Fuelwood Production and Carbon Sequestration in Public Urban Green Spaces in Bulawayo, Zimbabwe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
3. Results
3.1. Tree Density
3.2. Rate of Wood Production
3.2.1. Wood Production per Green Space and Residential Density
3.2.2. Wood Production in Informal and Formal Green Spaces
3.2.3. Origin of Tree Species
3.2.4. Value of Wood Provision and Carbon Sequestration
4. Discussion
4.1. Fuelwood Production Rates and Carbon Sequestration
4.2. Fuelwood Production and Green Space Type
4.3. Value of Fuelwood Provision and Carbon Sequestration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mexia, T.; Vieira, J.; Príncipe, A.; Anjos, A.; Silva, P.; Lopes, N.; Freitas, C.; Santos-Reis, M.; Correia, O.; Branquinho, C.; et al. Ecosystem services: Urban parks under a magnifying glass. Environ. Res. 2018, 160, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Escobedo, F.J.; Giannico, V.; Jim, C.Y.; Sanesi, G.; Lafortezza, R. Urban forests, ecosystem services, green infrastructure and nature-based solutions: Nexus or evolving metaphors? Urban For. Urban Green. 2019, 37, 3–12. [Google Scholar] [CrossRef]
- Davoren, E.; Shackleton, C.M. Ecosystem disservices in Global South cities. In Urban Ecology in the Global South; Shackleton, C.M., Cilliers, S.S., Davoren, E., du Toit, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 265–292. [Google Scholar]
- Roman, L.A.; Conway, T.M.; Eisenman, T.S.; Koeser, A.K.; Barona, C.O.; Locke, D.H.; Jenerette, G.D.; Ostberg, J.; Vogt, J. Beyond ‘trees are good’: Disservices, management costs and tradeoffs in urban forestry. Ambio 2021, 50, 615–630. [Google Scholar] [CrossRef] [PubMed]
- Kaoma, H.; Shackleton, C.M. The direct-use value of urban tree non-timber forest products to household income in poorer suburbs in South African towns. For. Policy Econ. 2015, 61, 104–112. [Google Scholar] [CrossRef]
- Shackleton, C.M. Provisioning services in Global South cities. In Urban Ecology in the Global South; Shackleton, C.M., Cilliers, S.S., Davoren, E., du Toit, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 203–226. [Google Scholar]
- Schlesinger, J.; Drescher, A.; Shackleton, C. Socio-spatial dynamics in the use of wild natural resources: Evidence from six rapidly growing medium-sized cities in Africa. Appl. Geogr. 2015, 56, 107–115. [Google Scholar] [CrossRef]
- Joos-Vanderwalle, S.; Wynberg, R.; Alexander, K.A. Dependencies on natural resources in transitioning urban centres of northern Botswana. Ecosyst. Serv. 2018, 30, 342–349. [Google Scholar] [CrossRef] [Green Version]
- Vuola, M.; Bauch, S.C.; Sills, E.O. The regional market for non-timber forest products. Desenvolv. Meio Ambient. 2018, 48, 498–511. [Google Scholar] [CrossRef]
- Dermibas, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manag. 2001, 42, 1357–1378. [Google Scholar]
- Anozie, A.; Bakare, A.; Sonibare, J.; Oyebisi, T. Evaluation of cooking energy cost, efficiency, impact on air pollution and policy in Nigeria. Energy 2007, 32, 1283–1290. [Google Scholar] [CrossRef]
- Schure, J.; Levang, P.; Wiersum, K.F. Producing Woodfuel for Urban Centers in the Democratic Republic of Congo: A Path Out of Poverty for Rural Households? World Dev. 2014, 64, S80–S90. [Google Scholar] [CrossRef]
- Eba’a Atyi, R.; Ngouhouo Poufoun, J.; Mvondo Awono, J.-P.; Ngoungoure Manjeli, A.; Sufo Kankeu, R. Economic and social importance of fuelwood in Cameroon. Int. For. Rev. 2016, 18, 52–65. [Google Scholar] [CrossRef]
