The Carbon Neutral Potential of Forests in the Yangtze River Economic Belt of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Forecast of Forest Area in the Future
2.4. Model Development, Validation, and Prediction
2.4.1. Random Forest Algorithm
2.4.2. Model Validation
2.4.3. Prediction of Forest Volume Growth and Loss
2.5. Estimation of Forest Biomass Carbon Storage and Annual Carbon Sink
3. Results
3.1. Forest Biomass C Storage in the YREB
3.2. Forest Biomass C Density in the YREB
3.3. Forest Biomass C Sink in the YREB
4. Discussion
4.1. Forest Biomass C Sink Potential in the YREB
4.2. Differences in the Forest Biomass C Sink Potential Amongst Regions
4.3. Uncertainty and Limitation of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Province | National Forest Inventory | |||
---|---|---|---|---|
6th (1999–2003) | 7th (2004–2008) | 8th (2009–2013) | 9th (2014–2018) | |
Shanghai | 0.02 | 0.06 | 0.07 | 0.09 |
Jiangsu | 0.77 | 1.08 | 1.62 | 1.56 |
Zhejiang | 5.54 | 5.84 | 6.01 | 6.05 |
Anhui | 3.32 | 3.60 | 3.80 | 3.96 |
Jiangxi | 9.31 | 9.74 | 10.02 | 10.21 |
Hubei | 4.98 | 5.79 | 7.14 | 7.36 |
Hunan | 8.61 | 9.48 | 10.12 | 10.53 |
Chongqing | 1.83 | 2.87 | 3.16 | 3.55 |
Sichuan | 14.64 | 16.60 | 17.04 | 18.40 |
Guizhou | 4.20 | 5.57 | 6.53 | 7.71 |
Yunnan | 15.60 | 18.18 | 19.14 | 21.06 |
Total | 68.83 | 78.80 | 84.66 | 90.48 |
Type | Variable | Mean | SD | Min. | Max. | Type | Variable | Mean | SD | Min. | Max. |
---|---|---|---|---|---|---|---|---|---|---|---|
Stand characteristics | Stand age (yr) | 31.10 | 34.86 | 0.00 | 300.00 | Climatic factors | Bio1 (°C) | 16.33 | 2.35 | 3.50 | 20.32 |
Volume gross growth (m3·ha·yr−1) | 4.97 | 3.18 | 0.00 | 16.00 | Bio2 (°C) | 9.70 | 2.28 | 4.77 | 19.18 | ||
mortality (m3·hm−2·yr−1) | 1.88 | 2.60 | 0.00 | 9.68 | Bio3 (°C) | 31.20 | 2.62 | 21.59 | 34.38 | ||
Dominant tree species | - | - | - | - | Bio4 (°C) | 1.79 | 3.26 | −15.22 | 9.57 | ||
Topography | Altitude (m) | 1082.28 | 1063.87 | 0.00 | 5000.00 | Bio5 (°C) | 29.21 | 3.55 | 14.82 | 35.69 | |
Slope direction | - | - | - | - | Bio6(°C) | 23.54 | 2.57 | 11.61 | 26.42 | ||
Slope position | - | - | - | - | Bio7 (°C) | 12.21 | 2.62 | −1.48 | 17.88 | ||
Gradient (°) | 24.54 | 12.13 | 0.00 | 80.00 | Bio8 (°C) | 24.91 | 3.10 | 12.06 | 28.24 | ||
Soil variables | Soil thickness (cm) | 59.82 | 23.04 | 1.00 | 300.00 | Bio9 (°C) | 6.82 | 2.93 | −5.66 | 14.96 | |
AN (mg·kg−1) | 133.63 | 71.33 | 18.48 | 640.75 | Bio10 (°C) | 1223.88 | 311.47 | 556.41 | 1919.96 | ||
AP (mg·kg−1) | 5.28 | 3.00 | 0.93 | 44.29 | Bio11 (mm) | 231.13 | 46.40 | 109.78 | 376.93 | ||
AK (mg·kg−1) | 122.99 | 57.35 | 22.28 | 377.47 | Bio12 (mm) | 27.16 | 19.79 | 0.93 | 64.91 | ||
BD (g·cm−3) | 1.22 | 0.15 | 0.47 | 1.45 | Bio13 (mm) | 538.85 | 117.33 | 256.26 | 814.22 | ||
PH | 5.83 | 1.01 | 4.30 | 9.32 | Bio14 (mm) | 152.45 | 50.33 | 35.98 | 247.20 | ||
GRAV (%) | 8.68 | 7.56 | 0.02 | 48.73 | Bio15 (mm) | 554.72 | 84.91 | 278.09 | 853.31 | ||
