Elevation and Soil Properties Determine Community Composition, but Not Vascular Plant Richness in Tropical Andean Roadside
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Design and Data Collection
2.3. Soil Sampling and Laboratory Analytical Methods
2.4. Data Analysis
3. Results
3.1. Patterns of Richness and Abundance in Relation to Elevation and Edaphic Factors
3.2. Beta Diversity in Relation to Elevation and Edaphic Factors
3.3. Indicator Species
4. Discussion
4.1. Patterns of Richness and Abundance in Relation to Elevation and Edaphic Factors
4.2. Beta Diversity in Relation to Elevation and Edaphic Factors
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
E1 | E2 | E3 | E4 | E5 | |
---|---|---|---|---|---|
pH | 4.82 ± 0.01 | 4.89 ± 0.1 | 4.8 ± 0.02 | 5.3 ± 0.01 | 5.4 ± 0.5 |
SOM (%) | 1.3 ± 2.9 | 0.6 ± 0.7 | 1.2 ± 1.5 | 0.7 ± 0.7 | 1.4 ± 0.8 |
N (%) | 0.7 ± 0.01 | 0.04 ± 0.04 | 0.06 ± 0.07 | 0.04 ± 0.04 | 0.07 ± 0.04 |
P (mg/kg) | 3.5 ± 0.00 | 3.7 ± 0.28 | 3.5 ± 0.00 | 3.9 ± 0.56 | 3.5 ± 0.00 |
K (cmol/kg) | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.06 ± 0.00 | 0.02 ± 0.01 | 0.17 ± 0.00 |
SOC (%) | 0.73 ± 0.04 | 0.38 ± 0.41 | 0.69 ± 0.88 | 0.42 ± 0.46 | 0.81 ± 0.49 |
C/N ratio | 11.3 ± 0.49 | 9.4 ± 2.61 | 9.5 ± 3.53 | 11.5 ± 1.55 | 11.6 ± 0.00 |
Bd (gr cm3) | 1.43 ± 0.29 | 1.18 ± 0.35 | 0.90 ± 0.24 | 1.15 ± 0.30 | 1.17 ± 0.23 |
Sand (%) | 60.6 ± 19.8 | 58.9 ± 8.0 | 62.6 ± 8.5 | 77.6 ± 1.4 | 65.6 ± 9.9 |
Silt (%) | 22.0 ± 14.1 | 21.6 ± 2.3 | 20.0 ± 5.7 | 7.0 ± 4.2 | 10.0 ± 11.3 |
Clay (%) | 17.4 ± 5.7 | 19.4 ± 5.7 | 17.4 ± 2.8 | 15.4 ± 2.8 | 24.4 ± 1.4 |
Textural class | Sandy loam | Sandy loam | Sandy loam | Sandy loam | Sandy clay loam |
Appendix B
PC1 | PC2 | |
---|---|---|
pH | 0.0521 | 0.3578 |
SOM | −0.4725 | −0.0172 |
N | −0.4725 | −0.0487 |
P | 0.3245 | 0.1257 |
K | −0.2017 | 0.2309 |
SOC | −0.4725 | −0.0172 |
C/N | −0.3704 | 0.2317 |
Bd | −0.0737 | −0.0503 |
Sand | 0.0424 | 0.5875 |
Silt | 0.0398 | −0.6117 |
Clay | −0.1885 | −0.1561 |
Appendix C
Richness | Estimate | Std Error | Z Value | p Value |
---|---|---|---|---|
AltitudeE1 | 1.768 | 0.153 | 11.571 | 0.467 |
AltitudeE2 | 0.131 | 0.185 | 0.711 | 0.477 |
AltitudeE3 | −0.172 | 0.189 | −0.907 | 0.364 |
AltitudeE4 | 0.281 | 0.283 | 0.993 | 0.321 |
AltitudeE5 | 0.021 | 0.241 | 0.086 | 0.931 |
PC1-soil | −0.030 | 0.034 | −0.893 | 0.372 |
PC2-soil | −0.059 | 0.067 | −0.879 | 0.380 |
Abundance | ||||
AltitudeE1 | 7.316 | 0.120 | 61.142 | 0.437 |
AltitudeE2 | 0.041 | 0.154 | 0.267 | 0.789 |
AltitudeE3 | 1.038 | 0.147 | 7.052 | <0.0001 |
AltitudeE4 | 0.842 | 0.224 | 3.762 | 0.0001 |
AltitudeE5 | 0.331 | 0.190 | 1.744 | 0.081 |
PC1-soil | 0.068 | 0.027 | 2.560 | 0.060 |
PC2-soil | −0.061 | 0.055 | −1.123 | 0.261 |
Appendix D
Elevations | |||||
---|---|---|---|---|---|
Family/Species | E1 | E2 | E3 | E4 | E5 |
Asteraceae | |||||
Baccharis genistelloides (Lam.) Pers. | 16 | 121 | 272 | 8 | 27 |
Baccharis latifolia (Ruiz & Pav.) Pers. | 3 | 1 | |||
Liabum sp. | 1 | 5 | |||
Sonchus oleraceus (L.) L. | 5 | ||||
Tessaria sp. | 1 | ||||
Triplaris sp. | 1 | ||||
Blechnaceae | |||||
Blechnum binervatum (Poir.) C.V. Morton & Lellinger. | 11 | ||||
Blechnum stipitatum A. Rojas. | 25 | ||||
