Geographical Variation in the Growth and Nutritional Traits of Leaf Powder from Broussonetia papyrifera (L.) L’Hér. ex Vent. from Different Provenances
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Method
2.3. Data Analysis
3. Results
3.1. Variation in Growth Traits of Different Provenances
3.2. Variation of Nutritional Traits in Different Provenances
3.3. Analysis of Variance for Different Provenance Traits
3.4. Typical Correlation Analysis between Growth and Nutritional Traits
3.5. Geographical Variation Analysis of Different Provenances
3.6. Provenance Clustering and Provenance Selection
3.6.1. Provenance Clustering
3.6.2. Selection of Superiority Provenance for Feed Type
4. Discussion
4.1. Variation in Growth and Nutritional Traits of Paper Mulberry
4.2. Correlation of Phenotypic Variation
4.3. Variation Patterns of Geographic Provenance
4.4. Source Selection of Forage Paper Mulberry
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- González-Lorca, J.; Rivera-Hutinel, A.; Moncada, X.; Lobos, S.; Seelenfreund, D.; Seelenfreund, A.N.Z.J. Ancient and modern introduction of Broussonetia papyrifera ([L.] Vent.; Moraceae) into the Pacific: Genetic, geographical and historical evidence. N. Z. J. Bot. 2015, 53, 75–89. [Google Scholar] [CrossRef]
- Lin, J.; Zou, J.; Zhang, B.; Que, Q.; Zhang, J.; Chen, X.; Zhou, W. An efficient in vitro propagation protocol for direct organogenesis from root explants of a multi-purpose plant, Broussonetia papyrifera (L.) L’Hér. ex Vent. Ind. Crops Prod. 2021, 170, 113686. [Google Scholar] [CrossRef]
- Feng, W.; Li, H.; Zheng, X. Research of constituents of Broussonetia papyrifera. China J. New Drugs 2008, 17, 272–278. [Google Scholar]
- Zeng, P.; Guo, Z.; Xiao, X.; Zhou, H.; Gu, J.; Liao, B. Tolerance capacities of Broussonetia papyrifera to heavy metal(loid)s and its phytoremediation potential of the contaminated soil. Int. J. Phytoremediation 2022, 24, 580–589. [Google Scholar] [CrossRef]
- Ryu, H.W.; Curtislong, M.J.; Jung, S.; Jeong, I.Y.; Kim, D.S.; Kang, K.Y.; Park, K.H. Anticholinesterase potential of flavonols from paper mulberry (Broussonetia papyrifera) and their kinetic studies. Food Chem. 2012, 132, 1244–1250. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Yang, L.; Xue, Q.; Yao, F.; Sun, J.; Yang, F.; Liu, Y. Antioxidant evaluation-guided chemical profiling and structure-activity analysis of leaf extracts from five trees in Broussonetia and Morus (Moraceae). Sci. Rep. 2020, 10, 4808. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Chen, C. Comprehensive Profiling of Paper Mulberry (Broussonetia papyrifera) Crotonylome Reveals the Significance of Lysine Crotonylation in Young Leaves. Int. J. Mol. Sci. 2022, 23, 1173. [Google Scholar] [CrossRef] [PubMed]
- Ran, X.K.; Wang, X.-T.; Liu, P.-P.; Chi, Y.-X.; Wang, B.-J.; Dou, D.-Q.; Kang, T.-G.; Xiong, W. Cytotoxic constituents from the leaves of Broussonetia papyrifera. Chin. J. Nat. Med. 2013, 11, 269–273. [Google Scholar] [CrossRef]
