Growth Response of Nine Tree Species to Water Supply in Planting Soils Representative for Urban Street Tree Sites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Substrate and Tree Selection
2.3. Soil Water Monitoring and Meteorological Data
2.4. Soil Physical Characteristics
2.5. Vitality Assessment and Tree Growth Measurements
2.6. Data Processing
2.7. Statistical Analysis
3. Results
3.1. Substrate Characteristics
3.2. Environmental Conditions and Soil Water Availability
3.3. Tree Growth Analysis
- Significant difference in DBH growth between all three planting soils (Tc and Qp);
- Significantly less DBH growth only in ‘Sand’ (No significant difference between ‘FLL’ and ‘Loamy Silt’ (Oc, Ls, and Al);
- Significantly less DBH growth in ‘Sand’ and ‘FLL’ than in ‘Loamy Silt’ (Qc, Cb, and Gt);
- No difference in DBH growth between all planting soils (Kp).
4. Discussion
4.1. Substrate Characteristics
4.2. Tree Growth Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Jim, C.Y. Urban soil characteristics and limitations for landscape planting in Hong Kong. Landsc. Urban Plan. 1998, 40, 235–249. [Google Scholar] [CrossRef]
- Clark, J.R.; Kjelgren, R. Water as a limiting factor in the development of urban trees. J. Arboric. 1990, 16, 203–209. [Google Scholar] [CrossRef]
- Craul, P.J. A description of urban soils and their desired characteristics. J. Arboric. 1985, 11, 330–339. [Google Scholar]
- Wessolek, G.; Kluge, B.; Toland, A.; Nehls, T.; Klingelmann, E.; Rim, Y.N.; Mekiffer, B.; Trinks, S. Urban Soils in the Vadose Zone. In Wilfried Endlicher (Hg.): Perspectives in Urban Ecology; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Jim, C.Y.; Ng, Y.Y. Porosity of roadside soil as indicator of edaphic quality for tree planting. Ecol. Eng. 2018, 120, 364–374. [Google Scholar] [CrossRef]
- Armson, D.; Stringer, P.; Ennos, A.R. The effect of street trees and amenity grass on urban surface water runoff in Manchester, UK. Urban For. Urban Green. 2013, 12, 282–286. [Google Scholar] [CrossRef]
- Morgenroth, J.; Buchan, G.; Scharenbroch, B.C. Belowground effects of porous pavements—Soil moisture and chemical properties. Ecol. Eng. 2013, 51, 221–228. [Google Scholar] [CrossRef]
- Cermák, J.; Hruska, J.; Martinková, M.; Prax, A. Urban tree root systems and their survival near houses analyzed using ground penetrating radar and sap flow techniques. Plant Soil 2000, 219, 103–116. [Google Scholar] [CrossRef]
- Pregitzer, C.C.; Sonti, N.F.; Hallett, R.A. Variability in Urban Soils Influences the Health and Growth of Native Tree Seedlings. Ecol. Restor. 2016, 34, 106–116. [Google Scholar] [CrossRef]
- Roetzer, T.; Wittenzeller, M.; Haeckel, H.; Nekovar, J. Phenology in central Europe-differences and trends of spring phenophases in urban and rural areas. Int. J. Biometeorol. 2000, 44, 60–66. [Google Scholar] [CrossRef]
- Schnabel, F.; Purrucker, S.; Schmitt, L.; Engelmann, R.A.; Kahl, A.; Richter, R.; Seele-Dilbat, C.; Skiadaresis, G.; Wirth, C. Cumulative growth and stress responses to the 2018–2019 drought in a European floodplain forest. Glob. Chang. Biol. 2021, 28, 1870–1883. [Google Scholar] [CrossRef]
- Schuldt, B.; Buras, A.; Arend, M.; Vitasse, Y.; Beierkuhnlein, C.; Damm, A.; Gharun, M.; Grams, T.E.E.; Hauck, M.; Hajek, P.; et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 2020, 45, 86–103. [Google Scholar] [CrossRef]
- Hartmann, H. Will a 385 million year-struggle for light become a struggle for water and for carbon?-How trees may cope with more frequent climate change-type drought events. Glob. Change Biol. 2011, 17, 642–655. [Google Scholar] [CrossRef]
- Schütt, A.; Becker, J.N.; Schaaf-Titel, S.; Groengroeft, A.; Eschenbach, A. Soil water stress at young urban street-tree sites in response to meteorology and site parameters. Urban For. Urban Green. in review.