SOM (g·kg−1) | 3.86 | 2.58 | 0.39 | 33.26 | Bio16 (mm) | 112.58 | 84.00 | 1.29 | 300.99 |
Province | Forest Type | Periods | ||||
---|---|---|---|---|---|---|
2016–2020 | 2021–2030 | 2031–2040 | 2041–2050 | 2051–2060 | ||
Jiangsu | Arbor | 0.2 | 0.35 | 0.33 | 0.22 | 0 |
Zhejiang | Arbor | 6.27 | 11.35 | 10.38 | 6.9 | 0 |
Bamboo | 1.32 | 2.39 | 2.19 | 1.46 | 0 | |
Anhui | Arbor | 2.13 | 3.85 | 3.52 | 2.34 | 0 |
Bamboo | 0.27 | 0.49 | 0.45 | 0.29 | 0 | |
Jiangxi | Arbor | 5.77 | 10.44 | 9.54 | 6.35 | 0 |
Bamboo | 0.75 | 1.36 | 1.24 | 0.83 | 0 | |
Hubei | Arbor | 8.11 | 14.69 | 13.42 | 8.92 | 0 |
Bamboo | 0.24 | 0.43 | 0.39 | 0.26 | 0 | |
Hunan | Arbor | 13.05 | 23.62 | 21.6 | 14.36 | 0 |
Bamboo | 1.34 | 2.43 | 2.22 | 1.48 | 0 | |
Sichuan | Arbor | 56.02 | 101.43 | 92.7 | 61.67 | 0 |
Shrub | 0.01 | 0.02 | 0.02 | 0.01 | 0 | |
Bamboo | 2.49 | 4.51 | 4.13 | 2.74 | 0 | |
Guizhou | Arbor | 33.19 | 60.09 | 54.92 | 36.54 | 0 |
Bamboo | 0.91 | 1.64 | 1.5 | 1 | 0 | |
Yunnan | Arbor | 62.21 | 112.62 | 102.94 | 68.48 | 0 |
Bamboo | 0.38 | 0.7 | 0.63 | 0.42 | 0 | |
Chongqing | Arbor | 5.94 | 10.76 | 9.83 | 6.54 | 0 |
Bamboo | 0.37 | 0.68 | 0.61 | 0.41 | 0 |
Origin | Dominant Species (Group) | Sample | Mtry | 10-Fold Cross-Validation Results | |||
---|---|---|---|---|---|---|---|
R2 | MAE | RMSE | rRMSE | ||||
Natural forest | Pinus massoniana | 2437 | 10 | 0.578 | 1.421 | 1.832 | 35.54% |
Pinus yunnanensis | 1061 | 15 | 0.754 | 0.809 | 1.294 | 45.78% | |
Pinus densata | 221 | 26 | 0.449 | 1.330 | 1.734 | 46.21% | |
Cunninghamia lanceolata | 561 | 4 | 0.370 | 2.014 | 2.579 | 50.37% | |
Cupressus | 388 | 20 | 0.650 | 0.464 | 0.663 | 54.48% | |
Quercus | 984 | 29 | 0.661 | 0.506 | 0.726 | 30.81% | |
Other hard broad leaf | 68 | 12 | 0.473 | 1.415 | 1.796 | 48.21% | |
Populus | 40 | 27 | 0.603 | 1.172 | 1.422 | 40.07% | |
Other soft broad leaf | 105 | 7 | 0.464 | 1.243 | 1.603 | 55.81% | |
Mixed coniferous | 362 | 16 | 0.684 | 1.350 | 1.913 | 39.23% | |
Mixed broad leaf forest | 2766 | 22 | 0.922 | 0.379 | 0.575 | 23.22% | |
Mixed coniferous and broad leaf forest | 766 | 4 | 0.529 | 1.371 | 1.738 | 35.03% | |
Planted forest | Picea | 67 | 23 | 0.528 | 1.671 | 2.101 | 51.71% |
Pinus armandi | 169 | 8 | 0.481 | 2.247 | 2.932 | 44.82% | |
Pinus massoniana | 768 | 8 | 0.432 | 1.919 | 2.584 | 46.17% | |
Pinus yunnanensis | 159 | 11 | 0.519 | 1.343 | 1.737 | 38.93% | |
Cunninghamia lanceolata | 1203 | 8 | 0.380 | 1.010 | 1.246 | 26.73% | |
Cryptomeria fortunei | 125 | 21 | 0.417 | 4.522 | 5.985 | 55.13% | |
Cupressus | 402 | 29 | 0.634 | 0.964 | 1.288 | 39.12% | |
Eucalyptus | 98 | 1 | 0.468 | 2.511 | 2.520 | 44.62% | |
Other hard broad leaf | 148 | 10 | 0.614 | 2.100 | 2.741 | 46.85% | |
Other soft broad leaf | 85 | 7 | 0.504 | 1.399 | 1.774 | 41.41% | |
Mixed coniferous | 152 | 11 | 0.688 | 1.487 | 1.876 | 35.50% | |
Mixed broad leaf forest | 73 | 7 | 0.655 | 1.146 | 1.413 | 38.99% | |
Mixed coniferous and broad leaf forest | 105 | 3 | 0.405 | 1.465 | 1.854 | 32.60% |
Actual Type | Predictive Type | |