Bromeliaceae | |||||
Guzmania sp. | 4 | 14 | |||
Pitcairnia cf pungens. | 6 | 3 | |||
Clethraceae | |||||
Clethra finbriata Kunth | 8 | ||||
Clethra revoluta (Ruiz & Pav.) Spreng. | 2 | ||||
Cunoniaceae | |||||
Weinmannia fagaroides Kunth | 2 | ||||
Weinmannia glabra Lam. | 2 | ||||
Cyperaceae | |||||
Carex lehmanniana Boott ex Walp. | 93 | ||||
Rhynchospora vulcani Boeckeler. | 11 | 21 | |||
Dennstaedtiaceae | |||||
Dennstaedtia mathewsii (Hook.) C. Chr. | 17 | ||||
Pteridium sp. Gled. ex Scop. | 28 | 58 | 28 | 9 | |
Dryopteridaceae | |||||
Elaphoglossum sp. Schott ex J. Sm. | 1 | ||||
Ericaceae | |||||
Bejaria resinosa Mutis ex L. f. | 4 | 33 | 6 | 4 | |
Disterigma acuminatum (Kunth) Nied. | 2 | ||||
Gaultheria erecta Vent. | 32 | 47 | 18 | 8 | 11 |
Gaultheria vaccinioides Wedd. | 40 | 16 | 11 | 5 | |
Fabaceae | |||||
Desmodium sp. | 11 | ||||
Medicago sp. | 7 | ||||
Gleicheniaceae | |||||
Sticherus bifidus (Willd.) Ching | 235 | 15 | 23 | ||
Gunneraceae | |||||
Gunnera sp. | 36 | ||||
Lycopodiaceae | |||||
Lycopodiella andicola B. Øllg. | 382 | ||||
Lycopodium clavatum L. | 130 | 91 | |||
Lycopodium clavatun subsp. Contiguum | 75 | ||||
Lycopodium jussiaei Desv. ex Poir. | 6 | ||||
Melastomataceae | |||||
Axinaea sp. Ruiz & Pav. | 16 | ||||
Clidemia sp. | 28 | ||||
Miconia sp. | 6 | ||||
Tibouchina laxa (Desr.) Cogn. | 5 | 8 | |||
Tibouchina lepidota (Bonpl.) Baill. | 67 | 21 | 18 | ||
Orchidaceae | |||||
Elleanthus aurantiacus Rchb.f | 148 | 12 | 1 | 9 | 4 |
Elleanthus sp. | 8 | 23 | 5 | ||
Maxillaria sp. | 73 | ||||
Sobralia candida (Poepp. & Endl.) Rchb. f. | 5 | 11 | 7 | ||
Phyllanthaceae | |||||
Hyeronima sp. | 5 | ||||
Piperaceae | |||||
Piper sp. | 5 | 2 | |||
Poaceae | |||||
Axonopus scoparius H | 69 | ||||
Calamagrostis intermedia (J. Presl) Steud. | 1 | 168 | |||
Chusquea loxensis L.G. Clacrk | 18 | ||||
Cortaderia jubata (Lemoine) Stapf | 17 | 67 | 15 | 5 | |
Digitaria ciliaris (Kents.) Koeler | 1 | 46 | |||
Eleusine indica (L.) Gaertn. | 33 | 82 | |||
Festuca subulifolia Benth. | 12 | ||||
Neurolepis laegaardii L.G. Clark | 1 | 38 | 60 | 51 | |
Setaria parviflora (Poir.) Kerguélen | 41 | ||||
Polygonaceae | |||||
Muehlenbeckia tamnifolia (Kunth) Meisn. | 20 | ||||
Polypodiaceae | |||||
Melpomene moniliformis (Lag. ex Sw.) A.R. Sm. & R.C. Moran | 146 | 174 | |||
Pteridaceae | |||||
Eriosorus aureonitens (Hook.) Copel. | 12 |
References
- Alexander, J.; Naylor, B.; Poll, M.; Edwards, P.; Dietz, H. Plant invasions along mountain roads: The altitudinal amplitude of alien Asteraceae forbs in their native and introduced ranges. Ecography 2009, 32, 334–344. [Google Scholar] [CrossRef]
- Alexander, J.M.; Kueffer, C.; Daehler, C.C.; Edwards, P.J.; Pauchard, A.; Seipel, T. MIREN Consortium. Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proc. Natl. Acad. Sci. USA 2011, 108, 656–661. [Google Scholar] [CrossRef] [Green Version]
- Arévalo, J.R.; Delgado, J.D.; Otto, R.; Naranjo, A.; Salas, M.; Fernández-Palacios, J.M. Distribution of alien vs. native plant species in roadside communities along an altitudinal gradient in Tenerife and Gran Canaria (Canary Islands). Perspect. Plant. Ecol. Evol. Syst. 2005, 7, 185–202. [Google Scholar] [CrossRef]