- Ko, H.H.; Chang, W.L.; Lu, T.M. Antityrosinase and antioxidant effects of ent-kaurane diterpenes from leaves of Broussonetia papyrifera. J. Nat. Prod. 2008, 71, 1930–1933. [Google Scholar] [CrossRef]
- Guo, F. on the Chinese Forest Culture. J. Northwest AF Univ. 2006, 6, 90–95. [Google Scholar]
- Niu, M.; Gao, H.; Zhang, L. Fiber morphology, chemical composition and pulping properties of xylem in Broussonetia papyrifera. Econ. For. Res. 2007, 25, 45–49. [Google Scholar]
- Bai, S. Analazy the Pulping Performance of Paper Mulberry of Different Tree-Age. Ph.D. Thesis, Dalian University of Technology, Dalian, China, 2009. [Google Scholar]
- Adil, S.; Mashiatullah, A.; Asma, M.; Abid, J.; Ghaffar, A. Heavy metal removal efficiency of paper mulberry biochar and commercially available silica powder from simulated industrial wastewater. Iran. J. Energy Environ. 2014, 5, 446–450. [Google Scholar]
- Yang, G.; Zhao, Y.; Xu, Z.; Huang, H.; Zhou, J. The chloroplast genome comparative characteristic of artificial breeding tree, a case about Broussonetia kazinoki × Broussonetia papyrifera. BIOCELL 2022, 46, 803–819. [Google Scholar]
- Wei, Y.; Wu, C.; Jiang, L. Evaluation of the benefits of development and utilization of paper mulberry resources in karst rocky desertification areas. Green Sci. Technol. 2014, 9, 60–61. [Google Scholar]
- Wang, J.; Liu, J.; Peng, X.; Ni, Z.; Wang, G.; Shen, S. Application of hybrid paper mulberry in ecological virecence of coastal saline. Tianjin Agric. Sci. 2014, 20, 95–101. [Google Scholar]
- Shi, X.; Zhang, X.; Chen, G.; Chen, Y.; Wang, L.; Shan, X. Seedling growth and metal accumulation of selected woody species in copper and lead zinc mine tailings. J. Environ. Sci. 2011, 23, 266–274. [Google Scholar] [CrossRef]
- Peng, X.; Wang, J.; Shen, S. Application of the paper mulberry in ecological restoration of tailings and mining area. Tianjin Agric. Sci. 2016, 22, 92–98. [Google Scholar]
- Si, B.; Tao, H.; Zhang, X.; Guo, J.; Cui, K.; Tu, Y.; Diao, Q. Effect of Broussonetia papyrifera L. (paper mulberry) silage on dry matter intake, milk composition, antioxidant capacity and milk fatty acid profile indairy cows. Asian-Australas J. Anim. Sci. 2018, 31, 1259–1266. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.X.; Deng, Z.H.; Cui, K.; Cui, Y.Z.; Zhang, C.H. Genetic diversity of Broussonetia papyrifera populations in southwest China. Genet. Mol. Res. GMR 2014, 13, 7553–7563. [Google Scholar] [CrossRef]
- Sheng, P.; He, L.; Ji, S.; Huang, J.; Zhang, Z.; Wang, D.; Liu, J.; Zhang, H. Effect of Broussonetia papyrifera L. (paper mulberry) on growth performance, carcase traits, meat quality and immune performance in Hu ram lamb. Ital. J. Anim. Sci. 2021, 20, 691–697. [Google Scholar] [CrossRef]
- Tao, H.; Si, B.; Xu, W.; Tu, Y.; Diao, Q. Effect of Broussonetia papyrifera L. silage on blood biochemical parameters, growth performance, meat amino acids and fatty acids compositions in beef cattle. Asian-Australas J. Anim. Sci. 2019, 27, 1138–1163. [Google Scholar] [CrossRef] [PubMed]
