Characterizing Global Fire Regimes from Satellite-Derived Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Remote Sensing Products
- AFS (Figure A1) is a key parameter determining the fire regime, which has been related to fuel continuity and fuel flammability [3], but also includes indirect information on fire management practices (as an active fire suppression or control policy will derive in generally smaller patches). For computing AFS, the 2001–2020 FireCCI51 pixel product (at 250 m spatial resolution) was converted to burned patches using a modified version of the algorithm developed by Oom et al. [34], using a cut-off of 6 days as the temporal threshold below which two neighboring pixels are considered as belonging to the same fire patch. This allows capturing fires simultaneously ignited in various starting points but merging into one single final burned patch. All fire patches smaller than four pixels (approx. 25 ha) were discarded from the analysis as they are the ones having the highest commission/omission errors [35].
- AMBA (Figure A2) represents the total occurrence of fires within each grid and is also related to fuel continuity and flammability conditions, and was obtained as the mean value of the yearly BA in each grid cell.
- CVBA (Figure A3) is an indicator of interannual variability (or alternatively, the persistency) of fires in a particular area [10]. This variable has been used as a surrogate of fire return interval, and indicates the impact of both climate cycles and anthropogenic fire use on fire occurrence [26]. It is calculated for each grid cell as the standard deviation of the yearly BA divided by AMBA.
- FRP (Figure A5) was used as an indicator of the damage caused by fire. To obtain this metric, first the mean FRP of all MODIS hotspots (MCD14DL, Aqua and Terra) located within each burned patch (of the ones used to compute AFS) was calculated as described in Laurent et al. [36]. Then, a mean FRP value was obtained for each 0.25° grid cell as the average of the FRP of all fire patches within that cell for the whole study period. When no hotspot was observed in a fire patch, a NA value was assigned, and not considered in the mean FRP computation.
2.2. Classification of Global Fire Regimes
2.3. Relation of Fire Regimes to Fuel Distribution
3. Results
3.1. Identifying and Characterizing Fire Regimes
- FireReg1 is characterized by a short season length, the lowest total burned area, medium-low fire intensity and the smallest fire patches. This group also showed the second largest interannual variability.
- FireReg2 was found to have the longest fire season, medium-low burned area and medium size fire size, moderate intensity and moderate variability.
- FireReg3 had the shortest fire season with a low total burned area but caused by large fire events with the highest intensity. This group also showed the largest variability.
- FireReg4 showed a long fire season with large fire events and the highest value of mean burned area. However, this group had moderate intensity (the lowest of the four groups) and the least variability.
3.2. Relation of Fire Regimes to Fuels Distribution
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFS | Average Fire Size |
AMBA | Annual Mean Burned Area |
BA | Burned Area |
CC | Contingency Coefficient |
CVBA | Coefficient of Variation of the Burned Area |
#Months | Number of months with significant fire activity |
FireReg | Fire Regime |
FRP | Fire Radiative Power |
FT | Fuel Type |
HLZ | Holdridge Life Zones |
MODIS | Moderate Resolution Imaging Spectroradiometer |
SEAS | Sahel and Southeast Asia |
WWS | Within-cluster sum of square |
Appendix A
# | Reclassified | Correspondence to the Classes in Global Fuel Map |
---|---|---|
Biomes | ||
1 | Tropical moist forests | Tropical/Sub-tropical moist broadleaf forests, tropical/sub-tropical coniferous forests, mangroves |