- Schlünzen, K.H.; Hoffmann, P.; Rosenhagen, G.; Riecke, W. Long-term changes and regional differences in temperature and precipitation in the metropolitan area of Hamburg. Int. J. Climatol. 2010, 30, 1121–1136. [Google Scholar] [CrossRef]
- Quigley, M.F. Street trees and rural conspecifics: Will long-lived trees reach full size in urban conditions? Urban Ecosyst. 2004, 7, 29–39. [Google Scholar] [CrossRef]
- Gillner, S.; Vogt, J.; Roloff, A. Climatic response and impacts of drought on oaks at urban and forest sites. Urban For. Urban Green. 2013, 12, 597–605. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P.; Uhl, E.; Dahlhausen, J.; Schütze, G.; Perkins, D.; Rötzer, T.; Caldentey, J.; Koike, T.; Van Con, T.; et al. Climate change accelerates growth of urban trees in metropolises worldwide. Sci. Rep. 2017, 7, 15403. [Google Scholar] [CrossRef]
- Watson, W.T. Influence of Tree Size on Transplant Establishment and Growth. Horttech 2005, 15, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Roman, L.A.; Scatena, F.N. Street tree survival rates: Meta-analysis of previous studies and application to a field survey in Philadelphia, PA, USA. Urban For. Urban Green. 2011, 10, 269–274. [Google Scholar] [CrossRef]
- Roman, L.A.; Battles, J.J.; McBride, J.R. The balance of planting and mortality in a street tree population. Urban Ecosyst. 2014, 17, 387–404. [Google Scholar] [CrossRef]
- Nowak, D.J.; Kuroda, M.; Crane, D.E. Tree mortality rates and tree population projections in Baltimore, Maryland, USA. Urban For. Urban Green. 2004, 2, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Grabosky, J.; Bassuk, N. Testing of structural urban tree soil materials for Use under Pavement to Increase Street Tree Rooting Volumes. J. Arboric. 1996, 22, 255–263. [Google Scholar] [CrossRef]
- Smiley, E.T.; Calfee, L.; Fraedrich, B.R.; Smiley, E.J. Comparison of Structural and Noncompacted Soils for Trees Surrounded by Pavement. Arboric. Urban For. 2006, 32, 164–169. [Google Scholar] [CrossRef]
- Rahman, M.A.; Smith, J.G.; Stringer, P.; Ennos, A.R. Effect of rooting conditions on the growth and cooling ability of Pyrus calleryana. Urban For. Urban Green. 2011, 10, 185–192. [Google Scholar] [CrossRef]
- Grabosky, J. Establishing a common method to compare soil systems designed for both tree growth and pavement support. Research Note. Soil Sci. 2015, 180, 207–213. [Google Scholar] [CrossRef]
- Bühler, O.; Ingerslev, M.; Skov, S.; Schou, E.; Thomsen, I.M.; Nielsen, C.N.; Kristoffersen, P. Tree development in structural soil–An empirical below-ground in-situ study of urban trees in Copenhagen, Denmark. Plant Soil 2017, 413, 29–44. [Google Scholar] [CrossRef]
- Bretzel, F.; Vannucchi, F.; Pini, R.; Scatena, M.; Marradi, A.; Cinelli, F. Use of coarse substrate to increase the rate of water infiltration and the bearing capacity in tree plantings. Ecol. Eng. 2020, 148, 105798. [Google Scholar] [CrossRef]
- Grabosky, J.; Bassuk, N. Seventeen years’ growth of street trees in structural soil compared with a tree lawn in New York City. Urban For. Urban Green. 2016, 16, 103–109. [Google Scholar] [CrossRef]
- FLL. Empfehlungen für Baumpflanzungen Teil 2. In Standortvorbereitungen für Neuanpflanzungen; Pflanzgruben und Wurzelraumerweiterung, Bauweisen und Substrate; Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau e.V. (FLL): Bonn, Germany, 2010. [Google Scholar]
- Nielsen, C.N.; Bühler, O.; Kristoffersen, P. Soil water dynamics and growth of street and park trees. Arboric. Urban For. 2007, 33, 231–245. [Google Scholar] [CrossRef]
- Riikonen, A.; Lindén, L.; Pulkkinen, M.; Nikinmaa, E. Post-transplant crown allometry and shoot growth of two species of street trees. Urban For. Urban Green. 2011, 10, 87–94. [Google Scholar] [CrossRef]
