Microsporogenesis, Pollen Ornamentation, Viability of Stored Taxodium distichum var. distichum Pollen and Its Feasibility for Cross Breeding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Observation of the Development of the Male Strobilus of T. distichum var. distichum
2.3. Determination of Pollen Water Content
2.4. Pollen Germination Medium
2.5. Viability of Stored T. distichum var. distichum Pollen
2.6. Feasibility of Stored Pollen for Cross Breeding
2.7. Statistical Analysis
3. Results
3.1. Development of the Male Strobilus
3.2. Water Content of T. distichum var. distichum Pollen
3.3. Pollen Germination Medium
3.4. Viability of Stored Pollen Grains
3.5. Feasibility of Stored Pollen for Cross Breeding
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jumrani, K.; Bhatia, V.S.; Pandey, G.P. Screening soybean genotypes for high temperature tolerance by in vitro pollen germination, pollen tube length, reproductive efficiency and seed yield. Ind. J. Plant Physiol. 2018, 23, 77–90. [Google Scholar] [CrossRef]
- Kalve, S.; Tadege, M.A. comprehensive technique for artificial hybridization in Chickpea (Cicer arietinum). Plant Methods 2017, 13, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, S.; Katoh, N.; Iwai, S.; Hagimori, M. Establishment of reliable methods of in vitro pollen germination and pollen preservation of Brassica rapa (syn. B. campestris). Euphytica 1998, 103, 29–33. [Google Scholar] [CrossRef]
- Trognitz, B. Comparison of different pollen viability assays to evaluate pollen fertility of potato dihaploids. Euphytica 1991, 56, 143–148. [Google Scholar] [CrossRef]
- Souza, E.H.D.; Souza, F.V.D.; Rossi, M.L.; Brancalleao, N.; Ledo, C.A.D.S.; Martinelli, A.P. Viability, storage and ultrastructure analysis of Aechmea bicolor (bromeliaceae) pollen grains, an endemic species to the atlantic forest. Euphytica 2015, 204, 13–28. [Google Scholar] [CrossRef]
- Loupassaki, M.; Vasilakakis, M.; Androulakis, I. Effect of pre-incubation humidity and temperature treatment on the in vitro germination of avocado pollen grains. Euphytica 1997, 94, 247–251. [Google Scholar] [CrossRef]
- Bruns, D.; Owens, J.N. Western white pine (Pinus monticola dougl.) reproduction: Ii. Fertilisation and cytoplasmic inheritance. Sex. Plant Reprod. 2000, 13, 75–84. [Google Scholar] [CrossRef]
- Hamzah, S.; Chan, J.L.; Yeang, H.Y. Pollen tube growth and fruit-set success in Hevea brasiliensis hand-pollination influenced by the choice of clone and female flower. Euphytica 2002, 123, 1–8. [Google Scholar] [CrossRef]
- Fernando, D.D.; Long, S.M.; Sniezko, R.A. Sexual reproduction and crossing barriers in white pines:the case between Pinus lambertiana (sugar pine) and P. monticola (western white pine). Tree Genet. Genomes 2005, 1, 143–150. [Google Scholar] [CrossRef]
- Hosoo, Y.; Yoshii, E.; Negishi, K.; Taira, H. A histological comparison of the development of pollen and female gametophytes in fertile and sterile Cryptomeria japonica. Sex. Plant Reprod. 2005, 18, 81–89. [Google Scholar] [CrossRef]
- Kormutak, A.; Vookova, B.; Camek, V.; Salaj, T.; Galgoci, M.; Manka, P.; Bolecek, P.; Kuna, R.; Kobliha, J.; Lukacik, I.; et al. Artificial hybridization of some Abies species. Plant Syst. Evol. 2013, 299, 1175–1184. [Google Scholar] [CrossRef]