2 | Tropical dry forests, shrublands and grasslands | Tropical/Sub-tropical dry broadleaf forests, tropical/sub-tropical grasslands, savannas and shrublands |
3 | Temperate forests | Temperate broadleaf and mixed forests, temperate coniferous forests |
4 | Temperate shrublands and grasslands | Temperate grasslands, savannas and shrublands |
5 | Boreal forests and tundra | Boreal forests/taiga, tundra |
6 | Mediterranean forests and woodlands | Mediterranean forests, woodlands and scrub |
7 | Desert and xeric shrublands | Desert and xeric shrublands |
Land Cover | ||
1 | Crops and mosaics with crops | Cropland, mosaic cropland (50–70%)/vegetation (20–50%), mosaic vegetation (50–70%)/cropland (20–50%) |
2 | Forests and mosaics with preponderance of forest | Broadleaved evergreen or semi-deciduous forest, broadleaved deciduous forest, needleleaved evergreen forest, needleleaved deciduous forest, broadleaved/needleleaved evergreen mixed forest, broadleaved/needleleaved deciduous mixed forest, mosaic forest-shrubland (50–70%)/grassland (20–50%), broadleaved forest regularly flooded (fresh-brackish water), broadleaved forest-shrubland permanently flooded (saline water) |
3 | Shrubland and mosaics with preponderance of low vegetation | Mosaic grassland (50–70%)/Forest-shrubland (20–50%), shrubland |
4 | Grassland and sparse vegetation | Grassland, sparse vegetation, grassland/shrubland regularly flooded |
Appendix B
FireReg1 | FireReg2 | FireReg3 | FireReg4 | Total | Percentage of the Total Burned Cells | |
---|---|---|---|---|---|---|
FT1 | 1581 | 2812 | 443 | 992 | 5828 | 6.04 |
FT2 | 2590 | 4391 | 664 | 1738 | 9383 | 9.72 |
FT3 | 198 | 408 | 85 | 359 | 1050 | 1.09 |
FT4 | 47 | 149 | 14 | 170 | 380 | 0.39 |
FT5 | 945 | 3326 | 389 | 3298 | 7958 | 8.24 |
FT6 | 443 | 1805 | 204 | 6902 | 9354 | 9.69 |
FT7 | 174 | 1112 | 120 | 5079 | 6485 | 6.72 |
FT8 | 201 | 1007 | 537 | 1326 | 3071 | 3.18 |
FT9 | 1565 | 2769 | 535 | 858 | 5727 | 5.93 |
FT10 | 3135 | 3214 | 1540 | 562 | 8451 | 8.75 |
FT11 | 50 | 89 | 48 | 12 | 199 | 0.21 |
FT12 | 230 | 229 | 121 | 53 | 633 | 0.66 |
FT13 | 1089 | 3482 | 571 | 1539 | 6681 | 6.92 |
FT14 | 461 | 568 | 227 | 112 | 1368 | 1.42 |
FT15 | 319 | 457 | 307 | 17 | 1100 | 1.14 |
FT16 | 644 | 1253 | 413 | 466 | 2776 | 2.88 |
FT17 | 4567 | 1612 | 6452 | 70 | 12,701 | 13.16 |
FT18 | 17 | 2 | 45 | 0 | 64 | 0.07 |
FT19 | 442 | 85 | 476 | 3 | 1006 | 1.04 |
FT20 | 514 | 664 | 265 | 97 | 1540 | 1.60 |
FT21 | 168 | 293 | 331 | 24 | 816 | 0.85 |
FT22 | 46 | 76 | 39 | 6 | 167 | 0.17 |
FT23 | 142 | 134 | 107 | 5 | 388 | 0.40 |
FT24 | 615 | 892 | 306 | 169 | 1982 | 2.05 |
FT25 | 76 | 76 | 105 | 12 | 269 | 0.28 |
FT26 | 420 | 389 | 448 | 92 | 1349 | 1.40 |
FT27 | 483 | 2473 | 1954 | 898 | 5808 | 6.02 |
Total Burned Cells | 96,534 |
Appendix C
FireReg1 | FireReg2 | FireReg3 | FireReg4 | FireReg5 | |
---|---|---|---|---|---|
# Months | 2.33 (0.71) | 4.25 (0.90) | 2.49 (0.58) | 1.76 (0.65) | 2.92 (0.76) |
AFS (km2) | 2.04 (1.61) | 7.44 (25.26) | 8.86 (31.22) | 15.86 (67.54) | 15.63 (80.52) |
AMBA (ha) | 0.82 (0.86) | 18.54 (27.80) | 14.21 (16.30) | 6.29 (8.05) | 190.17 (18.00) |
FRP (MW) | 23.00 (36.37) | 28.16 (22.94) | 27.78 (23.84) | 44.08 (57.49) | 2053 (10.87) |
CVBA | 2.62 (0.47) | 1.40 (0.48) | 1.55 (0.44) | 3.39 (0.47) | 0.56 (0.31) |
References
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481. [Google Scholar] [CrossRef] [PubMed]
- Fernández-García, V.; Quintano, C.; Taboada, A.; Marcos, E.; Calvo, L.; Fernández-Manso, A. Remote Sensing Applied to the Study of Fire Regime Attributes and Their Influence on Post-Fire Greenness Recovery in Pine Ecosystems. Remote Sens. 2018, 10, 733. [Google Scholar] [CrossRef] [Green Version]