- Pywell, R.F.; Bullock, J.M.; Roy, D.B.; Warman, L.; Walker, K.J.; Rothery, P. Plant traits as predictors of performance in ecological restoration. J. Appl. Ecol. 2003, 40, 65–77. [Google Scholar] [CrossRef]
- Temperton, V.M.; Hobbs, R.J.; Nuttle, T.; Halle, S. Assembly Rules and Restoration Ecology: Bridging the Gap between Theory and Practice; Island Press: Washington, DC, USA, 2004. [Google Scholar]
- Schaffers, A.P.; Sykora, K.V. Sinecology of species-rich plant communities on roadside verges in the Netherlands. Phytocoenologia 2002, 32, 29–83. [Google Scholar] [CrossRef]
- Steinfeld, D.E.; Riley, S.A.; Wilkinson, K.M.; Landis, T.D.; Riley, L.E. Roadside Revegetation: An Integrated Approach to Establishing Native Plants, Report N: FHWA-WFL/TD-07-005; Federal Highway Administration, U.S. Department of Transportation: Washington, DC, USA, 2007.
- Forman, R.T.T.; Alexander, L.E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 1998, 29, 207–231. [Google Scholar] [CrossRef] [Green Version]
- Forman, R.T.T.; Deblinger, R.D. Ecological road effect zone of a Massachusetts (USA) suburban highway. Conserv. Biol. 2000, 14, 36–46. [Google Scholar] [CrossRef]
- Saunders, D.A.; Hobbs, R.J.; Margules, C.R. Biological consequences of ecosystem fragmentation: A review. Conserv. Biol. 1991, 5, 18–32. [Google Scholar] [CrossRef]
- Trombulak, S.C.; Frissell, C.H. Review of ecological effects of roads on terrestrial and aquatic communities. Conserv. Biol. 2000, 14, 18–30. [Google Scholar] [CrossRef]
- Parendes, L.A.; Jones, J.A. Light availability, dispersal and exotic plant invasion along roads and streams in the H.J. Andrew Experimental Forest. Oregon. Conserv. Biol. 2000, 14, 64–75. [Google Scholar] [CrossRef]
- De la Riva, E.G.; Casado, M.A.; Jiménez, M.D.; Mola, I.; Costa-Tenorio, M.; Balaguer, L. Rates of local colonization and extinction reveal different plant community assembly mechanisms on road verges in central Spain. J. Veg. Sci. 2011, 22, 292–302. [Google Scholar] [CrossRef]
- Bochet, E.; García-Fayos, P. Factors controlling vegetation establishment and water erosion on motorway slopes in Valencia, Spain. Restor. Ecol. 2004, 12, 166–174. [Google Scholar] [CrossRef]
- Bochet, E.; García-Fayos, P.; Tormo, J. Road slope revegetation in semiarid Mediterranean environments. Part I: Seed dispersal and spontaneous colonization. Restor. Ecol. 2007, 15, 88–96. [Google Scholar] [CrossRef]
- Mola, I.; Jiménez, M.D.; López-Jiménez, N.; Casado, M.A.; Balaguer, L. Roadside reclamation outside the revegetation season: Management options under schedule pressure. Restor. Ecol. 2011, 19, 83–92. [Google Scholar] [CrossRef]
- Tormo, J.; Bochet, E.; García-Fayos, P. Is seed availability enough to ensure colonization success? An experimental study in road embankments. Ecol. Eng. 2006, 26, 224–230. [Google Scholar] [CrossRef]
- Valladares, F.; Tena, D.; Matesanz, S.; Bochet, E.; Balaguer, L.; Costa-Tenorio, M.; Tormo, J.; García-Fayos, P. Functional traits and phylogeny: What is the main ecological process determining species assemblage in roadside plant communities? J. Veg. Sci. 2008, 19, 381–392. [Google Scholar] [CrossRef]