- Dafni, A.; Firmage, D. Pollen viability and longevity: Practical, ecological and evolutionary implications. Plant Syst. Evol. 2000, 222, 113–132. [Google Scholar] [CrossRef]
- Sun, S.L.; Zhong, J.Q.; Li, S.H.; Wang, X.J. Tissue culture-induced somaclonal variation of decreased pollen viability in torenia (Torenia fournieri Lind.). Bot. Stud. 2013, 54, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Liu, Q.; Jia, M.Y.; Liu, Y.; Li, B.L.; Shi, Y. Generation of reactive oxygen species during cryopreservation may improve Lilium×siberia pollen viability. Vitr. Cell. Dev. Biol. Plant 2014, 50, 369–375. [Google Scholar] [CrossRef]
- Iovane, M.; Aronne, G. High temperatures during microsporogenesis fatally shorten pollen lifespan. Plant Reprod. 2022, 35, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.L.; Gao, C.; Qiu, J.; Kong, L.; Wang, B.; Yang, L.; Hu, Y. Flowering Biological Characteristics of Camellia weiningensis Y.K. Li. Hortscience 2021, 56, 1331–1339. [Google Scholar] [CrossRef]
- Ren, Z.X.; Bernhardt, P.; Edens-Meier, R.; Zweck, J.; Arduser, M.; Li, H.D.; Wang, H. Comparative pollen-pistil interactions and insect pollination in two Hypoxis species (Hypoxidaceae) in China and North America. Plant Syst. Evol. 2019, 305, 115–126. [Google Scholar] [CrossRef]
- Ham, H.; Botha, A.M.; Kanzler, A.; Toit, B.D. In vivo interspecific pollination success between Pinus radiata, P. maximinoi, P. oocarpa and P. tecunumanii. J. For. Res. 2019, 30, 817–826. [Google Scholar] [CrossRef]
- Nikkanen, T.; Aronen, T.; Häggman, H.; Venäläinen, M. Variation in pollen viability among Picea abies genotypes-potential for unequal paternal success. Theor. Appl. Genet. 2000, 101, 511–518. [Google Scholar] [CrossRef]
- Schueler, S.; Schlünzen, K.H.; Scholz, F. Viability and sunlight sensitivity of oak pollen and its implications for pollen-mediated gene flow. Trees 2005, 19, 154–161. [Google Scholar] [CrossRef]
- Talledo, B.G.; Zambrano, A.B.; Cruzatty, L.G.; Gavilanes, F.Z. Morphology, viability, and longevity of pollen of National Type and Trinitarian (CCN-51) clones of cocoa (Theobroma cacao L.) on the Coast of Ecuador. Braz. J. Bot. 2019, 42, 441–448. [Google Scholar] [CrossRef]
- Du, K.B.; Shen, B.X.; Xu, l.; Tu, B.K.; Cai, C.F.; Dai, M.H. Changes of viability of stored Poplar pollen and its feasibility for cross breeding. J. Huazhong Agric. Univ. 2007, 26, 385–389. (In Chinese) [Google Scholar]
- Kelen, M.; Demirtas, I. Pollen viability, germination capability and pollen production level of some grape varieties (Vitis vinifera L.). Acta Physiol. Plant. 2003, 25, 229–233. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, Y.; Wang, Y.; Chen, F.; Jiang, Y. The in vitro germination and storage characteristics of Keteleeria fortunei var. cyclolepis pollen provide a reference for cross breeding. Protoplasma 2020, 257, 1221–1230. [Google Scholar] [PubMed]
- Tiwari, S.P.; Yadav, D.; Kumar, P.; Chauhan, D.K. Comparative palynology and wood anatomy of Taxodium distichum (L.) Rich. and Taxodium mucronatum. Ten. Plant Syst Evol. 2012, 298, 723–730. [Google Scholar] [CrossRef]