- Archibald, S.; Lehmann, C.E.R.; Gómez-Dans, J.L.; Bradstock, R.A. Defining pyromes and global syndromes of fire regimes. Proc. Natl. Acad. Sci. USA 2013, 110, 6442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, P.; Hardy, C.C.; Swetnam, T.W.; Rollins, M.G.; Long, D.G. Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns. Int. J. Wildland Fire 2001, 10, 329–342. [Google Scholar] [CrossRef] [Green Version]
- Conedera, M.; Tinner, W.; Neff, C.; Meurer, M.; Dickens, A.F.; Krebs, P. Reconstructing past fire regimes: Methods, applications, and relevance to fire management and conservation. Quat. Sci. Rev. 2009, 28, 555–576. [Google Scholar] [CrossRef]
- Forkel, M.; Dorigo, W.; Lasslop, G.; Chuvieco, E.; Hantson, S.; Heil, A.; Teubner, I.; Thonicke, K.; Harrison, S.P. Recent global and regional trends in burned area and their compensating environmental controls. Environ. Res. Commun. 2019, 1, 051005. [Google Scholar] [CrossRef]
- Moreno, M.V.; Conedera, M.; Chuvieco, E.; Pezzatti, G.B. Fire regime changes and major driving forces in Spain from 1968 to 2010. Environ. Sci. Policy 2014, 37, 11–22. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Moritz, M.A.; Parisien, M.-A.; Van Dorn, J.; Hayhoe, K. Global Pyrogeography: The Current and Future Distribution of Wildfire. PLoS ONE 2009, 4, e5102. [Google Scholar] [CrossRef]
- Artés, T.; Oom, D.; de Rigo, D.; Durrant, T.H.; Maianti, P.; Libertà, G.; San-Miguel-Ayanz, J. A global wildfire dataset for the analysis of fire regimes and fire behaviour. Sci. Data 2019, 6, 296. [Google Scholar] [CrossRef]
- Chuvieco, E.; Giglio, L.; Justice, C. Global characterization of fire activity: Toward defining fire regimes from Earth observation data. Glob. Chang. Biol. 2008, 14, 1488–1502. [Google Scholar] [CrossRef]
- Pechony, O.; Shindell, D.T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl. Acad. Sci. USA 2010, 107, 19167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zubkova, M.; Boschetti, L.; Abatzoglou, J.T.; Giglio, L. Changes in Fire Activity in Africa from 2002 to 2016 and Their Potential Drivers. Geophys. Res. Lett. 2019, 46, 7643–7653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloster, S.; Mahowald, N.M.; Randerson, J.T.; Lawrence, P.J. The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN. Biogeosciences 2012, 9, 509–525. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; et al. The human dimension of fire regimes on Earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef] [Green Version]
- Marlon, J.R.; Bartlein, P.J.; Carcaillet, C.; Gavin, D.G.; Harrison, S.P.; Higuera, P.E.; Joos, F.; Power, M.J.; Prentice, I.C. Climate and human influences on global biomass burning over the past two millennia. Nat. Geosci. 2008, 1, 697–702. [Google Scholar] [CrossRef]
- Wang, Z.; Chappellaz, J.; Park, K.; Mak, J.E. Large Variations in Southern Hemisphere Biomass Burning During the Last 650 Years. Science 2010, 330, 1663–1666. [Google Scholar] [CrossRef] [Green Version]
- Chuvieco, E. Fundamentals of Satellite Remote Sensing: An Environmental Approach, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Archibald, S.; Scholes, R.J.; Roy, D.P.; Roberts, G.; Boschetti, L. Southern African fire regimes as revealed by remote sensing. Int. J. Wildland Fire 2010, 19, 861–878. [Google Scholar] [CrossRef] [Green Version]
- Dwomoh, F.K.; Wimberly, M.C. Fire Regimes and Their Drivers in the Upper Guinean Region of West Africa. Remote Sens. 2017, 9, 1117. [Google Scholar] [CrossRef] [Green Version]
- Rollins, M.G.; Keane, R.E.; Parsons, R.A. Mapping fuels and fire regimes using remote sensing, ecosystem simulation, and gradient modelling. Ecol. Appl. 2004, 14, 75–95. [Google Scholar] [CrossRef] [Green Version]
- Sukhinin, A.I.; French, N.H.F.; Kasischke, E.S.; Hewson, J.H.; Soja, A.J.; Csiszar, I.A.; Hyer, E.J.; Loboda, T.; Conrad, S.G.; Romasko, V.I.; et al. AVHRR-based mapping of fires in Russia: New products for fire management and carbon cycle studies. Remote Sens. Environ. 2004, 93, 546–564. [Google Scholar] [CrossRef]
