syst. Appl. Microbiol. 2021, 44, 126184. [Google Scholar] [CrossRef]
- Agostini, L.; Moreira, J.C.F.; Bendia, A.G.; Kmit, M.C.P.; Waters, L.G.; Santana, M.F.M.; Sumida, P.Y.G.; Turra, A.; Pellizari, V.H. Deep-sea plastisphere: Long-term colonization by plastic-associated bacterial and archaeal communities in the Southwest Atlantic Ocean. Sci. Total Environ. 2021, 793, 148335. [Google Scholar] [CrossRef]
- Kersters, K.; De Vos, P.; Gillis, M.; Swings, J.; Vandamme, P.; Stackebrandt, E. Introduction to the Proteobacteria. In The Prokaryotes: A Handbook on the Biology of Bacteria; Springer: Berlin, Germany, 2006; Volume 5, pp. 3–37. [Google Scholar]
- Spain, A.M.; Krumholz, L.R.; Elshahed, M.S. Abundance, composition, diversity and novelty of soil Proteobacteria. ISME J. 2009, 3, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Jiang, H.; Yang, J.; Wu, G. Gammaproteobacterial diversity and carbon utilization in response to salinity in the Lakes on the Qinghai–Tibetan Plateau. Geomicrobiol. J. 2018, 35, 392–403. [Google Scholar] [CrossRef]
- Dyksma, S.; Bischof, K.; Fuchs, B.M.; Hoffmann, K.; Meier, D.; Meyerdierks, A.; Pjevac, P.; Probandt, D.; Richter, M.; Stepanauskas, R.; et al. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J. 2016, 10, 1939–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Statistical Data of Reads after Quality Checking and Trimming | ||||||
---|---|---|---|---|---|---|
Total of assigned reads after QC | 341,920 | |||||
Average read length after QC | 417.02 | |||||
Length distribution of valid sequences | Length | 1–250 | 251–300 | 301–350 | 351–400 | 401–450 |
Sequences | 52 | 109 | 161 | 5030 | 336,568 | |
Percent | 0.02% | 0.03% | 0.05% | 1.47% | 98.43% |
Domain | Phylum | Class | Order | Family | Genus | Species | OTU |
---|---|---|---|---|---|---|---|
1 | 43 | 105 | 235 | 285 | 425 | 429 | 5417 |
Sample | Reads | Richness | Chao | Shannon | Coverage |
---|---|---|---|---|---|
S-1 | 32,264 | 3096 | 3438.53 | 7.10 | 0.98 |
S-2 | 44,622 | 3101 | 3323.00 | 7.01 | 0.99 |
S-3 | 28,377 | 2991 | 3340.12 | 7.06 | 0.98 |
S-4 | 35,996 | 3033 | 3401.81 | 7.02 | 0.98 |
C-1 | 28,962 | 2393 | 2780.65 | 6.63 | 0.98 |
C-2 | 39,562 | 2262 | 2644.58 | 6.30 | 0.99 |
C-3 | 35,259 | 2189 | 2510.12 | 6.27 | 0.99 |
C-4 | 50,899 | 2275 | 2581.20 | 6.19 | 0.99 |
Bacterial Communities | Abundance | LDA | p-Value |
---|---|---|---|
Myxococcota, bacteriap25 | 4.06 | 3.64 | 2.09 × 10−2 |
Proteobacteria, Gammaproteobacteria, Steroidobacterales | 4.14 | 3.79 | 2.09 × 10−2 |
Chloroflexi, Anaerolineae, SBR1031, A4b | 4.43 | 3.95 | 2.09 × 10−2 |
Latescibacterota | 4.13 | 3.81 | 2.09 × 10−2 |
Proteobacteria, Gammaproteobacteria, CCD24 | 4.14 | 3.67 | 2.09 × 10−2 |
Proteobacteria, Gammaproteobacteria, Burkholderiales, Nitrosomonadaceae, MND1 | 4.50 | 3.98 | 2.09 × 10−2 |
Acidobacteriota, Vicinamibacteria, Vicinamibacterales, Vicinamibacteraceae | 4.70 | 4.29 | 2.09 × 10−2 |
Proteobacteria, Alphaproteobacteria, Dongiales, Dongiaceae | 4.18 | 3.76 | 2.09 × 10−2 |
Acidobacteriota, Vicinamibacteria | 4.89 | 4.29 | 4.33 × 10−2 |
Acidobacteriota, Vicinamibacteria, Vicinamibacterales | 4.86 | 4.23 | 4.33 × 10−2 |
Proteobacteria, Gammaproteobacteria, Burkholderiales | 5.08 | 4.27 | 2.09 × 10−2 |
Proteobacteria, Gammaproteobacteria, Pseudomonadales | 4.21 | 3.77 | 2.09 × 10−2 |
Bacteroidota, Bacteroidia, Chitinophagales, Saprospiraceae | 4.02 | 3.64 | 2.09 × 10−2 |
Chloroflexi, Anaerolineae, Ardenticatenales | 4.04 | 3.76 | 2.02 × 10−2 |