- Schickhoff, U.; Eschenbach, A. Terrestrische und semiterrestrische Ökosysteme. In Hans von Storch, Insa Meinke und Martin Claußen (Hg.): Hamburger Klimabericht–Wissen über Klima, Klimawandel und Auswirkungen in Hamburg und Norddeutschland; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Somerville, P.D.; Farrell, C.; May, P.B.; Livesley, S.J. Tree water use strategies and soil type determine growth responses to biochar and compost organic amendments. Soil Tillage Res. 2019, 192, 12–21. [Google Scholar] [CrossRef]
- Blackman, C.J.; Creek, D.; Maier, C.; Aspinwall, M.J.; Drake, J.E.; Pfautsch, S.; O’Grady, A.; Delzon, S.; E Medlyn, B.; Tissue, D.T.; et al. Drought response strategies and hydraulic traits contribute to mechanistic understanding of plant dry-down to hydraulic failure. Tree Physiol. 2019, 39, 910–924. [Google Scholar] [CrossRef] [PubMed]
- Trugman, A.T.; Detto, M.; Bartlett, M.K.; Medvigy, D.; Anderegg, W.R.L.; Schwalm, C.; Schaffer, B.; Pacala, S.W. Tree carbon allocation explains forest drought-kill and recovery patterns. Ecol. Lett. 2018, 21, 1552–1560. [Google Scholar] [CrossRef] [PubMed]
- Adams, H.D.; Zeppel, M.J.B.; Anderegg, W.R.L.; Hartmann, H.; Landhäusser, S.M.; Tissue, D.T.; Huxman, T.E.; Hudson, P.J.; Franz, T.E.; Allen, C.D.; et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 2017, 1, 1285–1291. [Google Scholar] [CrossRef]
- Mitchell, P.J.; O’Grady, A.P.; Tissue, D.T.; Worledge, D.; Pinkard, E.A. Co-ordination of growth, gas exchange and hydraulics define the carbon safety margin in tree species with contrasting drought strategies. Tree Physiol. 2014, 34, 443–458. [Google Scholar] [CrossRef]
- Roloff, A.; Korn, S.; Gillner, S. The Climate-Species-Matrix to select tree species for urban habitats considering climate change. Urban For. Urban Green. 2009, 8, 295–308. [Google Scholar] [CrossRef]
- Böll, S.; Schönfeld, P.; Körber, K.; Herrmann, J.V. Stadtbäume unter Stress. Projekt »Stadtgrün 2021« untersucht Stadtbäume im Zeichen des Klimawandels. LWF Aktuell 2014, 98, 4–8. [Google Scholar]
- Stratópoulos, L.M.F.; Zhang, C.; Häberle, K.-H.; Pauleit, S.; Duthweiler, S.; Pretzsch, H.; Rötzer, T. Effects of Drought on the Phenology, Growth, and Morphological Development of Three Urban Tree Species and Cultivars. Sustainability 2019, 11, 5117. [Google Scholar] [CrossRef] [Green Version]
- Schönfeld, P. Klimabäume. Welche Arten können in Zukunft gepflanzt werden? LWG Aktuell. 2019. Available online: https://www.lwg.bayern.de/mam/cms06/landespflege/dateien/zukunft_klimabaeume.pdf (accessed on 15 March 2022).
- DWD. CDC (Climate Data Center). Deutscher Wetterdienst. 2020. Available online: https://www.dwd.de (accessed on 15 March 2022).
- Watson, G.W.; Hewitt, A.M.; Custic, M.; Lo, M. The management of tree root systems in urban and suburban settings II. A Review of Strategies to Mitigate Human Impacts. Arboric. Urban For. 2014, 40, 249–271. [Google Scholar] [CrossRef]
- Roloff, A. Aktualisierte KlimaArtenMatrix 2021 (“KLAM 2.0”). Unter Mitarbeit von Sten Gillner und Ulrich Pietzarka. In Andreas Roloff (Hg.): Trockenstress bei Bäumen. Ursachen, Strategien, Praxis. Unter Mitarbeit von Anne Dreßler, Britt Kniesel, Doris Krabel, Liu Ming, Ulrich Pietzarka, Andreas Roloff und Lauritz Schrader; Quelle & Meyer Verlag GmbH & Co.: Wiebelsheim, Germany, 2021; pp. 201–230. [Google Scholar]
- Allen, K.S.; Harper, R.W.; Bayer, A.; Brazee, N.J. A review of nursery production systems and their influence on urban tree survival. Urban For. Urban Green. 2017, 21, 183–191. [Google Scholar] [CrossRef] [Green Version]
- UMS GmbH. Manual HYPROP. UMS GmbH. Gmunder Str. 37, 81379 München, Germany (Version 2015-1). 2015. Available online: http://library.metergroup.com/Manuals/UMS/Hyprop_Manual.pdf (accessed on 25 February 2022).