- Shackleton, C.M.; Gambiza, J.; Jones, R. Household energy use in small-electrified towns in the Makana District, Eastern Cape, South Africa. J. Energy S. Afr. 2007, 18, 4–10. [Google Scholar] [CrossRef]
- Babanyara, Y.; Saleh, U. Urbanisation and the choice of firewood as a source of energy in Nigeria. J. Hum. Ecol. 2010, 3, 19–26. [Google Scholar] [CrossRef]
- Openshaw, K. Biomass energy: Employment generation and its contribution to poverty alleviation. Biomass Bioenergy 2010, 34, 365–378. [Google Scholar] [CrossRef]
- Kimemia, D.; Annegarn, H. An urban biomass energy economy in Johannesburg, South Africa. Energy Sustain. Dev. 2011, 15, 382–387. [Google Scholar] [CrossRef]
- Madubansi, M.; Shackleton, C. Changing energy profiles and consumption patterns following electrification in five rural villages, South Africa. Energy Policy 2006, 34, 4081–4092. [Google Scholar] [CrossRef]
- Mapira, J.; Munthali, A. Household energy demands: Wood-fuel consumption and peri-urban deforestation in the city of Masvingo (Zimbabwe). J. Sustain. Dev. Afr. 2011, 13, 264–279. [Google Scholar]
- Zafeiriou, E.; Arabatzis, G.; Koutroumanidis, T. The firewood market in Greece: An empirical approach. Renew. Sustain. Energy Rev. 2011, 15, 3008–3018. [Google Scholar] [CrossRef]
- Guild, J.; Shackleton, C.M. South African informal urban fuelwood markets are resilient in the context of large-scale socio-economic change. Energy Policy 2018, 117, 136–141. [Google Scholar] [CrossRef]
- Shackleton, C.M.; McConnachie, M.; Chauke, M.I.; Mentz, J.; Sutherland, F.; Gambiza, J.; Jones, R. Urban fuelwood demand and markets in a small town in South Africa: Livelihood vulnerability and alien plant control. Int. J. Sustain. Dev. World Ecol. 2006, 13, 481–491. [Google Scholar] [CrossRef]
- Garekae, H.; Shackleton, C.M. Urban foraging of wild plants in two medium-sized South African towns: People, perceptions and practices. Urban For. Urban Green. 2020, 49, 126581. [Google Scholar] [CrossRef]
- Shackleton, C.; Buiten, E.; Annecke, W.; Banks, D.; Bester, J.; Everson, T.; Fabricius, C.; Ham, C.; Kees, M.; Modise, M.; et al. Exploring the options for fuelwood policies to support poverty alleviation policies: Evolving dimensions in south africa. For. Trees Livelihoods 2007, 17, 269–292. [Google Scholar] [CrossRef]
- Nkambwe, M.; Sekhwela, M.B. Utilisation characteristics and importance of woody biomass resources on the rural-urban fringe in Botswana. Environ. Manag. 2006, 37, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Hiemstra-van der Horst, G.; Hovorka, A.J. Firewood: The “other” renewable energy source for Africa? Biomass Bioenergy 2009, 33, 1605–1616. [Google Scholar] [CrossRef]
- Gumbi, A.; Sibanda, Q.-E.; Macherera, M.; Moyo, L.; Kupika, O.L. Assessment of woody cover vegetation changes in Bulawayo over the period 1990–2010. Arboric. J. 2013, 35, 220–235. [Google Scholar] [CrossRef]
- Backéus, S.; Wikström, P.; Lämås, T. A model for regional analysis of carbon sequestration and timber production. For. Ecol. Manag. 2005, 216, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Hutyra, L.R.; Yoon, B.; Alberti, M. Terrestrial carbon stocks across a gradient of urbanization: A study of the Seattle, WA region. Glob. Chang. Biol. 2011, 17, 783–797. [Google Scholar] [CrossRef]
- Strohbach, M.W.; Arnold, E.; Haase, D. The carbon footprint of urban green space—A life cycle approach. Landsc. Urban Plan. 2012, 104, 220–229. [Google Scholar] [CrossRef]
