The Effect of Target Log Length on Log Recovery and Harvesting Cost: The Example of Short-Rotation Poplar Plantations
Abstract
:1. Introduction
2. Materials and Methods
- Treatment A—manufacture all logs to a 2 m length and a 7 cm SED specification
- Treatment B—manufacture all logs to a 4 m length and a 7 cm SED specification
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Heilman, P.E. Planted forests: Poplars. N. For. 1999, 17, 89–93. [Google Scholar] [CrossRef]
- Rosenqvist, H.; Roos, A.; Ling, E.; Hektor, B. Willow growers in Sweden. Biomass Bioenergy 2000, 18, 137–145. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N.; Sperandio, G.; Cielo, P.; Verani, S.; Zanuttini, R. Cost and Productivity of Harvesting High-Value Hybrid Poplar Plantations in Italy. For. Prod. J. 2011, 61, 64–70. [Google Scholar] [CrossRef]
- Vanbeveren, S.P.; Spinelli, R.; Eisenbies, M.; Schweier, J.; Mola-Yudego, B.; Magagnotti, N.; Acuna, M.; Dimitriou, I.; Ceulemans, R. Mechanised harvesting of short-rotation coppices. Renew. Sustain. Energy Rev. 2017, 76, 90–104. [Google Scholar] [CrossRef]
- Stanton, B.; Eaton, J.; Johnson, J.; Rice, D.; Schuette, B.; Moser, B. Hybrid Poplar in the Pacific Northwest: The Effects of Market-Driven Management. J. For. 2002, 100, 28–33. [Google Scholar]
- IPP. 2019. Biomass Plantations in Poland. Available online: http://www.internationalpaper.com/company/regions/europe-middle-east-africa/sustainability/highlights/biomass-plantations-in-poland (accessed on 9 January 2022).
- Werner, C.; Haas, E.; Grote, R.; Gauder, M.; Graeff-Höonninger, S.; Claupein, W.; Butterbach-Bahl, K. Biomass production potential from Populus short rotation systems in Romania. GCB Bioenergy 2012, 4, 642–653. [Google Scholar] [CrossRef]
- Lindegaard, K.N.; Adams, P.W.R.; Holley, M.; Lamley, A.; Henriksson, A.; Larsson, S.; Von Engelbrechten, H.-G.; Lopez, G.E.; Pisarek, M. Short rotation plantations policy history in Europe: Lessons from the past and recommendations for the future. Food Energy Secur. 2016, 5, 125–152. [Google Scholar] [CrossRef]
- Spinelli, R.; Hartsough, B.R. Harvesting SRF poplar for pulpwood: Experience in the Pacific Northwest. Biomass Bioenergy 2006, 30, 439–445. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N.; Lombardini, C. Low-Investment Fully Mechanized Harvesting of Short-Rotation Poplar (populus spp.) Plantations. Forests 2020, 11, 502. [Google Scholar] [CrossRef]
- Magagnotti, N.; Spinelli, R.; Kärhä, K.; Mederski, P. Multi-tree cut-to-length harvesting of short-rotation poplar plantations. Eur. J. For. Res. 2021, 140, 345–354. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N.; Lombardini, C.; Mihelič, M. A Low-Investment Option for the Integrated Semi-mechanized Harvesting of Small-Scale, Short-Rotation Poplar Plantations. Small-Scale For. 2021, 20, 59–72. [Google Scholar] [CrossRef]
- Conway, S. Logging Practices: Principles of Timber Harvesting Systems; Miller Freeman Publications: San Francisco, CA, USA, 1976; 416p. [Google Scholar]
- Spinelli, R.; Owende, P.; Ward, S. Productivity and cost of CTL harvesting of Eucalyptus globulus stands using excavator-based harvesters. For. Prod. J. 2002, 52, 67–77. [Google Scholar]
- Arcego, H.; Robert, R.C.G.; Brown, R.O. Effect of Log Length on Forestry Loading and Unloading. Floresta Ambient. 2019, 26, 6. [Google Scholar] [CrossRef]
- Spinelli, R.; Kovac, B.; Heger, P.; Helig, D.; Heil, B.; Kovàcs, G.; Magagnotti, N. Manipulating grading strategy for the efficient harvesting of industrial poplar plantations. Int. J. For. Eng. 2022, 33, 98–107. [Google Scholar] [CrossRef]