- Alhassan, O. Effects of Supplementation with Leaves of Paper Mulberry (Broussonetia Papyrifera) on Growth Performance and Blood Indices of West African Dwarf Sheep (Djallonké) fed Napier Grass Basal Diet. Ph.D. Thesis, Kwame Nkrumah University, Kumasi, Ghana, 2011. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of an Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, TX, USA, 1990. [Google Scholar]
- Tang, X.; Ren, X.; Fang, Y. Determination of eight trace elements of P, Zn, Ba, Fe, Mn, Mg, Ca, Sr in plant by ICP-OES with microwave digestion. Resour. Environ. Eng. 2013, 27, 831–834. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- De Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research; American Statistical Association: Alexandria, VA, USA, 2020. [Google Scholar]
- Covarrubias-Pazaran, G. Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer. PLoS ONE 2016, 11, e0156744. [Google Scholar] [CrossRef] [Green Version]
- Hai, P.H.; Jansson, G.; Harwood, C.; Hannrup, B.; Thinh, H.H. Genetic variation in growth, stem straightness and branch thickness in clonal trials of Acacia auriculiformis at three contrasting sites in Vietnam. For. Ecol. Manag. 2008, 255, 156–167. [Google Scholar] [CrossRef]
- Shi, H.; Liang, W.; Liu, Y.; Xu, Z.; Zhang, J.; Li, S.; Gao, Y.; Zhu, Z.; Qingyang Academy of Agricultural Sciences. Analysis on feeding Nutritive value of hybrid Broussonetia papyrifera. China Herbiv. Sci. 2019, 39, 4. [Google Scholar]
- Chen, T.; Zheng, F.; Wang, F. Nutritional components and fermentation quality of different parts of hybrid paper mulberry. Feed. Res. 2020, 43, 97–99. [Google Scholar]
- Zuo, X.; Chen, Z.; Xie, Q.; Zhai, S.S.; Wang, H.; Zhong, S.Y.; Zhu, Y.W.; Wang, W.C.; Yang, L. Determination of nutrients and metabolic energy of geese in Broussonetia papyrifera leaves powder and Broussonetia papyrifera twig leaves powder from different areas. Chin. J. Anim. Nutr. 2018, 30, 2823–28308. [Google Scholar]
- Hao, Y.Y.; Huang, S.; Zhang, J.; Gong, Y.; Liu, G.; Sun, X.; Lv, J.; Li, S. PSVIII-23 Effects of different growth height on the yield, chemical composition, silage fermentation profile, in vitro and in situ digestibility of Broussonetia papyrifera. J. Anim. Sci. 2020, 98 (Suppl. 4), 325–327. [Google Scholar] [CrossRef]
- Obour, R.; Oppong, S.K.; Abebrese, I.K. Chemical Composition and Nutritive Value of an Invasive Exotic Species Broussonetia Papyrifera in Ghana. J. Nat. Sci. Res. 2017, 7, 45–53. [Google Scholar]
- Duan, H.; Cao, S.; Zheng, H.; Hu, D.; Lin, J.; Lin, H.; Hu, R.; Sun, Y.; Li, Y. Variation in the Growth Traits and Wood Properties of Chinese Fir from Six Provinces of Southern China. Forests 2016, 7, 192. [Google Scholar] [CrossRef] [Green Version]
- Martins, K.; Santos, W.; Quadros, T.M.C.; Aguiar, A.V.D.; Machado, J.A.R.; Sebbenn, A.M.; Freitas, M.L.M. Genetic variation and effective population size of a Myracrodruon urundeuva (Engler) Fr. Allem. provenance and progeny test. J. For. Res. 2018, 23, 228–236. [Google Scholar] [CrossRef]