- McCain, C.; Grytnes, J.A. Elevational Gradients in Species Richness. In Encyclopedia of Life Sciences (ELS); John Wiley and Sons: Chichester, UK, 2010. [Google Scholar]
- Nogués-Bravo, D.; Araujo, M.; Romdal, T.; Rahbek, C. Scale effects and human impact on the elevational species richness gradients. Nature 2008, 453, 216–220. [Google Scholar] [CrossRef] [Green Version]
- Kessler, M.; Kluge, J.; Hemp, A.; Ohlemuller, R. A global comparative analysis of elevational species richness patterns of ferns. Glob. Ecol. Biogeogr. 2011, 20, 868–880. [Google Scholar] [CrossRef]
- Marini, L.; Battisti, A.; Bona, E.; Federici, G.; Martini, F.; Pautasso, M.; Hulme, P. Alien and native plant life-forms respond differently to human and climate pressures. Glob. Ecol. Biogeogr. 2011, 21, 534–544. [Google Scholar] [CrossRef]
- Seipel, T.; Kueffer, C.; Rew, L.; Daehler, C.; Pauchard, A.; Naylor, B.; Alexander, J.M.; Edwards, P.J.; Parks, C.G.; Arevalo, J.R.; et al. Processes at multiple scales affect richness and similarity of non-native plant species in mountains around the world. Glob. Ecol. Biogeogr. 2012, 21, 236–246. [Google Scholar] [CrossRef]
- Haider, S.; Kueffer, C.; Bruelheide, H.; Seipel, T.; Alexander, J.M.; Rew, L.J.; Arévalo, J.R.; Cavieres, L.A.; McDougall, K.L.; Milbau, A.; et al. Mountain roads and non-native species modify elevational patterns of plant diversity. Glob. Ecol. Biogeogr. 2018, 27, 667–678. [Google Scholar] [CrossRef] [Green Version]
- Pauchard, A.; Alaback, P. Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of South-Central Chile. Conserv. Biol. 2004, 18, 238–248. [Google Scholar] [CrossRef]
- Paiaro, V.; Cabido, M.; Pucheta, E. Altitudinal distribution of native and alien plant species in roadside communities from central Argentina. Austral Ecol. 2011, 36, 176–184. [Google Scholar] [CrossRef]
- Sandoya, V.; Pauchard, A.; Cavieres, L.A. Natives, and non-natives plants show different responses to elevation and disturbance on the tropical high Andes of Ecuador. Ecol. Evol. 2007, 7, 7909–7919. [Google Scholar] [CrossRef] [Green Version]
- Jim, C. Ecological and landscape rehabilitation of a quarry site in Hong Kong. Restor. Ecol. 2001, 9, 85–94. [Google Scholar] [CrossRef]
- Muzzi, E.; Roffi, F.; Sirotti, M.; Bagnaresi, U. Revegetation techniques on clay soil slopes in northern Italy. Land Degrad. Dev. 1997, 8, 127–137. [Google Scholar] [CrossRef]
- Yuan, J.; Fang, W.; Fan, L.; Chen, Y.; Wang, D.Q.; Yang, Z.Y. Soil formation and vegetation establishment on the cliff face of abandoned quarries in the early stages of natural colonization. Restor. Ecol. 2006, 14, 349–356. [Google Scholar] [CrossRef]
- Lausi, D.; Nimis, T. Roadside vegetation in boreal South Yukon and adjacent Alaska. Phytocoenologia 1995, 13, 103–138. [Google Scholar] [CrossRef]
- Ullman, L.; Bannister, P.; Wilson, J.B. The vegetation of roadside verges with respect to environmental gradients in southern New Zealand. J. Veg. Sci. 1995, 6, 131–142. [Google Scholar] [CrossRef]
- Olander, L.P.; Scatena, F.N.; Silver, L.W. Impacts of disturbance initiated by road construction in a subtropical clouds forest in the Luquillo Experimental Forest, Puerto Rico. For. Ecol. Manag. 1998, 109, 33–49. [Google Scholar] [CrossRef]