- Balch, J.K.; St. Denis, L.A.; Mahood, A.L.; Mietkiewicz, N.P.; Williams, T.M.; McGlinchy, J.; Cook, M.C. FIRED (Fire Events Delineation): An Open, Flexible Algorithm and Database of US Fire Events Derived from the MODIS Burned Area Product (2001–2019). Remote Sens. 2020, 12, 3498. [Google Scholar] [CrossRef]
- Carmona-Moreno, C.; Belward, A.; Malingreau, J.-P.; Hartley, A.; Garcia-Alegre, M.; Antonovskiy, M.; Buchshtaber, V.; Pivovarov, V. Characterizing interannual variations in global fire calendar using data from Earth observing satellites. Glob. Chang. Biol. 2005, 11, 1537–1555. [Google Scholar] [CrossRef]
- Riaño, D.; Moreno Ruiz, J.A.; Isidoro, D.; Ustin, S.L. Global spatial patterns and temporal trends of burned area between 1981 and 2000 using NOAA-NASA Pathfinder. Glob. Chang. Biol. 2007, 13, 40–50. [Google Scholar] [CrossRef]
- Hantson, S.; Lasslop, G.; Kloster, S.; Chuvieco, E. Anthropogenic effects on global mean fire size. Int. J. Wildland Fire 2015, 24, 589–596. [Google Scholar] [CrossRef]
- Chuvieco, E.; Pettinari, M.L.; Koutsias, N.; Forkel, M.; Hantson, S.; Turco, M. Human and climate drivers of global biomass burning variability. Sci. Total Environ. 2021, 779, 146361. [Google Scholar] [CrossRef] [PubMed]
- Padilla, M.; Stehman, S.V.; Chuvieco, E. Validation of the 2008 MODIS-MCD45 global burned area product using stratified random sampling. Remote Sens. Environ. 2014, 144, 187–196. [Google Scholar] [CrossRef]
- Ramo, R.; Roteta, E.; Bistinas, I.; van Wees, D.; Bastarrika, A.; Chuvieco, E.; van der Werf, G.R. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proc. Natl. Acad. Sci. USA 2021, 118, e2011160118. [Google Scholar] [CrossRef]
- Andela, N.; Morton, D.C.; Giglio, L.; Paugam, R.; Chen, Y.; Hantson, S.; van der Werf, G.R.; Randerson, J.T. The Global Fire Atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data 2019, 11, 529–552. [Google Scholar] [CrossRef] [Green Version]
- Laurent, P.; Mouillot, F.; Yue, C.; Ciais, P.; Moreno, M.V.; Nogueira, J.M.P. FRY, a global database of fire patch functional traits derived from space-borne burned area products. Sci. Data 2018, 5, 180132. [Google Scholar] [CrossRef] [Green Version]
- Moreno, M.V.; Laurent, P.; Mouillot, F. Global intercomparison of functional pyrodiversity from two satellite sensors. Int. J. Remote Sens. 2021, 42, 9523–9541. [Google Scholar] [CrossRef]
- Wooster, M.J.; Roberts, G.; Perry, G.L.W.; Kaufman, Y.J. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res. Atmos. 2005, 110, D24311. [Google Scholar] [CrossRef]
- Lizundia-Loiola, J.; Otón, G.; Ramo, R.; Chuvieco, E. A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data. Remote Sens. Environ. 2020, 236, 111493. [Google Scholar] [CrossRef]
- Oom, D.; Silva, P.C.; Bistinas, I.; Pereira, J.M.C. Highlighting Biome-Specific Sensitivity of Fire Size Distributions to Time-Gap Parameter Using a New Algorithm for Fire Event Individuation. Remote Sens. 2016, 8, 663. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, J.M.P.; Ruffault, J.; Chuvieco, E.; Mouillot, F. Can We Go Beyond Burned Area in the Assessment of Global Remote Sensing Products with Fire Patch Metrics? Remote Sens. 2017, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Laurent, P.; Mouillot, F.; Moreno, M.V.; Yue, C.; Ciais, P. Varying relationships between fire radiative power and fire size at a global scale. Biogeosciences 2019, 16, 275–288. [Google Scholar] [CrossRef] [Green Version]
- Steinley, D. K-means clustering: A half-century synthesis. Br. J. Math. Stat. Psychol. 2006, 59, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Campello, R.J.G.B.; Hruschka, E.R. A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets Syst. 2006, 157, 2858–2875. [Google Scholar] [CrossRef]