- Li, S.; Zhang, H.; Fan, Z.; Liang, D.; Sun, H.; Li, Y.; Zhao, X. Genetic test and early selection in full-sib families of Pinus koraiensis. Scand. J. For. Res. 2021, 36, 221–229. [Google Scholar] [CrossRef]
- Alves, B.M.; Filho, A.C.; Toebe, M.; Burin, C. Linear relations among phenological, morphological, productive and protein-nutritional traits in early maturing and super-early maturing maize genotypes. J. Cereal Sci. 2016, 70, 229–239. [Google Scholar] [CrossRef]
- Filho, A.C.; Toebe, M.; Alves, B.M.; Burin, C.; Wartha, C.A. Linear relations among traits in jack bean (Canavalia ensiformis). Bioagro 2018, 30, 157–162. [Google Scholar]
- Wang, X. Genome-Wide Association Analysis of Quality Traits Based on SNP in Alfalfa. Ph.D. Thesis, Shandong Agricultural University, Taian, China, 2020. [Google Scholar]
- Pan, X. Genome-Wide Association Analysis of Yield Related Traits in Alfalfa. Ph.D. Thesis, Shandong Agricultural University, Taian, China, 2019. [Google Scholar]
- Sudrajat, D.J. Genetic variation of fruit, seed, and seedling characteristics among 11 populations of white jabon in Indonesia. For. Sci. Technol. 2016, 12, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Chen, C.; Hu, Z.; Lei, G.; Wu, Z. Analysis on the diversity of morphological traits and nutritional contents in bitter gourd germplasm resources. China Agric. Sci. Bull. 2011, 27, 183–188. [Google Scholar]
- Tan, L.; Li, J.; Li, Y.; Wang, H.; Gao, X.; Zhao, J.; Ma, J.; Jin, T.; Wang, H. Analysis of nutritional compositions and evaluation of quality in potentilla anserina L. from Qinghai different producing areas. J. Food Biotechnol. 2022, 41, 95–111. [Google Scholar]
- Chen, X. Forest Breeding; China Forestry Press: Beijing, China, 2005. [Google Scholar]
- Wu, H.; Duan, A.; Zhang, J. Long-term Growth Variation and Selection of Geographical Provenances of Cunninghamia lanceolata (Lamb.) Hook. Forests 2019, 10, 876. [Google Scholar] [CrossRef]
- Santiago, L.S.; Kitajima, K.; Wright, S.J.; Mulkey, S.S. Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gradient in lowland tropical forest. Oecologia 2004, 139, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liu, J.; Zhang, J.; Jian, J.; Li, L.; Li, T. Analysis of factors affecting wheat quality and improvement methods. Agric. Sci. Technol. Commun. 2018, 6, 214–216. [Google Scholar] [CrossRef]
- Gallo, A.; Bertuzzi, T.; Giuberti, G.; Moschini, M.; Bruschi, S.; Cerioli, C.; Masoero, F. New assessment based on the use of principal factor analysis to investigate corn silage quality from nutritional traits, fermentation end products and mycotoxins. J. Sci. Food Agric. 2016, 96, 437–448. [Google Scholar] [CrossRef] [PubMed]
Provenance | Longitude (°N) | Latitude (°E) | Altitude (m) | Annual Temperature (°C) | Annual Precipitation (mm) | Frost-Free Period (d) | Sunshine Duration (h) | Number of Samples |
---|---|---|---|---|---|---|---|---|
B J | E116.23 | N39.54 | 54 | 11.5 | 640 | 193 | 2400 | 30 |
SXYQ | E113.28 | N40.08 | 981 | 10.0 | 500 | 155 | 2696 | 30 |
HBWA | E114.12 | N36.41 | 194 | 12.0 | 560 | 196 | 2297 | 30 |
SDQD | E120.22 | N36.04 | 6 | 12.7 | 662 | 196 | 2643 | 30 |