- Cilliers, S.S.; Bredenkamp, G.J. Vegetation of road verges on an urbanization gradient in Potchefstroom, South Africa. Landsc. Urban Plan. 2000, 46, 217–239. [Google Scholar] [CrossRef]
- Becker, T.; Dietz, H.; Billeter, R.; Buschmann, H.; Edwards, P. Altitudinal distribution of plant species in the Swiss Alps. Perspect. Plant Ecol. Evol. Syst. 2005, 7, 173–183. [Google Scholar] [CrossRef]
- Siniscalco, C.; Barni, E.; Bacaro, G. Non-native species distribution along the elevation gradient in the western Italian Alps. Plant Biosyst. 2011, 145, 150–158. [Google Scholar] [CrossRef]
- Homeier, J.; WBreckle, S.; Günter, S.; Rollenbeck Rütger, T.; Leuschner, C. Tree Diversity, Forest Structure and Productivity along Altitudinal and Topographical Gradients in a Species-Rich Ecuadorian Montane Rain Forest. Biotropica 2010, 42, 140–148. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Galeas, R.; Guevara, J.E. Ministerio del Ambiente, Agua y Transición Ecológica del Ecuador. In Sistema de Clasificación de Los Ecosistemas del Ecuador Continental; Ministerio del Ambiente Ecuador: Quito, Ecuador, 2012. [Google Scholar]
- Vittoz, P.; Camenisch, M.; Mayor, R.; Miserere, L.; Vust, M.; Theurillat, J.P. Subalpine-nival gradient of species richness for vascular plants, bryophytes and lichens in the Swiss Inner Alps. Bot. Helv. 2010, 120, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Ojeda-Luna, T.; Eguiguren, P.; Salinas, L.; Aguirre, N. Metodología para instalar sitios pilotos de monitoreo de la biodiversidad y Cambio Climático. In Cambio Climático y Biodiversidad: Estudio de Caso de Los Páramos del Parque Nacional Podocarpus, Ecuado; Programa de Biodiversidad y Servicios Ecosistémicos, Universidad Nacional de Loja: Loja, Ecuador, 2015; pp. 117–142. [Google Scholar]
- Munkholm, L.J.; Schjønning, P.; Kay, B.D. Tensile strength of soil cores in relation to aggregate strength, soil fragmentation and pore characteristics. Soil Tillage Res. 2000, 64, 125–135. [Google Scholar] [CrossRef]
- Sandoval, M.; Fernández, J.; Seguel, O.; Becerra, J.; Salazar, D. Métodos de Análisis Físicos de Suelos. Sociedad Chilena de la Ciencia del Suelo. Ph.D. Thesis, Universidad de Concepción, Concepción, Chile, 2011; pp. 1–75. [Google Scholar]
- Black, C.A.; Evans, D.D.; White, J.L.; Ensminger, L.E.; Clark, F.E. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Agronomy 9; ASA: New York, NY, USA, 1965; p. 1572. [Google Scholar]
- Page, A.L.; Miller, R.H.; Keeney, D.R. Methods of Soil Analysis, Part II; American Society of Agronomy: Madison, WI, USA, 1982. [Google Scholar]
- Bremner, J.M. Nitrogen-Total. In Methods of Soil Analysis: Part 3 Chemical Methods; John Wiley & Sons: Hoboken, NJ, USA, 1996; Volume 5, pp. 1085–1121. [Google Scholar]
- Tan, D.; Jin, J.; Jiang, L.; Huang, S.; Liu, Z. Potassium assessment of grain producing soils in North China. Agric. Ecosyst. Environ. 2012, 148, 65–71. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. arXiv 2014, arXiv:1406.5823. [Google Scholar] [CrossRef]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef]