- Creech, D.; Zhou, L.J.; Yin, Y.L.; Eguiluz-Piedra, T. Can Taxodium be improved? Arnoldia 2011, 69, 11–20. [Google Scholar]
- Yin, Y.L.; Yu, C.G. Taxodium ‘Zhongshanshan’; China Forestry Press: Beijing, China, 2005. [Google Scholar]
- Yin, Y.L.; Yu, C.G.; Hua, J.F. Breeding, utilization and related research progress of Taxodium ‘Zhongshanshan’. J. Plant Resour. Environ. 2019, 28, 99–106. (In Chinese) [Google Scholar]
- Takaso, T.; Tomlinson, P.B. Cone and ovule ontogeny in Taxodium and Glyptostrobus (Taxodiaceae-coniferales). Am. J. Bot. 1990, 77, 1209–1221. [Google Scholar] [CrossRef]
- Xu, D.F. A study on the sexual reproduction of Taxodium ascendens brongn. Sci. Silvae Sin. 1984, 20, 415–419. (In Chinese) [Google Scholar]
- Zhao, H.; Mo, J.X.; Hua, H.; Guo, Z.H.; Xu, J. Meiosis process and abnormal behavior of pollen mother cells in Cryptomeria fortune. J. Nanjing For. Univ. 2019, 43, 45–50. (In Chinese) [Google Scholar]
- Xu, J.; Shi, J.S.; Wang, G.F. Meiosis of male strobilus in Chinese Fir. J. Nanjing For. Univ. 2007, 31, 6–10. (In Chinese) [Google Scholar]
- He, Z.; Li, J.; Cai, Q.; Li, X.; Huang, H. Cytogenetic studies on Metasequoia glyptostroboides, a living fossil species. Genetica 2004, 122, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.G.; Han, S.Y.; Yang, W.H.; Li, M.X.; Sun, X.M.; Qi, L.W. Studies on the meiosis of pollen mother cell and pollen development of Picea koraiensis Nakai. Acta Hortic. Sin. 2009, 36, 1023–1030. (In Chinese) [Google Scholar]
- Visser, T.; Vries, D.P.D.; Welles, G.W.H.; Scheurink, J.A.M. Hybrid Tea-rose pollen. I. Germination and storage. Euphytica 1977, 26, 721–728. [Google Scholar] [CrossRef]
- Adhikari, K.A.; Campbell, C.G. In vitro germination and viability of buckwheat (Fagopyrum esculentum Moench) pollen. Euphytica 1998, 102, 87–92. [Google Scholar] [CrossRef]
- Kang, H.G.; Bae, T.W.; Jeong, O.C.; Sun, H.J.; Lim, P.O.; Lee, H.Y. Evaluation of viability, shedding pattern, and longevity of pollen from genetically modified (GM) herbicide-tolerant and wild-type zoysiagrass (Zoysia japonica Steud.). J. Plant Biol. 2009, 52, 630–634. [Google Scholar] [CrossRef]
- Hirose, T.; Hashida, Y.; Aoki, N.; Okamura, M.; Yonekura, M.; Ohto, C.; Terao, T.; Ohsugi, R. Analysis of gene-disruption mutants of a sucrose phosphate synthase gene in rice, OsSPS1, shows the importance of sucrose synthesis in pollen germination. Plant Sci. 2014, 225, 102–106. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, L.; Wu, X.; Li, Y.; Lin, J. Boron influences pollen germination and pollen tube growth in Picea meyeri. Tree Physiol. 2003, 23, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Fragallah, S.; Lin, S.; Li, N.; Ligate, E.; Chen, Y. Effects of sucrose, boric acid, ph, and incubation time on in vitro germination of pollen and tube growth of chinese fir (Cunnighamial lanceolata L.). Forests 2019, 10, 102. [Google Scholar] [CrossRef] [Green Version]
- Sorkheh, K.; Shiran, B.; Rouhi, V.; Khodambashi, M. Influence of temperature on the in vitro pollen germination and pollen tube growth of various native Iranian almonds (Prunus L. spp.) species. Trees 2011, 25, 809–822. [Google Scholar] [CrossRef]