- Heilig, D.; Heil, B.; Leibing, C.; Röhle, H.; Kovács, G. Comparison of the Initial Growth of Different Poplar Clones on Four Sites in Western Slovakia—Preliminary Results. BioEnergy Res. 2021, 14, 374–384. [Google Scholar] [CrossRef]
- Landgraf, D.; Carl, C.; Nuepert, M. Biomass yield of 37 Different SRC Poplar Varieties Grown on a Typical Site in North Eastern Germany. Forest 2020, 11, 1048. [Google Scholar] [CrossRef]
- Meyer, M.; Morgenstern, K.; Heilig, D.; Heil, B.; Kovács, G.; Leibing, C.; Krabel, D. Biomass Allocation and Root Characteristics of Early-Stage Poplars (Populus spp.) for Assessing Their Water-Deficit Response During SRC Establishment. BioEnergy Res. 2021, 14, 385–398. [Google Scholar] [CrossRef]
- Krejza, J.; Světlík, J.; Bednář, P. Allometric relationship and biomass expansion factors (BEFs) for above- and below-ground biomass prediction and stem volume estimation for ash (Fraxinus excelsior L.) and oak (Quercus robur L.). Trees 2017, 31, 1303–1316. [Google Scholar] [CrossRef]
- Urban, J.; Čermák, J.; Ceulemans, R.J. Above- and below-ground biomass, surface and volume, and stored water in a mature Scots pine stand. Forstwiss. Eur. J. For. Res. 2015, 134, 61–74. [Google Scholar] [CrossRef] [Green Version]
- Headlee, W.L.; Zalesny, R.S. Allometric Relationships for Aboveground Woody Biomass Differ Among Hybrid Poplar Genomic Groups and Clones in the North-Central USA. BioEnergy Res. 2019, 12, 966–976. [Google Scholar] [CrossRef]
- Hartmann, K. Entwicklung eines Ertragsschätzers für Kurzumtriebsbestände aus Pappel. Ph.D. Thesis, Technische Universität Dresden, Tharandt, Germany, 2010; p. 162. [Google Scholar]
- Hjelm, B. Empirical Models for Estimating Volume and Biomass of Poplars on Farmland in Sweden. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2015; p. 61. [Google Scholar]
- Verlinden, M.S.; Broeckx, L.S.; Van den Bulcke, J.; Van Acker, J.; Ceulemans, R. Comparative study of biomass determinants of 12 poplar (Populus) genotypes in a high-density short-rotation culture. For. Ecol. Manag. 2013, 307, 101–111. [Google Scholar] [CrossRef]
- Björheden, R.; Apel, K.; Shiba, M.; Thompson, M. IUFRO Forest Work Study Nomenclature; Swedish University of Agricultural Science, Department of Operational Efficiency: Garpenberg, Sweden, 1995; 16p. [Google Scholar]
- Spinelli, R.; Visser, R. Analyzing and Estimating Delays in Harvester Operations. Int. J. For. Eng. 2008, 19, 36–41. [Google Scholar] [CrossRef]
- Magagnotti, N.; Kanzian, C.; Schulmeyer, F.; Spinelli, R. A new guide for work studies in forestry. Int. J. For. Eng. 2011, 24, 249–253. [Google Scholar] [CrossRef]
- Rutherford, A. Introducing ANOVA and ANCOVA: A GLM Approach; Sage Publications Ltd.: London, UK, 2000; 192p, ISBN 076-195-160-1. [Google Scholar]
- Okagbue, H.I.; Oguntunde, P.E.; Obasi, E.C.M.; Akhmetshin, E.M. Trends and usage pattern of SPSS and Minitab Software in Scientific research. J. Phys. Conf. Ser. 2021, 1734, 012017. [Google Scholar] [CrossRef]
- Purfürst, T.; Erler, J. The human influence on productivity in harvester operations. Int. J. For. Eng. 2011, 22, 15–22. [Google Scholar] [CrossRef]
- Leonello, E.C.; Gonçalves, S.P.; Fenner, P.T. Efeito do tempo de experiência de operadores de Harvester no rendimento operacional. Rev. Árvore 2012, 36, 1129–1133. [Google Scholar] [CrossRef] [Green Version]
- Belisario, A.V.; Fiedler, N.C.; Cipriano de Assis do Carmo, F.; Lemos Moreira, G. Influence of Log Length on the Productivity of Wood Harvesting and Transportation. Floresta 2022, 51, 17–24. [Google Scholar] [CrossRef]