Acidobacteriota, Blastocatellia, 11_24 | 3.97 | 3.67 | 2.09 × 10−2 |
Nitrospirota, Nitrospiria | 4.21 | 3.78 | 2.09 × 10−2 |
NB1-j | 4.16 | 3.86 | 2.09 × 10−2 |
Proteobacteria, Gammaproteobacteria | 5.34 | 4.67 | 2.09 × 10−2 |
Proteobacteria, Gammaproteobacteria, Burkholderiales, Sutterellaceae | 3.88 | 3.58 | 1.39 × 10−2 |
Acidobacteriota, Blastocatellia, Pyrinomonadales, Pyrinomonadaceae | 4.18 | 3.89 | 2.09 × 10−2 |
Bacteroidota, Bacteroidia, Flavobacteriales | 4.18 | 3.80 | 2.09 × 10−2 |
Bacteroidota, Bacteroidia, Flavobacteriales, Flavobacteriaceae, Flavobacterium | 4.13 | 3.78 | 1.94 × 10−2 |
Nitrospirota, Nitrospiria, Nitrospirales | 4.21 | 3.77 | 2.09 × 10−2 |
Proteobacteria, Gammaproteobacteria, Burkholderiales, TRA3_20 | 4.49 | 4.12 | 2.09 × 10−2 |
Proteobacteria, Gammaproteobacteria, Pseudomonadales, Pseudomonadaceae | 3.91 | 3.59 | 2.09 × 10−2 |
Proteobacteria, Gammaproteobacteria, Pseudomonadales, Pseudomonadaceae, Pseudomonas | 3.91 | 3.55 | 2.09 × 10−2 |
Nitrospirota, Nitrospiria, Nitrospirales, Nitrospiraceae, Nitrospira | 4.21 | 3.80 | 2.09 × 10−2 |
Acidobacteriota, Subgroup_5 | 3.84 | 3.54 | 2.09 × 10−2 |
Proteobacteria, Gammaproteobacteria, Steroidobacterales, Steroidobacteraceae | 4.07 | 3.72 | 2.09 × 10−2 |
Methylomirabilota, Methylomirabilia | 4.09 | 3.81 | 2.02 × 10−2 |
Methylomirabilota, Methylomirabilia, Rokubacteriales | 4.08 | 3.77 | 2.02 × 10−2 |
Acidobacteriota, Blastocatellia, Pyrinomonadales | 4.18 | 3.89 | 2.09 × 10−2 |
Nitrospirota | 4.21 | 3.77 | 2.09 × 10−2 |
Acidobacteriota, Blastocatellia, Pyrinomonadales, Pyrinomonadaceae, RB41 | 4.18 | 3.90 | 2.09 × 10−2 |
Chloroflexi, Anaerolineae | 4.73 | 4.26 | 2.09 × 10−2 |
Proteobacteria, Alphaproteobacteria, Dongiales | 4.18 | 3.79 | 2.09 × 10−2 |
Chloroflexi, Anaerolineae, SBR1031 | 4.56 | 4.05 | 2.09 × 10−2 |
Proteobacteria, Gammaproteobacteria, PLTA13 | 4.19 | 3.81 | 2.09 × 10−2 |
Nitrospirota, Nitrospiria, Nitrospirales, Nitrospiraceae | 4.21 | 3.77 | 2.09 × 10−2 |
Bacteroidota, Bacteroidia, Flavobacteriales, Flavobacteriaceae | 4.13 | 3.80 | 1.94 × 10−2 |
Proteobacteria, Alphaproteobacteria, Azospirillales | 4.02 | 3.71 | 2.02 × 10−2 |
Proteobacteria, Alphaproteobacteria, Dongiales, Dongiaceae, Dongia | 4.18 | 3.75 | 2.09 × 10−2 |
Methylomirabilota | 4.09 | 3.80 | 2.02 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Du, F.; Chen, S.; Li, N.; Cui, J.; Chang, Y.; Sun, L.; Li, J.; Yao, D. Increased Diversity of Rhizosphere Bacterial Community Confers Adaptability to Coastal Environment for Sapium sebiferum Trees. Forests 2022, 13, 667. https://doi.org/10.3390/f13050667
Liu X, Du F, Chen S, Li N, Cui J, Chang Y, Sun L, Li J, Yao D. Increased Diversity of Rhizosphere Bacterial Community Confers Adaptability to Coastal Environment for Sapium sebiferum Trees. Forests. 2022; 13(5):667. https://doi.org/10.3390/f13050667
Chicago/Turabian StyleLiu, Xiaojing, Fengfeng Du, Shaozhou Chen, Naiwei Li, Jian Cui, Yajun Chang, Linhe Sun, Jinfeng Li, and Dongrui Yao. 2022. "Increased Diversity of Rhizosphere Bacterial Community Confers Adaptability to Coastal Environment for Sapium sebiferum Trees" Forests 13, no. 5: 667. https://doi.org/10.3390/f13050667
APA StyleLiu, X., Du, F., Chen, S., Li, N., Cui, J., Chang, Y., Sun, L., Li, J., & Yao, D. (2022). Increased Diversity of Rhizosphere Bacterial Community Confers Adaptability to Coastal Environment for Sapium sebiferum Trees. Forests, 13(5), 667. https://doi.org/10.3390/f13050667