- Kodinariya, T.M.; Makwana, P.R. Review on determining number of Cluster in K-Means Clustering. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 2013, 1, 90–95. [Google Scholar]
- Bholowalia, P.; Kumar, A. EBK-Means: A Clustering Technique based on Elbow Method and K-Means in WSN. Int. J. Comput. Appl. 2014, 105, 17–24. [Google Scholar]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; J. Wiley & Son: New York, NY, USA, 1990. [Google Scholar]
- Pettinari, M.L.; Chuvieco, E. Generation of a global fuel data set using the Fuel Characteristic Classification System. Biogeosciences 2016, 13, 2061–2076. [Google Scholar] [CrossRef] [Green Version]
- Healey, J.F. Statistics: A Tool for Social Research; Wadsworth Pub. Co.: Belmont, CA, USA, 1993. [Google Scholar]
- Thonicke, K.; Venevsky, S.; Sitch, S.; Cramer, W. The role of fire disturbance for global vegetation dynamics: Coupling fire into a Dynamic Global Vegetation Model. Glob. Ecol. Biogeogr. 2001, 10, 661–677. [Google Scholar] [CrossRef] [Green Version]
- Strauss, D.; Bednar, L.; Mees, R. Do one percent of forest fires cause ninety-nine percent of the damage? For. Sci. 1989, 35, 319–328. [Google Scholar]
- Johnson, E.A.; Miyanishi, K.; Bridge, S.R.J. Wildfire Regime in the Boreal Forest and the Idea of Suppression and Fuel Buildup. Conserv. Biol. 2001, 15, 1554–1557. [Google Scholar] [CrossRef]
- Pyne, S.J.; Andrews, P.L.; Laven, R.D. Introduction to Wildland Fire; Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Harrison, S.P.; Prentice, I.C.; Bloomfield, K.J.; Dong, N.; Forkel, M.; Forrest, M.; Ningthoujam, R.K.; Pellegrini, A.; Shen, Y.; Baudena, M.; et al. Understanding and modelling wildfire regimes: An ecological perspective. Environ. Res. Lett. 2021, 16, 125008. [Google Scholar] [CrossRef]
- Pivello, V.R. The Use of Fire in the Cerrado and Amazonian Rainforests of Brazil: Past and Present. Fire Ecol. 2011, 7, 24–39. [Google Scholar] [CrossRef]
- Hoffmann, W.A.; Orthen, B.; Nascimento, P.K.V.d. Comparative fire ecology of tropical savanna and forest trees. Funct. Ecol. 2003, 17, 720–726. [Google Scholar] [CrossRef]
- Simon, M.F.; Pennington, T. Evidence for Adaptation to Fire Regimes in the Tropical Savannas of the Brazilian Cerrado. Int. J. Plant Sci. 2012, 173, 711–723. [Google Scholar] [CrossRef]
- Rosan, T.M.; Sitch, S.; Mercado, L.M.; Heinrich, V.; Friedlingstein, P.; Aragão, L.E.O.C. Fragmentation-Driven Divergent Trends in Burned Area in Amazonia and Cerrado. Front. For. Glob. Chang. 2022, 5, 801408. [Google Scholar] [CrossRef]
- Xu, J.; Morris, P.J.; Liu, J.; Holden, J. PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. Catena 2018, 160, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Turetsky, M.R.; Benscoter, B.; Page, S.; Rein, G.; van der Werf, G.R.; Watts, A. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 2015, 8, 11–14. [Google Scholar] [CrossRef]
- Hantson, S.; Pueyo, S.; Chuvieco, E. Global fire size distribution is driven by human impact and climate. Glob. Ecol. Biogeogr. 2015, 24, 77–86. [Google Scholar] [CrossRef]
- Franquesa, M.; Lizundia-Loiola, J.; Stehman, S.V.; Chuvieco, E. Using long temporal reference units to assess the spatial accuracy of global satellite-derived burned area products. Remote Sens. Environ. 2022, 269, 112823. [Google Scholar] [CrossRef]
- Moreno, M.V.; Laurent, P.; Ciais, P.; Mouillot, F. Assessing satellite-derived fire patches with functional diversity trait methods. Remote Sens. Environ. 2020, 247, 111897. [Google Scholar] [CrossRef]
- Chuvieco, E.; Pettinari, M.L.; Roteta, E.; Storm, T.; Boettcher, M. ESA Fire Climate Change Initiative (Fire_cci): Small Fire Dataset (SFD) Burned Area Pixel Product for Sub-Saharan Africa, version 2.0. NERC EDS Centre for Environmental Data Analysis; Published on 16 August 2021. Available online: https://catalogue.ceda.ac.uk/uuid/4c5feb539f1f44308ca7ec26e0bb7316 (accessed on 23 April 2022).