- Huang, Z.; Zhu, J.; Mu, X.; Lin, J. Pollen dispersion, pollen viability and pistil receptivity in Leymus chinensis. Ann. Bot. 2004, 93, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Castineiras, P.; Vazquez-Ruiz, R.A.; Fernandez-Gonzalez, M.; Rodriguez-Rajo, F.J.; Aira, M.J. Production and viability of Fraxinus pollen and its relationship with aerobiological data in the northwestern Iberian Peninsula. Aerobiologia 2019, 35, 227–241. [Google Scholar] [CrossRef]
- Yuan, S.C.; Chin, S.W.; Lee, C.Y.; Chen, F.C. Phalaenopsis pollinia storage at sub-zero temperature and its pollen viability assessment. Bot. Stud. 2018, 59, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedgley, M.; Harbard, J. Pollen storage and breeding system in relation to controlled pollination of four species of Acacia (Leguminosae:Mimosoideae). Aust. J. Bot. 1993, 41, 601–609. [Google Scholar] [CrossRef]
- Ilgin, M.; Ergenoglu, F.; Caglar, S. Viability, germination and amount of pollen in selected caprifig types. Pak. J. Bot. 2007, 39, 9–14. [Google Scholar]
- Fernando, D.D.; Richards, J.L.; Kikkert, J.R. In vitro germination and transient GFP expression of American chestnut (Castanea dentata) pollen. Plant Cell Rep. 2006, 25, 450–456. [Google Scholar] [CrossRef]
- Akihama, T.; Omura, M.; Kozaki, I. Long-term storage of fruit tree pollen and its application in breeding. Jpn. Agric. Res. Q. 1979, 13, 238–241. [Google Scholar]
- Yin, J.L.; Zhao, H.E. Summary of influencial factors on pollen viability and its preservation methods. Chin. Agric. Sci. Bull. 2005, 21, 110–113. (In Chinese) [Google Scholar]
Stages of Microsporogenesis | Color of | Single Strobilus | |
---|---|---|---|
The Strobilus | Spike Length (mm) | Spike Diameter (mm) | |
Microsporocyte entered meiosis | Emerald green | 2.87 ± 0.21 | 1.74 ± 0.06 |
Tetrad formation | May green | 3.9 ± 0.13 | 2.08 ± 0.08 |
pollen grain formation | Yellow green | 4.38 ± 0.25 | 2.2 ± 0.05 |
Pollen started to disperse | Lemon yellow | 5.52 ± 0.17 | 2.57 ± 0.13 |
Storage Time | T. distichum var. distichum TD-4 | T. distichum var. distichum TD-5 |
---|---|---|
Water Content (%) | Water Content (%) | |
Fresh pollen | 24.46 ± 1.12 a | 24.38 ± 1.08 a |
One-year storage at −20 °C | 14.35 ± 0.74 b | 15.48 ± 0.77 b |
Two-year storage at −20 °C | 15.22 ± 0.83 b | 11.79 ± 0.81 c |
Three-year storage at −20 °C | 8.90 ± 0.91 c | 12.42 ± 0.87 c |
Treat | Sucrose Concentrations (%) | Boric Acid Concentrations (%) | Germination Rate (%) | Length of Pollen Tube (um) |
---|---|---|---|---|
1 | 0 | 0 | 0.00 ± 0.00 e | 0.00 ± 0.00 d |
2 | 0 | 0.005 | 27.89 ± 6.90 c | 77.36 ± 11.09 b |
3 | 0 | 0.01 | 58.23 ± 4.67 a | 93.4 ± 18.27 a |
4 | 0 | 0.015 | 33.26 ± 6.59 b | 88.91 ± 21.50 a |
5 | 5 | 0 | 5.05 ± 1.99 d | 66.16 ± 11.10 c |
6 | 5 | 0.005 | 1.93 ± 0.89 de | 68.76 ± 8.50 c |
7 | 5 | 0.01 | 7.38 ± 4.21 d | 76.05 ± 11.49 b |
8 | 5 | 0.015 | 0.00 ± 0.00 e | 0.00 ± 0.00 d |
9 | 10 | 0 | 0.00 ± 0.00 e | 0.00 ± 0.00 d |
10 | 10 | 0.005 | 0.00 ± 0.00 e | 0.00 ± 0.00 d |
11 | 10 | 0.01 | 3.58 ± 2.44 de | 66.97 ± 10.70 c |
12 | 10 | 0.015 | 5.74 ± 1.71 d | 63.39 ± 6.14 c |