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’hara, R.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. R Package; Version 2.5-5; Vegan: Community Ecology Package; Free Software Foundation, Inc.: Boston, MA, USA, 2018. [Google Scholar]
- McGrath, D.; Henry, J. Organic amendments decrease bulk density and improve tree establishment and growth in roadside plantings. Urban For. Urban Green 2016, 20, 120–127. [Google Scholar] [CrossRef]
- Jim, C.Y.; Ng, Y.Y. Porosity of roadside soil as indicator of edaphic quality for tree planting. Ecol. Eng. 2018, 120, 364–374. [Google Scholar] [CrossRef]
- Wolf, B.; Snyder, G. Sustainable Soils: The Place of Organic Matter in Sustaining Soils and Their Productivity; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Arenas, J.M.; Lázaro-Lobo, A.; Mola, I.; Escudero, A.; Casado, M.A. The influence of site factors and proximity of adjacent vegetation on tree regeneration into roadslopes. Ecol. Eng. 2017, 101, 120–129. [Google Scholar] [CrossRef]
- Bacaro, G.; Maccherini, S.; Chiarucci, A.; Jentsch, A.; Rocchini, D.; Torri, D.; Gioria, M.; Tordoni, E.; Martellos, S.; Altobelli, A.; et al. Distributional patterns of endemic, native and alien species along a roadside elevation gradient in Tenerife, Canary Islands. Community Ecol. 2015, 16, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Luo, P.; Yang, H.; Li, T.; Luo, C.; Wu, S.; Jia, H.; Cheng, Y. Effect of road corridors on plant diversity in the Qionglai mountain range, China. Ecol. Indic. 2022, 134, 108504. [Google Scholar] [CrossRef]
- Jimenez, M.D.; Ruiz-Capillas, P.; Mola, I.; Pérez-Corona, E.; Casado, M.A.; Balaguer, L. Soil development at the roadside: A case study of a novel ecosystem. Land Degrad. Dev. 2013, 24, 564–574. [Google Scholar] [CrossRef]
- Zhou, T.; Luo, X.; Hou, Y.; Xiang, Y.; Peng, S. Quantifying the effects of road width on roadside vegetation and soil conditions in forests. Landsc. Ecol. 2020, 35, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Karim, M.N.; Mallik, A.U. Roadside revegetation by native plants: I. Roadside microhabitats, floristic zonation and species traits. Ecol. Eng. 2008, 32, 222–237. [Google Scholar] [CrossRef]
- Soliveres Codina, S.; Palacio García, P. Sucesión secundaria, interacciones biológicas y funcionamiento de las comunidades asociadas a bordes de carreterade carretera: Las interacciones planta-suelo importan más que las planta-planta. Ecosistemas 2019, 28, 50–60. [Google Scholar]
- Huang, Y.M.; Liu, D.; An, S.S. Effects of slope aspect on soil nitrogen and microbial properties in the Chinese Loess region. Catena 2015, 125, 135–145. [Google Scholar] [CrossRef]
- Moir, J.; Jordan, P.; Moot, D.; Lucas, D. Phosphorus response and optimum pH ranges of twelve pasture legumes grown in an acid upland New Zealand soil under glasshouse conditions. J. Soil Sci. Plant Nutr. 2016, 16, 438–460. [Google Scholar] [CrossRef] [Green Version]
- Schoonover, J.E.; Crim, J.F. An introduction to soil concepts and the role of soils in watershed management. J. Contemp. Water Res. Educ. 2015, 154, 21–47. [Google Scholar] [CrossRef]
Variable/Elevation | E1 | E2 | E3 | E4 | E5 |
---|---|---|---|---|---|
Altitude (asl) | 2.600 | 2.200 | 1.800 | 1.400 | 1.000 |
Temperature (°C) | 14.2 ± 0.45 | 14.9 ± 0.00 | 17.3 ± 0.13 | 20.5 ± 0.00 | 23.0 ± 0.22 |