Fuel Type | Reclassified Biome | Reclassified Land Cover |
---|---|---|
FT1 | 1. Tropical moist forests | 1. Crops and mosaics with crops |
FT2 | 2. Forests and mosaics with preponderance of forest | |
FT3 | 3. Shrubland and mosaics with preponderance of low vegetation | |
FT4 | 4. Grassland and sparse vegetation | |
FT5 | 2. Tropical dry forests, shrublands and grasslands | 1. Crops and mosaics with crops |
FT6 | 2. Forests and mosaics with preponderance of forest | |
FT7 | 3. Shrubland and mosaics with preponderance of low vegetation | |
FT8 | 4. Grassland and sparse vegetation | |
FT9 | 3. Temperate forests | 1. Crops and mosaics with crops |
FT10 | 2. Forests and mosaics with preponderance of forest | |
FT11 | 3. Shrubland and mosaics with preponderance of low vegetation | |
FT12 | 4. Grassland and sparse vegetation | |
FT13 | 4. Temperate shrublands and grasslands | 1. Crops and mosaics with crops |
FT14 | 2. Forests and mosaics with preponderance of forest | |
FT15 | 3. Shrubland and mosaics with preponderance of low vegetation | |
FT16 | 4. Grassland and sparse vegetation | |
FT17 | 5. Boreal forests and tundra | 1. Forests and mosaics with preponderance of forest |
FT18 | 2. Shrubland and mosaics with preponderance of low vegetation | |
FT19 | 3. Grassland and sparse vegetation | |
FT20 | 6. Mediterranean forests and woodlands | 1. Crops and mosaics with crops |
FT21 | 2. Forests and mosaics with preponderance of forest | |
FT22 | 3. Shrubland and mosaics with preponderance of low vegetation | |
FT23 | 4. Grassland and sparse vegetation | |
FT24 | 7. Desert and xeric shrublands | 1. Crops and mosaics with crops |
FT25 | 2. Forests and mosaics with preponderance of forest | |
FT26 | 3. Shrubland and mosaics with preponderance of low vegetation | |
FT27 | 4. Grassland and sparse vegetation |
FireReg1 | FireReg2 | FireReg3 | FireReg4 | |
---|---|---|---|---|
# Months | 2.26 (0.72) | 3.02 (0.90) | 1.77 (0.66) | 3.00 (0.88) |
AFS (km2) | 2.04 (1.59) | 6.54 (16.79) | 17.4 (70.68) | 15.84 (76.72) |
AMBA (km2) | 0.82 (0.86) | 11.48 (12.65) | 7.29 (9.25) | 162.95 (151.41) |
FRP (MW) | 22.89 (36.50) | 27.62 (23.28) | 45.10 (57.47) | 21.65 (12.46) |
CVBA | 2.66 (0.49) | 1.56 (0.42) | 3.33 (0.52) | 0.65 (0.36) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, M.; Pettinari, M.L.; Chuvieco, E.; Salas, J.; Mouillot, F.; Chen, W.; Aguado, I. Characterizing Global Fire Regimes from Satellite-Derived Products. Forests 2022, 13, 699. https://doi.org/10.3390/f13050699
García M, Pettinari ML, Chuvieco E, Salas J, Mouillot F, Chen W, Aguado I. Characterizing Global Fire Regimes from Satellite-Derived Products. Forests. 2022; 13(5):699. https://doi.org/10.3390/f13050699
Chicago/Turabian StyleGarcía, Mariano, M. Lucrecia Pettinari, Emilio Chuvieco, Javier Salas, Florent Mouillot, Wentao Chen, and Inmaculada Aguado. 2022. "Characterizing Global Fire Regimes from Satellite-Derived Products" Forests 13, no. 5: 699. https://doi.org/10.3390/f13050699
APA StyleGarcía, M., Pettinari, M. L., Chuvieco, E., Salas, J., Mouillot, F., Chen, W., & Aguado, I. (2022). Characterizing Global Fire Regimes from Satellite-Derived Products. Forests, 13(5), 699. https://doi.org/10.3390/f13050699