- Baró, F.; Chaparro, L.; Gómez-Baggethun, E.; Langemeyer, J.; Nowak, D.J.; Terradas, J. Contribution of Ecosystem Services to Air Quality and Climate Change Mitigation Policies: The Case of Urban Forests in Barcelona, Spain. Ambio 2014, 43, 466–479. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Sander, H.A. Quantifying and Mapping the Supply of and Demand for Carbon Storage and Sequestration Service from Urban Trees. PLoS ONE 2015, 10, e0136392. [Google Scholar] [CrossRef]
- Liu, C.; Li, X. Carbon storage and sequestration by urban forests in Shanyang, China. Urban For. Urban Green. 2012, 11, 121–128. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donoghue, A.; Shackleton, C.M. Current and potential carbon stocks of trees in urban parking lots in towns of the Eastern Cape, South Africa. Urban For. Urban Green. 2013, 12, 443–449. [Google Scholar] [CrossRef]
- McHugh, N.; Edmondson, J.L.; Gaston, K.J.; Leake, J.R.; O’Sullivan, O.S. Modelling short-rotation coppice and tree planting for urban carbon management—A citywide analysis. J. Appl. Ecol. 2015, 52, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- Dube, P.; Musara, C.; Chitamba, J. Extinction and threat to tree species from firewood use in the wake of electric power cuts: A case study of Bulawayo, Zimbabwe. Resour. Environ. 2014, 4, 260–267. [Google Scholar]
- Mawonde, A. No electricity from 4AM to 10PM. The Chronicle, 30 September 2015. [Google Scholar]
- Chowdhury, Z.; Campanella, L.; Gray, C.; Al Masud, A.; Marter-Kenyon, J.; Pennise, D.; Charron, D.; Zuzhang, X. Measurement and modeling of indoor air pollution in rural households with multiple stove interventions in Yunnan, China. Atmospheric Environ. 2013, 67, 161–169. [Google Scholar] [CrossRef]
- Ludwinski, D.; Moriarty, K.; Wydick, B. Environmental and health impacts from the introduction of improved wood stoves: Evidence from a field experiment in Guatemala. Environ. Dev. Sustain. 2011, 13, 657–676. [Google Scholar] [CrossRef]
- Jeuland, M.A.; Pattanayak, S.K. Benefits and Costs of Improved Cookstoves: Assessing the Implications of Variability in Health, Forest and Climate Impacts. PLoS ONE 2012, 7, e30338. [Google Scholar] [CrossRef] [Green Version]
- MacFarlane, D.W. Potential availability of urban wood biomass in Michigan: Implications for energy production, carbon sequestration and sustainable forest management in the U.S.A. Biomass Bioenergy 2009, 33, 628–634. [Google Scholar] [CrossRef]
- PRD (Parliament Research Department). Bulawayo Provincial Profile’. 2011. Available online: www.parlzim.gov.zw (accessed on 10 January 2016).
- Ngulani, T.; Shackleton, C. Use of public urban green spaces for spiritual services in Bulawayo, Zimbabwe. Urban For. Urban Green. 2019, 38, 97–104. [Google Scholar] [CrossRef]
- ZimStat. Census 2012 National Report. 2012. Available online: https://www.zimstat.co.zw/dmdocuments/Census/CensusResults2012/National_Report.pdf (accessed on 30 March 2014).
- Ngulani, T. Assessing Selected Ecosystem Services in Urban Green Spaces in Bulawayo, Zimbabwe. Master’s Thesis, Rhodes University, Grahamstown, South Africa, 2016; p. 134. [Google Scholar]
- Mugasha, W.A.; Eid, T.; Bollandsås, O.M.; Malimbwi, R.E.; Chamshama, S.A.O.; Zahabu, E.; Katani, J.Z. Allometric models for prediction of above- and belowground biomass of trees in the miombo woodlands of Tanzania. For. Ecol. Manag. 2013, 310, 87–101. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E. Carbon storage and sequestration by urban trees in the USA. Environ. Pollut. 2002, 116, 381–389. [Google Scholar] [CrossRef]
- Statista. Average Price in Voluntary Carbon Offset Market Worldwide from pre-2005 to 2014. 2015. Available online: https://www.statista.com/statistics/501717/voluntary-carbon-offset-market-average-price-worldwide/ (accessed on 14 March 2016).