SXYC | E111.00 | N35.01 | 369 | 13.3 | 525 | 212 | 2040 | 30 |
GSTS | E105.43 | N34.34 | 1169 | 11.0 | 492 | 185 | 2100 | 30 |
SXXA | E108.56 | N34.20 | 385 | 13.5 | 620 | 216 | 1880 | 30 |
HNZZ | E113.37 | N34.44 | 110 | 15.6 | 542 | 209 | 1870 | 30 |
AHHB | E116.49 | N33.59 | 32 | 14.5 | 863 | 202 | 2316 | 30 |
HNTB | E113.25 | N32.22 | 142 | 15.0 | 1168 | 231 | 2027 | 30 |
S H | E121.28 | N31.13 | 16 | 17.6 | 1173 | 228 | 1886 | 30 |
SCMY | E104.40 | N31.28 | 473 | 17.9 | 823 | 252 | 1172 | 30 |
CQKZ | E108.23 | N31.09 | 255 | 15.3 | 1300 | 275 | 1463 | 30 |
HBYC | E111.17 | N30.41 | 59 | 16.9 | 1216 | 275 | 1700 | 30 |
HBSS | E112.15 | N30.18 | 34 | 16.6 | 1200 | 250 | 2006 | 30 |
ZJHZ | E119.57 | N30.03 | 21 | 17.8 | 1454 | 255 | 1765 | 30 |
SCDY | E103.31 | N30.35 | 524 | 16.1 | 1096 | 284 | 1077 | 30 |
SCNC | E106.06 | N30.50 | 338 | 17.1 | 1034 | 290 | 1369 | 30 |
HNXX | E109.44 | N28.18 | 200 | 16.0 | 1400 | 242 | 1440 | 30 |
JXJDZ | E117.10 | N29.16 | 35 | 17.8 | 1805 | 247 | 2009 | 30 |
JXNC | E115.51 | N28.41 | 16 | 17.3 | 1650 | 260 | 1770 | 30 |
GZZY | E106.55 | N27.43 | 865 | 15.1 | 1100 | 284 | 1163 | 30 |
FJNP | E118.07 | N27.19 | 87 | 19.3 | 1609 | 268 | 1802 | 30 |
GZKY | E107.54 | N26.54 | 825 | 15.1 | 1308 | 268 | 1105 | 30 |
JXGZ | E114.56 | N25.49 | 111 | 19.8 | 1319 | 297 | 1092 | 30 |
GZPZ | E104.28 | N25.42 | 1739 | 15.2 | 1390 | 271 | 1593 | 30 |
GXLZ | E109.24 | N24.19 | 91 | 19.4 | 1640 | 325 | 1410 | 30 |
GXBS | E106.37 | N23.54 | 138 | 20.5 | 1115 | 357 | 1907 | 30 |
GDGZ | E113.15 | N23.07 | 18 | 21.0 | 1720 | 345 | 1800 | 30 |
YNPE | E100.57 | N22.49 | 1302 | 17.6 | 1940 | 315 | 2088 | 30 |
GXPX | E106.45 | N22.05 | 332 | 20.5 | 1200 | 340 | 1395 | 30 |
GDYF | E112.02 | N22.55 | 150 | 22.4 | 1900 | 345 | 1478 | 30 |
HNDZ | E109.57 | N19.52 | 166 | 23.5 | 1550 | 356 | 1953 | 30 |
Trait | Mean | Minimum | Maximum | se | CV (%) |
---|---|---|---|---|---|
GD (mm) | 7.33 ± 1.66 | 2.89 | 13.87 | 0.09 | 22.63 |
H (cm) | 63.16 ± 16.68 | 12.50 | 107.00 | 0.94 | 26.41 |
C (cm) | 70.90 ± 21.54 | 5.50 | 134.00 | 1.22 | 30.39 |
Bio (kg) | 0.47 ± 0.30 | 0.01 | 1.64 | 0.02 | 62.88 |
Trait | Mean | Minimum | Maximum | se | CV (%) |
---|---|---|---|---|---|
CP (%) | 14.39 ± 1.84 | 10.60 | 20.06 | 11.46 | 12.77 |
NDF (%) | 41.53 ± 6.54 | 24.02 | 59.46 | 35.44 | 15.75 |
ADF (%) | 18.84 ± 3.93 | 11.00 | 32.21 | 21.21 | 20.88 |
DM (%) | 27.33 ± 3.11 | 8.92 | 36.85 | 27.93 | 11.39 |
EE (%) | 3.83 ± 0.64 | 2.23 | 5.39 | 3.16 | 16.61 |
Ash (%) | 12.02 ± 1.84 | 5.71 | 19.23 | 13.52 | 15.32 |
Ca (%) | 2.70 ± 0.50 | 1.00 | 4.16 | 3.16 | 18.64 |
P (‰) | 3.49 ± 0.64 | 2.08 | 5.76 | 3.69 | 18.30 |
Trait | VP (SE) | Ve (SE) | R | GVC (%) |
---|---|---|---|---|
GD | 0.80 ± 0.25 | 1.99 ± 0.17 | 0.80 | 12.19 |
H | 118.80 ± 34.12 | 165.72 ± 13.98 | 0.88 | 17.26 |
C | 169.40 ± 50.48 | 304.37 ± 25.68 | 0.85 | 18.36 |
Bio | 0.03 ± 0.01 | 0.06 ± 0.01 | 0.80 | 34.27 |
CP | 0.50 ± 0.20 | 2.88 ± 0.24 | 0.64 | 4.92 |
NDF | 22.31 ± 6.14 | 21.07 ± 1.78 | 0.91 | 11.37 |
ADF | 2.47 ± 0.97 | 13.03 ± 1.10 | 0.65 | 8.34 |