---|---|---|
Mortality | Non-Mortality | |
Mortality | True positive | False negative |
Non-mortality | False positive | True negative |
Origin | Actual Type | Predictive Type | Error Rate/% | Model Results | ||||
---|---|---|---|---|---|---|---|---|
Mortality | Non-Mortality | R2 | MAE | RMSE | rRMSE | |||
Natural forest | Mortality | 6733 | 24 | 0.36% | 0.712 | 0.544 | 0.974 | 95.20% |
Non-mortality | 162 | 5235 | 3.00% | |||||
Planted forest | Mortality | 3974 | 193 | 4.63% | 0.763 | 0.870 | 1.407 | 84.77% |
Non-mortality | 32 | 1387 | 2.26% |
Dominant Species (Group) | Biomass Estimation Model B = (a·Vb)·λ | Carbon Fraction | ||||
---|---|---|---|---|---|---|
Sample Number | a | b | Correlation Coefficient R2 | Correction Coefficient λ | ||
Picea/Abies | 25 | 5.413 | 0.633 | 0.966 | 1.012 | 0.493 |
Pinus massoniana | 64 | 2.28 | 0.779 | 0.93 | 1.032 | 0.525 |
Cunninghamia lanceolata | 199 | 4.012 | 0.631 | 0.924 | 1.018 | 0.506 |
Cupressus | 26 | 6.711 | 0.569 | 0.758 | 1.04 | 0.51 |
Quercus | 18 | 1.682 | 0.918 | 0.978 | 1.007 | 0.48 |
Other hard broad leaf | 59 | 3.3 | 0.741 | 0.884 | 1.035 | 0.476 |
Populus | 19 | 1.703 | 0.803 | 0.884 | 1.027 | 0.491 |
Eucalyptus | 34 | 3.01 | 0.715 | 0.774 | 1.028 | 0.491 |
Other soft broad leaf | 32 | 4.366 | 0.688 | 0.846 | 1.055 | 0.491 |
Mixed coniferous | 11 | 6.699 | 0.538 | 0.808 | 1.012 | 0.502 |
Mixed broad leaf forest | 20 | 1.526 | 0.908 | 0.898 | 1.028 | 0.479 |
Mixed coniferous and broad leaf forest | 54 | 3.088 | 0.734 | 0.832 | 1.033 | 0.494 |
Type | Year | C Storage (Tg C) | C Density (Mg C hm−2) | ||||||
---|---|---|---|---|---|---|---|---|---|
Arbor | Shrub | Bamboo | Total | Arbor | Shrub | Bamboo | Total | ||
Existing forests | 2015 | 2739.54 | 159.76 | 153.97 | 3053.27 | 38.53 | 10.67 | 34.96 | 33.75 |
2020 | 3164.08 | 159.76 | 153.97 | 3477.81 | 44.49 | 10.67 | 34.96 | 38.44 | |
2030 | 3910.13 | 159.76 | 153.97 | 4223.86 | 54.54 | 10.67 | 34.96 | 46.69 | |
2040 | 4583.92 | 159.76 | 153.97 | 4897.65 | 63.69 | 10.67 | 34.96 | 54.13 | |
2050 | 5214.01 | 159.76 | 153.97 | 5527.74 | 72.35 | 10.67 | 34.96 | 61.10 | |
2060 | 5817.90 | 159.76 | 153.97 | 6131.63 | 80.68 | 10.67 | 34.96 | 67.77 | |
New afforestation forests | 2020 | 27.31 | 0.00 | 1.06 | 28.37 | 14.16 | 3.71 | 13.06 | 14.11 |
2030 | 128.77 | 0.00 | 6.37 | 135.14 | 23.75 | 7.95 | 28.01 | 23.92 | |
2040 | 273.50 | 0.01 | 11.15 | 284.65 | 31.75 | 8.76 | 30.87 | 31.72 | |
2050 | 438.96 | 0.01 | 15.14 | 454.10 | 40.89 | 9.54 | 33.62 | 40.59 | |
2060 | 574.30 | 0.01 | 15.68 | 589.99 | 53.49 | 9.88 | 34.83 | 52.74 | |
Total | 2015 | 2739.54 | 159.76 | 153.97 | 3053.27 | 38.53 | 10.67 | 34.96 | 33.75 |
2020 | 3191.39 | 159.76 | 155.03 | 3506.18 | 43.70 | 10.67 | 34.57 | 37.91 | |
2030 | 4038.90 | 159.76 | 160.34 | 4359.00 | 52.78 | 10.67 | 34.62 | 45.35 | |
2040 | 4857.42 | 159.77 | 165.12 | 5182.30 | 60.94 | 10.67 | 34.65 | 52.11 | |
2050 | 5652.97 | 159.77 | 169.11 | 5981.85 | 69.08 | 10.67 | 34.84 | 58.84 | |