- Shackleton, C.M.; Guild, J.; Bromham, B.; Impey, S.; Jarrett, M.; Ngubane, S.; Steijl, K. How compatible are urban livestock and urban green spaces and trees? An assessment in a medium-sized South African town. Int. J. Urban Sustain. Dev. 2017, 9, 243–252. [Google Scholar] [CrossRef]
- Brouwer, R.; Falcão, M.P. Wood fuel consumption in Maputo, Mozambique. Biomass Bioenergy 2004, 27, 233–245. [Google Scholar] [CrossRef]
- Moktan, M.R. Social and Ecological Consequences of Commercial Harvesting of Oak for Firewood in Bhutan. Mt. Res. Dev. 2014, 34, 139–146. [Google Scholar] [CrossRef]
- Sood, R.; Aggarwal, R.K.; Mahajan, P.K.; Bhardwaj, S.K.; Sharma, S. Estimation of domestic energy consumption and carbon emission in mid-Himalayan region of Himachal Pradesh, India. J. Agric. Environ. Sci. 2014, 3, 141–147. [Google Scholar]
- Johnson, N.G.; Bryden, K.M. Energy supply and use in a rural West African village. Energy 2012, 43, 283–292. [Google Scholar] [CrossRef]
- Adkins, E.; Oppelstrup, K.; Modi, V. Rural household energy consumption in the millennium villages in Sub-Saharan Africa. Energy Sustain. Dev. 2012, 16, 249–259. [Google Scholar] [CrossRef]
- Agea, J.G.; Kirangwa, D.; Waiswa, D.; Akais, O.C. Household firewood consumption and its dynamics in Kalisizo Sub-County, Central Uganda. Ethnobot. Leafl. 2010, 14, 841–855. [Google Scholar]
- Godwin, C.; Chen, G.; Singh, K. The impact of urban residential development patterns on forest carbon density: An integration of LiDAR, aerial photography and field mensuration. Landsc. Urban Plan. 2015, 136, 97–109. [Google Scholar] [CrossRef]
- Moore, G. Urban trees: Worth more than they cost. In 10th National Street Tree Symposium; Lawry, D., Gardner, J., Bridget, M., Eds.; Adelaide University: Adelaide, Australia, 2009; pp. 7–14. [Google Scholar]
- Strohbach, M.W.; Haase, D. Above-ground carbon storage by urban trees in Leipzig, Germany: Analysis of patterns in a European city. Landsc. Urban Plan. 2012, 104, 95–104. [Google Scholar] [CrossRef]
- Stoffberg, G.H.; van Rooyen, M.W.; der Linde, M.J.; Groeneveld, H.T. Carbon sequestration estimates of indigenous street trees in the City of Tshwane, South Africa. Urban For. Urban Green. 2010, 9, 9–14. [Google Scholar] [CrossRef]
- Gebreegziabher, Z.; Cornelis van Kooten, G. Does community and household tree planting imply increased use of wood fir fuel? Evidence from Ethiopia. For. Policy Econ. 2013, 34, 30–40. [Google Scholar] [CrossRef]
- Seburanga, J.; Kaplin, B.; Zhang, Q.-X.; Gatesire, T. Amenity trees and green space structure in urban settlements of Kigali, Rwanda. Urban For. Urban Green. 2014, 13, 84–93. [Google Scholar] [CrossRef]
- Davies, Z.G.; Edmondson, J.L.; Heinemeyer, A.; Leake, J.R.; Gaston, K.J. Mapping an urban ecosystem service: Quantifying above-ground carbon storage at a city-wide scale. J. Appl. Ecol. 2011, 48, 1125–1134. [Google Scholar] [CrossRef] [Green Version]
- Nagendra, H.; Gopal, D. Street trees in Bangalore: Density, diversity, composition and distribution. Urban For. Urban Green. 2010, 9, 129–137. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Laurance, W.F.; Franklin, J.F. Global Decline in Large Old Trees. Science 2012, 338, 1305–1306. [Google Scholar] [CrossRef]