DM | 0.82 ± 0.45 | 8.91 ± 0.75 | 0.48 | 3.32 |
EE | 0.20 ± 0.05 | 0.21 ± 0.02 | 0.90 | 11.58 |
Ash | 0.11 ± 0.11 | 3.28 ± 0.28 | 0.25 | 2.79 |
Ca | 0.012 ± 0.009 | 0.24 ± 0.02 | 0.33 | 4.07 |
P | 0.07 ± 0.03 | 0.34 ± 0.03 | 0.66 | 7.42 |
Typical Variable 1 | |||
---|---|---|---|
Typical Correlation Coefficient n1 = 0.764 * | |||
Standardized Typical Factor (u1,v1) | Typical Load Factor | ||
Growth traits | GD | 0.327 | −0.84 |
H | −1.631 | −0.909 | |
C | 2.156 | −0.784 | |
Bio | −1.776 | −0.915 | |
Nutritional traits | CP | 0.361 | 0.685 |
DM | −0.649 | −0.673 | |
EE | 0.368 | 0.650 | |
Ca | 0.258 | −0.336 | |
P | 0.134 | 0.636 |
Trait | Regression Equation of Trend Surface Analysis | Fitting Coefficient | p-Value |
---|---|---|---|
GD | Z = 45.633 − 0.698 x + 0.228 y + 0.003 x2 − 0.009 y2 + 0.002 xy | 0.4866 | 0.0020 |
H | Z = 522.662 − 9.639 x + 9.127 y + 0.043 x2 − 0.129 y2 − 0.024 xy | 0.5677 | 2.79 × 10−5 |
C | Z = 592.638 − 9.197 x + 4.156 y + 0.027 x2 − 0.235 y2 + 0.077 xy | 0.5790 | 1.99 × 10−5 |
Bio | Z = 10.950 − 0.174 x − 0.007 y + 0.001 x2 − 0.003 y2 + 0.001 xy | 0.5682 | 2.75 × 10−5 |
CP | Z = 10.470 − 0.179 x + 0.708 y + 0.002 x2 + 0.001 y2 − 0.006 xy | 0.4237 | 0.0011 |
EE | Z = −11.34 + 0.045 x + 0.773 y + 0.001 x2 − 0.003 y2 − 0.005 xy | 0.3435 | 0.0050 |
Traits | Overall Mean | Mean Value of Superior Provenance | Genetic Gain (%) |
---|---|---|---|
GD | 7.33 ± 1.66 | 7.86 ± 1.12 | 6.74 |
H | 63.16 ± 16.68 | 66.56 ± 14.60 | 5.15 |
C | 70.90 ± 21.54 | 79.57 ± 13.25 | 11.54 |
Bio | 0.47 ± 0.30 | 0.62 ± 0.10 | 27.01 |
CP | 14.39 ± 1.84 | 14.97 ± 0.45 | 2.53 |
NDF | 41.53 ± 6.54 | 40.43 ± 3.36 | −3.06 |
ADF | 18.84 ± 3.93 | 20.32 ± 1.21 | 5.13 |
DM | 27.33 ± 3.11 | 26.81 ± 2.15 | −0.91 |
EE | 3.83 ± 0.64 | 4.01 ± 016 | 3.96 |
Ash | 12.02 ± 1.84 | 11.53 ± 0.94 | −1.03 |
Ca | 2.70 ± 0.50 | 2.50 ± 0.21 | −2.49 |
P | 3.49 ± 0.64 | 3.42 ± 0.08 | −1.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, P.; Que, Q.; Ke, B.; Cui, S.; Chen, X.; Zhou, W. Geographical Variation in the Growth and Nutritional Traits of Leaf Powder from Broussonetia papyrifera (L.) L’Hér. ex Vent. from Different Provenances. Forests 2022, 13, 868. https://doi.org/10.3390/f13060868
Zhou P, Que Q, Ke B, Cui S, Chen X, Zhou W. Geographical Variation in the Growth and Nutritional Traits of Leaf Powder from Broussonetia papyrifera (L.) L’Hér. ex Vent. from Different Provenances. Forests. 2022; 13(6):868. https://doi.org/10.3390/f13060868
Chicago/Turabian StyleZhou, Peng, Qingmin Que, Biying Ke, Siming Cui, Xiaoyang Chen, and Wei Zhou. 2022. "Geographical Variation in the Growth and Nutritional Traits of Leaf Powder from Broussonetia papyrifera (L.) L’Hér. ex Vent. from Different Provenances" Forests 13, no. 6: 868. https://doi.org/10.3390/f13060868
APA StyleZhou, P., Que, Q., Ke, B., Cui, S., Chen, X., & Zhou, W. (2022). Geographical Variation in the Growth and Nutritional Traits of Leaf Powder from Broussonetia papyrifera (L.) L’Hér. ex Vent. from Different Provenances. Forests, 13(6), 868. https://doi.org/10.3390/f13060868