2060 | 6392.19 | 159.77 | 169.66 | 6721.61 | 78.11 | 10.67 | 34.95 | 66.12 |
Appendix B
References
- Wu, P.; Li, Y.; Zheng, J.-J.; Hosono, N.; Otake, K.; Wang, J.; Liu, Y.; Xia, L.; Jiang, M.; Sakaki, S.; et al. Carbon dioxide capture and efficient fixation in a dynamic porous coordination polymer. Nat. Commun. 2019, 10, 4362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Roe, S.; Streck, C.; Beach, R.; Busch, J.; Chapman, M.; Daioglou, V.; Deppermann, A.; Doelman, J.; Emmet-Booth, J.; Engelmann, J. Land-based measures to mitigate climate change: Potential and feasibility by country. Glob. Chang. Biol. 2021, 27, 6025–6058. [Google Scholar] [CrossRef] [PubMed]
- Brienen, R.J.W.; Caldwell, L.; Duchesne, L.; Voelker, S.; Barichivich, J.; Baliva, M.; Ceccantini, G.; Di Filippo, A.; Helama, S.; Locosselli, G.M.; et al. Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nat. Commun. 2020, 11, 4241. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; Chang, S.X.; et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef]
- State Forestry and Grassland Administration of China. Report of Forest Resources in China (2014–2018); China Forestry Publishing House: Beijing, China, 2019. (In Chinese)
- He, N.; Wen, D.; Zhu, J.; Tang, X.; Xu, L.; Zhang, L.; Hu, H.; Huang, M.; Yu, G. Vegetation carbon sequestration in Chinese forests from 2010 to 2050. Glob. Chang. Biol. 2017, 23, 1575–1584. [Google Scholar] [CrossRef]
- Tang, X.; Zhao, X.; Bai, Y.; Tang, Z.; Wang, W.; Zhao, Y.; Wan, H.; Xie, Z.; Shi, X.; Wu, B.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Feng, Z.; Zhu, Y. Estimation of forest biomass and carbon storage in China based on Forest Resources Inventory Data. Forests 2019, 10, 650. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Z.; Feng, Z.; Song, Y.; Li, M.; Zhang, P. Carbon sequestration potential of forest vegetation in China from 2003 to 2050: Predicting forest vegetation growth based on climate and the environment. J. Clean. Prod. 2020, 252, 119715. [Google Scholar] [CrossRef]
- Fernández-Martínez, M.; Vicca, S.; Janssens, I.; Sardans, J.; Luyssaert, S.; Campioli, M.; Iii, F.S.C.; Ciais, P.; Malhi, Y.; Obersteiner, M.; et al. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Chang. 2014, 4, 471–476. [Google Scholar] [CrossRef] [Green Version]
- Doelman, J.C.; Stehfest, E.; van Vuuren, D.P.; Tabeau, A.; Hof, A.F.; Braakhekke, M.C.; Gernaat, D.E.H.J.; Berg, M.V.D.; van Zeist, W.; Daioglou, V.; et al. Afforestation for climate change mitigation: Potentials, risks and trade-offs. Glob. Chang. Biol. 2019, 26, 1576–1591. [Google Scholar] [CrossRef] [PubMed]
- Xi, W.; Wang, F.; Shi, P.; Dai, E.; Anoruo, A.O.; Bi, H.; Rahmlow, A.; He, B.; Li, W. Challenges to sustainable development in China: A review of six large-scale forest restoration and land conservation programs. J. Sustain. For. 2014, 33, 435–453. [Google Scholar] [CrossRef]