Precipitation (mm) | 1 148.5 ± 19.50 | 1 101 ± 3.00 | 802 ± 0.00 | 1 027 ± 0.00 | 1 581 ± 65.00 |
Ecosystem | BSMN02 | BSMN02 | BSMN02 | BSBN02 | BSBN02 |
NMDS1 | NMDS2 | R2 | p Value | |
---|---|---|---|---|
Slope | −0.48131 | −0.87655 | 0.1309 | 0.035964 |
pH | −0.41188 | 0.91124 | 0.4681 | 0.000999 |
MOS | −0.0346 | 0.9994 | 0.0239 | 0.529471 |
N | −0.11675 | 0.99316 | 0.0141 | 0.675325 |
P | −0.47755 | 0.8786 | 0.1314 | 0.031968 |
K | 0.23584 | 0.97179 | 0.2322 | 0.003996 |
C | −0.0346 | 0.9994 | 0.0239 | 0.529471 |
CN | −0.62129 | 0.78358 | 0.1907 | 0.007992 |
Bd | −0.89457 | −0.44693 | 0.3712 | 0.000999 |
Sand | 0.84395 | 0.53642 | 0.3382 | 0.000999 |
Silt | −0.71846 | −0.69557 | 0.4796 | 0.000999 |
Clay | −0.48601 | 0.87395 | 0.0838 | 0.12987 |
Altitude | 0.4919 | 0.000999 | ||
AltitudeG1 | −0.4402 | −0.4933 | ||
AltitudeG2 | 0.0644 | −0.4341 | ||
AltitudeG3 | 0.3862 | −0.0282 | ||
AltitudeG4 | 0.012 | 0.5335 | ||
AltitudeG5 | −0.0224 | 0.4222 |
Zone | Species | IndVal | p-Value |
---|---|---|---|
Elevation 1 | Gaultheria vaccinioides Wedd. | 0.389 | 0.01 |
Eriosorus aureonitens (Hook.) Copel. | 0.3 | 0.032 | |
Maxillaria sp. | 0.4 | 0.007 | |
Elleanthus aurantiacus Rchb.f | 0.403 | 0.009 | |
Elevation 2 | Bejaria resinosa Mutis ex L. f. | 0.407 | 0.025 |
Cortaderia jubata (Lemoine) Stapf | 0.441 | 0.005 | |
Digitaria ciliaris (Kents.) Koeler | 0.595 | 0.001 | |
Elevation 3 | Baccharis genistelloides (Lam.) Pers. | 0.59 | 0.015 |
Carex lehmanniana Boott ex Walp. | 0.3 | 0.025 | |
Sticherus bifidus (Willd.) Ching | 0.419 | 0.006 | |
Lycopodium clavatun subsp. Contiguum | 0.3 | 0.04 | |
Calamagrostis intermedia (J. Presl) Steud. | 0.498 | 0.001 | |
Elevation 4 | Lycopodiella andicola B. Øllg. | 0.5 | 0.002 |
Lycopodium clavatum L. | 0.298 | 0.029 | |
Axinaea sp. | 0.4 | 0.005 | |
Neurolepis laegaardii L.G. Clark. | 0.382 | 0.009 | |
Elevation 5 | Dennstaedtia mathewsii (Hook.) C. Chr. | 0.356 | 0.01 |
Clidemia sp. | 0.4 | 0.004 | |
Eleusine indica (L.) Gaertn. | 0.27 | 0.038 | |
Melpomene moniliformis (Lag. ex Sw.) | 0.31 | 0.028 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzmán, P.; Benítez, Á.; Carrión-Paladines, V.; Salinas, P.; Cumbicus, N. Elevation and Soil Properties Determine Community Composition, but Not Vascular Plant Richness in Tropical Andean Roadside. Forests 2022, 13, 685. https://doi.org/10.3390/f13050685
Guzmán P, Benítez Á, Carrión-Paladines V, Salinas P, Cumbicus N. Elevation and Soil Properties Determine Community Composition, but Not Vascular Plant Richness in Tropical Andean Roadside. Forests. 2022; 13(5):685. https://doi.org/10.3390/f13050685
Chicago/Turabian StyleGuzmán, Patricio, Ángel Benítez, Vinicio Carrión-Paladines, Paul Salinas, and Nixon Cumbicus. 2022. "Elevation and Soil Properties Determine Community Composition, but Not Vascular Plant Richness in Tropical Andean Roadside" Forests 13, no. 5: 685. https://doi.org/10.3390/f13050685
APA StyleGuzmán, P., Benítez, Á., Carrión-Paladines, V., Salinas, P., & Cumbicus, N. (2022). Elevation and Soil Properties Determine Community Composition, but Not Vascular Plant Richness in Tropical Andean Roadside. Forests, 13(5), 685. https://doi.org/10.3390/f13050685