- Gingras, J.F.; Favreau, J. Effect of log length and number of products on the productivity of cut-to-length harvesting in the boreal forest. Advantage 2005, 6, 10. [Google Scholar]
- Kuitto, P.J.; Keskinen, S.; Lindroos, J.; Oijala, T.; Rajamäki, J.; Räsänen, T.; Terävä, J. Mechanized Cutting and Forest Haulage; Metsäteho Reports 38; Metsäteho: Helsinki, Finland, 1994; 64p, (In Finnish with English Summary). [Google Scholar]
- Gullberg, T. A Deductive Time Consumption Model for Loading Shortwood. Int. J. For. Eng. 1997, 8, 35–44. [Google Scholar]
- Danilovic, M.; Stojnic, D.; Karic, S.; Sucevic, M. Transport of technical roundwood by forwarder and tractor assembly from poplar plantations. Nova Meh. Šumarstva 2014, 35, 11–21. [Google Scholar]
- Strangard, M.; Mitchell, R.; Acuna, M. Time consumption and productivity of a forwarder operating on a slope in a cut-to-length harvest system in a Pinus radiata D. Don pine plantation. J. For. Sci. 2017, 63, 324–330. [Google Scholar]
- Nurminen, T.; Korpunen, H.; Uusitalo, J. Time consumption analysis of the mechanized cut-to-length harvesting system. Silva Fenn. 2006, 40, 335–363. [Google Scholar] [CrossRef] [Green Version]
- McEwan, A.; Marchi, E.; Spinelli, R.; Brink, M. Past, present and future of industrial plantation forestry and implication on future timber harvesting technology. J. For. Res. 2020, 31, 339–351. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, R.; Ward, S.M.; Owende, P.M. A harvest and transport cost model for Eucalyptus spp. fast-growing short rotation plantations. Biomass Bioenergy 2009, 33, 1265–1270. [Google Scholar] [CrossRef]
- Spinelli, R.; Cacot, E.; Mihelic, M.; Nestorovski, L.; Mederski, P.; Tolosana, E. Techniques and productivity of coppice harvesting operations in Europe: A meta-analysis of available data. Ann. For. Sci. 2016, 73, 1125–1139. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, R.; Owende, P.M.O.; Ward, S.M.; Tornero, M. Comparison of short-wood forwarding systems used in Iberia. Silva Fenn. 2004, 38, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, R.; Magagnotti, N.; Lombardini, C.; Leonello, E.C. Cost-effective Integrated Harvesting of Short-Rotation Poplar Plantations. Bioenerg. Res. 2021, 14, 460–468. [Google Scholar] [CrossRef]
- Manner, J.; Nordfjell, T.; Lindroos, O. Effects of the number of assortments and log concentration on time consumption for forwarding. Silva Fenn. 2013, 47, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, R.; Mitchell, R.; Brown, M.; Magagnotti, N.; McEwan, A. Manipulating Chain Type and Flail Drum Speed for Better Fibre Recovery in Chain-Flail Delimber-Debarker-Chipper Operations. Croat. J. For. Eng. 2019, 41, 137–147. [Google Scholar] [CrossRef] [Green Version]
Site | Gajary | Gajary | Pernek | Pernek | |
---|---|---|---|---|---|
Log length | m | 2 | 4 | 2 | 4 |
Obs | n° | 8 | 8 | 8 | 8 |
Clones | Type | AF18 | Mix (AF13-16-18) | ||
Plot | BDT | 3.44 a | 3.75 a | 1.49 b | 1.65 b |
DBH | cm | 12.3 a | 12.1 a | 9.6 b | 9.8 b |
Height | m | 14.6 a | 14.6 a | 8.0 b | 8.1 b |
Stocking | BDT ha−1 | 44.0 a | 48.1 a | 19.3 b | 21.4 b |
Site | Gajary | Gajary | Pernek | Pernek | |
---|---|---|---|---|---|
Log length | M | 2 | 4 | 2 | 4 |
Obs | n° | 8 | 8 | 8 | 8 |
Felling and | BDT SMH−1 | 2.5 a | 3.1 b | 1.5 c | 2.0 a |
Processing | € BDT−1 | 28.4 ab | 23.3 a | 45.1 c | 34.3 b |
Forwarding | BDT SMH−1 | 3.7 ab | 5.2 a | 2.6 b | 5.6 a |
Logs | € BDT−1 | 14.6 ab | 12.1 a | 23.4 b | 11.9 a |
Forwarding | BDT SMH−1 | 4.7 a | 5.0 a | 4.1 a | 4.8 a |
Biomass | € BDT−1 | 11.8 a | 11.0 a | 13.3 a | 11.5 a |
Total cost | € BDT−1 | 41.8 a | 33.8 b | 61.2 c | 46.1 a |
Log yield | % | 64.5 a | 62.1 a | 36.8 b | 25.5 c |