- Pertassek, T.; Peters, A.; Durner, W. HYPROP-FIT Software User’s Manual, V. 3.0. Hg. v, UMS GmbH. Gmunder Str. 37, 81379: München, Germany. 2015. Available online: http://www.soil.tu-bs.de/download/downloads/reports/2015.Manual_HYPROP-FIT.pdf (accessed on 25 February 2022).
- van Genuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Shock, C.C.; Barnum, J.M.; Seddigh, M. Calibration of Watermark Soil Moisture Sensors for Irrigation Management. 1998. Available online: https://www.researchgate.net/profile/Clinton-Shock/publication/228762944_Calibration_of_W_ermark_Soil_Moisture_Sensors_for_Irrigation_Management/links/55ed971408ae3e12184819e7/Calibration-of-W-ermark-Soil-Moisture-Sensors-for-Irrigation-Management.pdf?_sg%5B0%5D=HUfTqZa51n_ochZlOZEB02YVuEJmDUsBgwCjg5iiy4Sv_CbwSpvfGkQ8yis9DLhS7fHrHlOuGRK4hkLWwK9yWw.z_OgBYeZ6_vc09Hy93oOgqYnxbktt8rNEhCW_0wvFD4FD7NX7icVsJP4hfdPqVNKgnsjCJpB9gWmD-8mzsNqRw&_sg%5B1%5D=J7mKCVEDnOcsiBZC8HLO3AulvwVF5U-xR5w9gkJDwCG2IfsGl9bNH_KVFmXdLEFgW7AKUrn2qQJ3gzGdN98zGopYvHUDdpSHGe6XLszU4x8D.z_OgBYeZ6_vc09Hy93oOgqYnxbktt8rNEhCW_0wvFD4FD7NX7icVsJP4hfdPqVNKgnsjCJpB9gWmD-8mzsNqRw&_iepl= (accessed on 14 February 2022).
- Allen, R. Calibration for the Watermark 200SS Soil Water Potential Sensorto Fit the 7-19-96―Calibration #3‖Table; University of Idaho: Kimberly, ID, USA, 2000. [Google Scholar]
- Granier, A.; Reichstein, M.; Bréda, N.; Janssens, I.A.; Falge, E.; Ciais, P.; Grünwald, T.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; et al. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric. For. Meteorol. 2007, 143, 123–145. [Google Scholar] [CrossRef]
- Granier, A.; Breda, N.; Biron, P.; Vilette, S. A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecol. Model. 1999, 116, 269–283. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Knüsel, S.; Peters, R.L.; Haeni, M.; Wilhelm, M.; Zweifel, R. Processing and Extraction of Seasonal Tree Physiological Parameters from Stem Radius Time Series. Forests 2021, 12, 765. [Google Scholar] [CrossRef]
- Zweifel, R.; Haeni, M.; Buchmann, N.; Eugster, W. Are trees able to grow in periods of stem shrinkage? New Phytol. 2016, 211, 839–849. [Google Scholar] [CrossRef] [Green Version]
- Köcher, P.; Horna, V.; Leuschner, C. Environmental control of daily stem growth patterns in five temperate broad-leaved tree species. Tree Physiol. 2012, 32, 1021–1032. [Google Scholar] [CrossRef] [Green Version]
- Deslauriers, A.; Rossi, S.; Anfodillo, T. Dendrometer and intra-annual tree growth: What kind of information can be inferred? Dendrochronologia 2007, 25, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, D.; Cannavo, P.; Séré, G.; Vidal-Beaudet, L.; Legret, M.; Damas, O.; Peyneau, P.-E. Physical properties of structural soils containing waste materials to achieve urban greening. J. Soils Sediments 2018, 18, 442–455. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Bréda, N.; Granier, A.; Barataud, F.; Moyne, C. Soil water dynamics in an oak stand. I. Soil moisture, water potentials and water uptake by roots. Plant Soil 1995, 172, 17–27. [Google Scholar] [CrossRef]
- Puhlmann, H.; Schmidt-Walter, P.; Hartmann, P.; Meesenburg, H.; von Wilpert, K. Soil Water Budget and Drought Stress. In Nicole Wellbrock und Andreas Bolte (Hg.): Status and Dynamics of Forests in Germany, Bd. 237; Springer International Publishing (Ecological Studies): Cham, Switzerland, 2019; pp. 55–91. [Google Scholar]