13 | 15 | 0 | 0.00 ± 0.00 e | 0.00 ± 0.00 d |
14 | 15 | 0.005 | 0.00 ± 0.00 e | 0.00 ± 0.00 d |
15 | 15 | 0.01 | 0.00 ± 0.00 e | 0.00 ± 0.00 d |
16 | 15 | 0.015 | 2.74 ± 0.79 de | 81.35 ± 7.79 ab |
Treat | Boric Acid Concentrations (%) | Germination Rate (%) | Length of Pollen Tube (um) |
---|---|---|---|
1 | 0.006 | 30.05 ± 6.78 e | 82.04 ± 14.88 b |
2 | 0.008 | 34.50 ± 11.63 de | 87.04 ± 18.83 ab |
3 | 0.01 | 55.70 ± 9.99 b | 92.01 ± 11.23 a |
4 | 0.012 | 66.81 ± 12.16 a | 90.52 ± 18.18 ab |
5 | 0.014 | 47.81 ± 9.85 bcd | 93.65 ± 14.82 a |
6 | 0.016 | 55.30 ± 11.22 b | 93.51 ± 16.70 a |
7 | 0.018 | 51.62 ± 10.32 bc | 85.38 ± 24.00 b |
8 | 0.02 | 46.73 ± 12.37 bcd | 90.76 ± 13.29 ab |
9 | 0.022 | 43.59 ± 13.80 cd | 85.86 ± 17.37 ab |
10 | 0.024 | 38.46 ± 13.45 de | 89.67 ± 17.48 ab |
11 | 0.026 | 35.23 ± 11.57 de | 85.76 ± 15.34 ab |
12 | 0.028 | 32.43 ± 13.07 e | 82.55 ± 17.57 b |
13 | 0.03 | 16.64 ± 8.52 f | 90.27 ± 13.93 ab |
Germination Time (h) | Germination Rate (%) | Length of Pollen Tubes (um) |
---|---|---|
12 | 0.00 ± 0.00 d | 0.00 ± 0.00 d |
24 | 14.05 ± 1.69 c | 36.01 ± 6.12 c |
36 | 36.80 ± 3.55 b | 62.07 ± 5.11 b |
48 | 62.35 ± 11.61 a | 90.92 ± 11.91 a |
60 | 62.21 ± 8.83 a | 90.14 ± 11.52 a |
72 | 61.96 ± 9.84 a | 90.94 ± 17.12 a |
96 | 63.19 ± 16.22 a | 93.52 ± 14.65 a |
Determine Method | T. distichum var. distichum TD-4 | T. distichum var. distichum TD-5 | ||||
---|---|---|---|---|---|---|
One-Year | Two-Year | Three-Year | One-Year | Two-Year | Three-Year | |
TTC staining (%) | 97.78 ± 1.25 a | 98.96 ± 1.46 a | 83.67 ± 4.27 a | 80.54 ± 8.05 a | 91.67 ± 2.70 a | 21.75 ± 2.03 a |
In vitro germination (%) | 17.02 ± 3.19 b | 2.76 ± 1.32 b | 0.00 ± 0.00 b | 27.04 ± 6.20 b | 12.82 ± 5.38 b | 0.00 ± 0.00 b |
Hybrid Combination | Fruit Set (%) | Seed Germination Rate (%) |
---|---|---|
TM-A2 × TD-4 | 36.79 ± 3.08 a | 24.67 ± 3.46 c |
TM-A5 × TD-4 | 34.18 ± 2.32 a | 11.47 ± 2.29 d |
TM-B6 × TD-4 | 28.13 ± 1.52 b | 26.79 ± 4.58 c |
TM-A2 × TD-5 | 33.37 ± 1.97 a | 65.76 ± 3.80 a |
TM-A5 × TD-5 | 10.94 ± 1.48 d | 61.32 ± 5.49 ab |
TM-B6 × TD-5 | 20.65 ± 2.21 c | 56.12 ± 3.73 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Yin, M.; Creech, D.L.; Yu, C. Microsporogenesis, Pollen Ornamentation, Viability of Stored Taxodium distichum var. distichum Pollen and Its Feasibility for Cross Breeding. Forests 2022, 13, 694. https://doi.org/10.3390/f13050694
Wang Z, Yin M, Creech DL, Yu C. Microsporogenesis, Pollen Ornamentation, Viability of Stored Taxodium distichum var. distichum Pollen and Its Feasibility for Cross Breeding. Forests. 2022; 13(5):694. https://doi.org/10.3390/f13050694
Chicago/Turabian StyleWang, Ziyang, Ming Yin, David L. Creech, and Chaoguang Yu. 2022. "Microsporogenesis, Pollen Ornamentation, Viability of Stored Taxodium distichum var. distichum Pollen and Its Feasibility for Cross Breeding" Forests 13, no. 5: 694. https://doi.org/10.3390/f13050694
APA StyleWang, Z., Yin, M., Creech, D. L., & Yu, C. (2022). Microsporogenesis, Pollen Ornamentation, Viability of Stored Taxodium distichum var. distichum Pollen and Its Feasibility for Cross Breeding. Forests, 13(5), 694. https://doi.org/10.3390/f13050694