Model Fit | Effect | DF | SS | Eta2 | F-Value | p-Value | |
---|---|---|---|---|---|---|---|
Total cost | S = 5.27 | Site | 1 | 2012 | 0.51 | 72.3 | <0.0001 |
€ BDT−1 | Adj. R2 = 0.78 | Log length | 1 | 1068 | 0.27 | 38.4 | <0.0001 |
Interaction | 1 | 104 | 0.03 | 3.75 | 0.0629 | ||
Residual | 28 | 779 | 0.20 | ||||
Harvester | S = 0.32 | Site | 1 | 7.47 | 0.58 | 69.3 | <0.0001 |
Productivity | Adj. R2 = 0.74 | Log length | 1 | 2.45 | 0.19 | 22.8 | <0.0001 |
BDT SMH−1 | Interaction | 1 | 0.02 | 0.00 | 0.2 | 0.6793 | |
Residual | 28 | 3.02 | 0.23 | ||||
Harvester | S = 4.27 | Site | 1 | 1528 | 0.58 | 835 | <0.0001 |
Cost | Adj. R2 = 0.78 | Log length | 1 | 513 | 0.20 | 28 | <0.0001 |
EUR BDT−1 | Interaction | 1 | 66 | 0.03 | 3.6 | 0.0680 | |
Residual | 28 | 512 | 0.20 | ||||
Forwarding | S = 1.85 | Site | 1 | 0.85 | 0.01 | 0.25 | 0.6230 |
Productivity | Adj. R2 = 0.24 | Log length | 1 | 38.9 | 0.28 | 11.3 | 0.0022 |
BDT SMH−1 | Interaction | 1 | 4.4 | 0.03 | 1.3 | 0.2623 | |
Logs | Residual | 28 | 96.2 | 0.69 | |||
Forwarding | S = 7.73 | Site | 1 | 147 | 0.06 | 2.48 | 0.1270 |
Cost | Adj. R2 = 0.22 | Log length | 1 | 389 | 0.16 | 6.51 | 0.0160 |
EUR BDT−1 | Interaction | 1 | 166 | 0.07 | 2.78 | 0.1060 | |
Logs | Residual | 28 | 1672 | 0.70 | |||
Forwarding | S = 0.86 | Site | 1 | 1.48 | 0.06 | 2 | 0.1683 |
Productivity | Adj. R2 = 0.08 | Log length | 1 | 2.38 | 0.10 | 3.22 | 0.0834 |
BDT SMH−1 | Interaction | 1 | 0.23 | 0.01 | 0.3 | 0.5791 | |
Biomass | Residual | 28 | 20.7 | 0.84 | |||
Forwarding | S = 2.24 | Site | 1 | 7.78 | 0.05 | 1.55 | 0.2230 |
Cost | Adj. R2 = 0.05 | Log length | 1 | 12.9 | 0.08 | 2.58 | 0.1190 |
EUR BDT−1 | Interaction | 1 | 2.08 | 0.01 | 0.42 | 0.5240 | |
Biomass | Residual | 28 | 140.31 | 0.86 |
Cost (EUR BDT−1)= a + b × Stocking−0.452 + c × 2 m Log | ||||
---|---|---|---|---|
R2 adj. = 0.908; n = 32; F-Value = 153.7; RMS = 3.432 | ||||
Coeff | SE | T | p-Value | |
a | −2.957 | 3.039 | −0.973 | 0.3386 |
b | 199.487 | 13.550 | 14.722 | <0.0001 |
c | 9.717 | 1.220 | 7.965 | <0.0001 |
Site | Gajary | Gajary | Pernek | Pernek | |
---|---|---|---|---|---|
Log length | m | 2 | 4 | 2 | 4 |
Observations | n° | 8 | 8 | 8 | 8 |
Time consumption | s tree−1 | 29 a | 24 b | 21 bc | 19 c |
Productivity | trees PMH−1 | 126 a | 152 ab | 182 bc | 195 c |
Logs per tree | n° | 3.3 a | 1.4 b | 0.9 bc | 0.4 c |
Uneven log count | % | 48 a | NA | 29 b | NA |
Biomass trees | % | 4 a | 12 ab | 39 bc | 59 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spinelli, R.; Kováč, B.; Heger, P.; Heilig, D.; Heil, B.; Kovács, G.; Magagnotti, N. The Effect of Target Log Length on Log Recovery and Harvesting Cost: The Example of Short-Rotation Poplar Plantations. Forests 2022, 13, 669. https://doi.org/10.3390/f13050669
Spinelli R, Kováč B, Heger P, Heilig D, Heil B, Kovács G, Magagnotti N. The Effect of Target Log Length on Log Recovery and Harvesting Cost: The Example of Short-Rotation Poplar Plantations. Forests. 2022; 13(5):669. https://doi.org/10.3390/f13050669
Chicago/Turabian StyleSpinelli, Raffaele, Barnabáš Kováč, Patrik Heger, Dávid Heilig, Bálint Heil, Gábor Kovács, and Natascia Magagnotti. 2022. "The Effect of Target Log Length on Log Recovery and Harvesting Cost: The Example of Short-Rotation Poplar Plantations" Forests 13, no. 5: 669. https://doi.org/10.3390/f13050669
APA StyleSpinelli, R., Kováč, B., Heger, P., Heilig, D., Heil, B., Kovács, G., & Magagnotti, N. (2022). The Effect of Target Log Length on Log Recovery and Harvesting Cost: The Example of Short-Rotation Poplar Plantations. Forests, 13(5), 669. https://doi.org/10.3390/f13050669