- Grabosky, J.; Haffner, E.; Bassuk, N. Plant available Moisture in Stone-soil Media for Use under pavement while allowing urban tree root growth. Arboric. Urban For. 2009, 35, 271–278. [Google Scholar] [CrossRef]
- Li, K.I.; De Jong, R.; Coe, M.T.; Ramankutty, N. Root-Water-Uptake Based upon a New Water Stress Reduction and an Asymptotic Root Distribution Function. Earth Interact. 2006, 10, 1–14. [Google Scholar] [CrossRef]
- Schulze, E.-D.; Beck, E.; Buchmann, N.; Clemens, S.; Müller-Hohenstein, K.; Scherer-Lorenzen, M. Plant Ecology; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Abdalla, M.; Carminati, A.; Cai, G.; Javaux, M.; Ahmed, M.A. Stomatal closure of tomato under drought is driven by an increase in soil–root hydraulic resistance. Plant Cell Environ. 2021, 44, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Sjöman, H.; Hirons, A.D.; Bassuk, N.L. Improving confidence in tree species selection for challenging urban sites: A role for leaf turgor loss. Urban Ecosyst. 2018, 21, 1171–1188. [Google Scholar] [CrossRef] [Green Version]
- Schmidt-Walter, P.; Ahrends, B.; Mette, T.; Puhlmann, H.; Meesenburg, H. NFIWADS: The water budget, soil moisture, and drought stress indicator database for the German National Forest Inventory (NFI). Ann. For. Sci. 2019, 76, 39. [Google Scholar] [CrossRef] [Green Version]
- Bühler, O.; Nielsen, C.N.; Kristoffersen, P. Growth and phenology of established Tilia cordata street trees in response to different irrigation regimes. Arboric. Urban For. 2006, 32, 3–9. [Google Scholar] [CrossRef]
- Boukili, V.K.S.; Bebber, D.P.; Mortimer, T.; Venicx, G.; Lefcourt, D.; Chandler, M.; Eisenberg, C. Assessing the performance of urban forest carbon sequestration models using direct measurements of tree growth. Urban For. Urban Green. 2017, 24, 212–221. [Google Scholar] [CrossRef]
- Lawrence, A.B.; Escobedo, F.J.; Staudhammer, C.L.; Zipperer, W. Analyzing growth and mortality in a subtropical urban forest ecosystem. Landsc. Urban Plan. 2012, 104, 85–94. [Google Scholar] [CrossRef]
- Loh, F.C.W.; Grabosky, J.C.; Bassuk, N.L. Growth response of Ficus benjamina to limited soil volume and soil dilution in a skeletal soil container study. Urban For. Urban Green. 2003, 2, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Krieter, M.; Malkus, A. Untersuchungen zur Standortoptimierung von Straßenbäumen: Ergebnisse eines FLL-Pflanzversuches von Tilia Pallida in 14 Deutschen Städten; FLL: Bonn, Germany, 1996. [Google Scholar]
- Moser, A.; Rahman, M.A.; Pretzsch, H.; Pauleit, S.; Rötzer, T. Inter- and intraannual growth patterns of urban small-leaved lime (Tilia cordata mill.) at two public squares with contrasting microclimatic conditions. Int. J. Biometeorol. 2017, 61, 1095–1107. [Google Scholar] [CrossRef]
- Gillner, S.; Korn, S.; Hofmann, M.; Roloff, A. Contrasting strategies for tree species to cope with heat and dry conditions at urban sites. Urban Ecosyst. 2017, 20, 853–865. [Google Scholar] [CrossRef]
- Moser, A.; Rötzer, T.; Pauleit, S.; Pretzsch, H. The Urban Environment Can Modify Drought Stress of Small-Leaved Lime (Tilia cordata Mill.) and Black Locust (Robinia pseudoacacia L.). Forests 2016, 7, 71. [Google Scholar] [CrossRef] [Green Version]