- Koeser, A.K.; Gilman, E.F.; Paz, M.; Harchick, C. Factors influencing urban tree planting program growth and survival in Florida, United States. Urban For. Urban Green. 2014, 13, 655–661. [Google Scholar] [CrossRef]
- McPherson, E.G.; Nowak, D.; Heisler, G.; Grimmond, S.; Souch, C.; Grant, R.; Rowntree, R. Quantifying urban forest structure, function, and value: The Chicago Urban Forest Climate Project. Urban Ecosyst. 1997, 1, 49–61. [Google Scholar] [CrossRef]
- Holtsmark, B. A comparison of the global warming effects of wood fuels and fossil fuels taking albedo into account. GCB Bioenergy 2014, 7, 984–997. [Google Scholar] [CrossRef] [Green Version]
Housing Density | Public Green Space | Size (ha) | Density (Trees/ha) | Mean Density (Trees/ha) |
---|---|---|---|---|
Low | Hillcrest | 14.9 | 80 | 86 ± 10 |
Khumalo | 16.5 | 95 | ||
Famona | 4.2 | 75 | ||
Hillside | 4.8 | 95 | ||
Medium | Northend | 5.7 | 70 | 69 ± 19 |
Parddonhurst | 4.3 | 95 | ||
Queens Park | 7.9 | 60 | ||
Barham Green | 6.5 | 50 | ||
High | Mpopoma | 3.9 | 50 | 61 ± 29 |
Nketa | 5.9 | 95 | ||
Luveve | 4.7 | 40 | ||
Nkulumane | 38.3 | 43 | ||
Mean | 74 ± 21 |
Housing Density | Public Green Space | Nature | Wood Production (kg/ha/yr) | Mean (kg/ha/yr) | Carbon Sequestration(kg/ha/yr) | Mean (kg/ha/yr) |
---|---|---|---|---|---|---|
Low | Hillcrest | Informal | 2063 | 2455 ± 910 | 1062 | 1296 ± 252 |
Khumalo | Informal | 3713 | 2018 | |||
Famona | Formal | 1590 | 869 | |||
Hillside | Informal | 2452 | 1234 | |||
Medium | Northend | Informal | 2895 | 1361 ± 1104 | 1590 | 742 ± 301 |
Parddonhurst | Informal | 1410 | 739 | |||
Queens Park | Informal | 405 | 227 | |||
Barham Green | Informal | 735 | 412 | |||
High | Mpopoma | Informal | 1103 | 1853 ± 1067 | 617 | 994 ± 274 |
Nketa | Formal | 2865 | 1510 | |||
Luveve | Formal | 2670 | 1414 | |||
Nkulumane | Informal | 773 | 433 | |||
Mean for all green spaces | 1890 ± 1067 | 1010 ± 160 | ||||
Mean for formal green spaces | 2375 ± 687 | 1264 ± 200 | ||||
Mean for informal green spaces | 1728 ± 1122 | 926 ± 205 |
Housing Density | Wood Production (kg/ha/yr) | Fuelwood Price (US$) | Wood Value (US$/ha/yr) | Carbon Value (US$/ha/yr) |
---|---|---|---|---|
High | 1853 | 0.25 | 463 | 3.97 ± 1.90 |
Medium | 1361 | 0.25 | 340 | 2.97 ± 1.20 |
Low | 2455 | 0.20 | 491 | 5.18 ± 1.00 |
Mean | 1890 ± 548 | 0.23 ± 0.03 | 431 ± 80.3 | 4.04 ± 1.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngulani, T.; Shackleton, C.M. Fuelwood Production and Carbon Sequestration in Public Urban Green Spaces in Bulawayo, Zimbabwe. Forests 2022, 13, 741. https://doi.org/10.3390/f13050741
Ngulani T, Shackleton CM. Fuelwood Production and Carbon Sequestration in Public Urban Green Spaces in Bulawayo, Zimbabwe. Forests. 2022; 13(5):741. https://doi.org/10.3390/f13050741
Chicago/Turabian StyleNgulani, Thembelihle, and Charlie M. Shackleton. 2022. "Fuelwood Production and Carbon Sequestration in Public Urban Green Spaces in Bulawayo, Zimbabwe" Forests 13, no. 5: 741. https://doi.org/10.3390/f13050741
APA StyleNgulani, T., & Shackleton, C. M. (2022). Fuelwood Production and Carbon Sequestration in Public Urban Green Spaces in Bulawayo, Zimbabwe. Forests, 13(5), 741. https://doi.org/10.3390/f13050741