- Lu, F.; Hu, H.; Sun, W.; Zhu, J.; Liu, G.; Zhou, W.; Zhang, Q.; Shi, P.; Liu, X.; Wu, X.; et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Wang, J.; Feng, L.; Palmer, P.I.; Liu, Y.; Fang, S.; Bösch, H.; O’Dell, C.W.; Tang, X.; Yang, D.; Liu, L.; et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature 2020, 586, 720–723. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, S.; Huang, D.; Li, B.-L.; Liu, J.; Liu, W.; Ma, J.; Wang, F.; Wang, Y.; Wu, S.; et al. The development of China’s Yangtze River Economic Belt: How to make it in a green way? Sci. Bull. 2017, 62, 648–651. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Bing, Z.; Jin, G. Spatially Explicit Mapping of Soil Conservation Service in Monetary Units Due to Land Use/Cover Change for the Three Gorges Reservoir Area, China. Remote Sens. 2019, 11, 468. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Chen, Z.; Piao, S.; Peng, C.; Ciais, P.; Wang, Q.; Li, X.; Zhu, X. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc. Natl. Acad. Sci. USA 2014, 111, 4910–4915. [Google Scholar] [CrossRef] [Green Version]
- Gu, F.; Zhang, Y.; Huang, M.; Yu, L.; Yan, H.; Guo, R.; Zhang, L.; Zhong, X.; Yan, C. Climate-induced increase in terrestrial carbon storage in the Yangtze River Economic Belt. Ecol. Evol. 2021, 11, 7211–7225. [Google Scholar] [CrossRef] [PubMed]
- Shangguan, W.; Dai, Y.; Liu, B.; Zhu, A.; Duan, Q.; Wu, L.; Ji, D.; Ye, A.; Yuan, H.; Zhang, Q.; et al. A China data set of soil properties for land surface modeling. J. Adv. Model. Earth Syst. 2013, 5, 212–224. [Google Scholar] [CrossRef]
- Hengl, T.; de Jesus, J.M.; MacMillan, R.A.; Batjes, N.H.; Heuvelink, G.B.M.; Ribeiro, E.; Samuel-Rosa, A.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; et al. SoilGrids1km—Global Soil Information Based on Automated Mapping. PLoS ONE 2014, 9, e105992. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.; Van Der Velde, R.; Su, Z.; Wang, X.; Wen, J.; Booij, M.J.; Hoekstra, A.; Chen, Y. Augmentations to the Noah Model Physics for Application to the Yellow River Source Area. Part I: Soil Water Flow. J. Hydrometeorol. 2015, 16, 2659–2676. [Google Scholar] [CrossRef]
- Ahrends, A.; Hollingsworth, P.; Beckschäfer, P.; Mingcheng, W.; Zomer, R.J.; Zhang, L.; Wang, M.; Xu, J. China’s fight to halt tree cover loss. Proc. R. Soc. B Boil. Sci. 2017, 284, 20162559. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.M.; Iverson, L.R.; Liaw, A. Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction. Ecosystems 2006, 9, 181–199. [Google Scholar] [CrossRef]
- Zhou, Z.H. Machine Learning; Tsinghua University Press: Beijing, China, 2016. (In Chinese) [Google Scholar]
- Ou, Q.X.; Lei, X.D.; Shen, C.C. Individual Tree Diameter Growth Models of Larch-Spruce-Fir Mixed Forests Based on Machine Learning Algorithms. Forests 2019, 10, 187. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013. [Google Scholar]
- Li, W.H.; Chen, H.; Guo, K.; Guo, S.; Han, J.; Chen, Y. Research on electrical load prediction based on random forest algorithm. Comput. Appl. Eng. Educ. 2016, 52, 236–243. [Google Scholar]
- Guo, Y.J.; Liu, X.Y.; Guo, M.Z. Identification of Plant Resistance Gene with Random Forest. Comput. Sci. Explor. 2012, 6, 67–77. (In Chinese) [Google Scholar]
- Yu, Z.; Wang, M.; Huang, Z.; Lin, T.-C.; Vadeboncoeur, M.A.; Searle, E.B.; Chen, H.Y.H. Temporal changes in soil -C-N-P stoichiometry over the past 60 years across subtropical China. Glob. Chang. Biol. 2018, 24, 1308–1320. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.J.; Zhang, X.Q.; Wang, X.K.; Zhu, J.H.; Hou, Z.H.; Zhang, Z.J. Forest Biomass Estimation Methods and Their Prospects. Sci. Silvae Sin. 2009, 45, 129–134. [Google Scholar]
- Fu, D.F. Shrubwood Carbon Reserve Estimation in Tibet Autonomous Region. ACS Cent. Sci. 2014, 4, 4–7. [Google Scholar]
- Guo, Z.; Hu, H.; Li, P.; Li, N.Y.; Fang, J.Y. Spatio-temporal changes in biomass carbon sinks in China’s forests during 1977–2008. Sci. China Life Sci. 2013, 43, 1674–7232. [Google Scholar]
- Zhou, N.; Lu, H.; Khanna, N. China Energy Outlook: Understanding China’s Energy and Emissions Trends; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2020. [Google Scholar]
- Jandl, R.; Neumann, M.; Eckmullner, O. Productivity increase in northern austria norway spruce forests due to changes in nitrogen cycling and climate. J. Plant Nutr. Soil Sci. 2007, 170, 157–165. [Google Scholar] [CrossRef]
- Xu, E.Y.; Wang, W.F.; Nie, Y.; Yang, H.Q. Regional distribution and potential forecast of China’ s forestry carbon contributions. China Popul. Resour. Environ. 2020, 30, 36–45. (In Chinese) [Google Scholar]
- Tao, B.; Cao, M.K.; Li, K.R.; Gu, F.; Ji, J.; Huang, M.; Zhang, L. Spatial patterns of terrestrial net ecosystem productivity in China during 1981–2000. Sci. China Ser. D Earth Sci. 2007, 50, 745–753. [Google Scholar] [CrossRef]
- Sun, X.; Wang, G.; Huang, M.; Chang, R.; Ran, F. Forest biomass carbon stocks and variation in Tibet’s carbon-dense forests from 2001 to 2050. Sci. Rep. 2016, 6, 34687. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, H.; Zhu, J.; Jian, Z.; Ou, Q.; He, X.; Chen, X.; Li, C.; Li, Q.; Liu, H.; Huang, G.; et al. The Carbon Neutral Potential of Forests in the Yangtze River Economic Belt of China. Forests 2022, 13, 721. https://doi.org/10.3390/f13050721
Tian H, Zhu J, Jian Z, Ou Q, He X, Chen X, Li C, Li Q, Liu H, Huang G, et al. The Carbon Neutral Potential of Forests in the Yangtze River Economic Belt of China. Forests. 2022; 13(5):721. https://doi.org/10.3390/f13050721
Chicago/Turabian StyleTian, Huiling, Jianhua Zhu, Zunji Jian, Qiangxin Ou, Xiao He, Xinyun Chen, Chenyu Li, Qi Li, Huayan Liu, Guosheng Huang, and et al. 2022. "The Carbon Neutral Potential of Forests in the Yangtze River Economic Belt of China" Forests 13, no. 5: 721. https://doi.org/10.3390/f13050721
APA StyleTian, H., Zhu, J., Jian, Z., Ou, Q., He, X., Chen, X., Li, C., Li, Q., Liu, H., Huang, G., & Xiao, W. (2022). The Carbon Neutral Potential of Forests in the Yangtze River Economic Belt of China. Forests, 13(5), 721. https://doi.org/10.3390/f13050721