- Baraldi, R.; Przybysz, A.; Facini, O.; Pierdonà, L.; Carriero, G.; Bertazza, G.; Neri, L. Impact of Drought and Salinity on Sweetgum Tree (Liquidambar styraciflua L.): Understanding Tree Ecophysiological Responses in the Urban Context. Forests 2019, 10, 1032. [Google Scholar] [CrossRef] [Green Version]
- Watson, G.W.; Himelick, E.B. Effects of soil pH, root density and tree growth regulator treatments on pin oak chlorosis. J. Arboric. 2004, 30, 172–178. [Google Scholar] [CrossRef]
- Watson, G.W.; Kelsey, P. The impact of soil compaction on soil aeration and fine root density of Quercus palustris. Urban For. Urban Green. 2006, 4, 69–74. [Google Scholar] [CrossRef]
- Roloff, A.; Gillner, S.; Kniesel, R.; Zhang, D. Interesting and new street tree species for European cities. Jflr 2018, 3, 1–7. [Google Scholar] [CrossRef]
- Stratopoulos, L. “Klimabäume” für die Stadt. Über die Rolle Einer Angepassten Arten- und Sortenwahl für die Kühlleistung von Straßenbäumen. Ph.D. Thesis, Technische Universität München, Weihnenstephan, Germany, 2020. [Google Scholar]
- Stratópoulos, L.M.F.; Zhang, C.; Duthweiler, S.; Häberle, K.-H.; Rötzer, T.; Xu, C.; Pauleit, S. Tree species from two contrasting habitats for use in harsh urban environments respond differently to extreme drought. Int. J. Biometeorol. 2019, 63, 197–208. [Google Scholar] [CrossRef]
- Smitley, D.R.; Peterson, N.C. Interactions of Water Stress, Honeylocust Spider Mites (Acari: Tetranychidae), Early Leaf Abscission, and Growth of Gleditsia tnacanthos. J. Econ. Entomol. 1996, 89, 1577–1581. [Google Scholar] [CrossRef]
- Klisz, M.; Puchałka, R.; Netsvetov, M.; Prokopuk, Y.; Vítková, M.; Sádlo, J.; Matisons, R.; Mionskowski, M.; Chakraborty, D.; Olszewski, P.; et al. Variability in climate-growth reaction of Robinia pseudoacacia in Eastern Europe indicates potential for acclimatisation to future climate. For. Ecol. Manag. 2021, 492, 119194. [Google Scholar] [CrossRef]
- Moser-Reischl, A.; Rahman, M.A.; Pauleit, S.; Pretzsch, H.; Rötzer, T. Growth patterns and effects of urban micro-climate on two physiologically contrasting urban tree species. Landsc. Urban Plan. 2019, 183, 88–99. [Google Scholar] [CrossRef]
- Netsvetov, M.; Prokopuk, Y.; Puchałka, R.; Koprowski, M.; Klisz, M.; Romenskyy, M. River Regulation Causes Rapid Changes in Relationships Between Floodplain Oak Growth and Environmental Variables. Front. Plant Sci. 2019, 10, 96. [Google Scholar] [CrossRef]
- Thomsen, S.; Reisdorff, C.; Gröngröft, A.; Jensen, K.; Eschenbach, A. Responsiveness of mature oak trees (Quercus robur L.) to soil water dynamics and meteorological constraints in urban environments. Urban Ecosyst. [CrossRef]
- Dervishi, V.; Poschenrieder, W.; Rötzer, T.; Moser-Reischl, A.; Pretzsch, H. Effects of Climate and Drought on Stem Diameter Growth of Urban Tree Species. Forests 2022, 13, 641. [Google Scholar] [CrossRef]
Tree Species ‘Cultivar’ | Code | DBH | Suitability | STP HH ³ | Stock of Tree Species 3 | |||
---|---|---|---|---|---|---|---|---|
(cm) | KLAM 1 | GALK 2 | (%) | >2010 | 1990–2009 | <1990 | ||
Tilia cordata ‘Greenspire’ | Tc | 5.1 ± 0.1 | 2.1 | Well suited | 1.3 | 737 | 1561 | 596 |
Quercus cerris | Qc | 4.6 ± 0.2 | 1.2 | Well suited | 0.4 | 588 | 113 | 263 |
Quercus palustris | Qp | 5.3 ± 0.1 | 2.2 | Partly suited | 0.9 | 400 | 720 | 924 |
Carpinus betulues ‘Lucas’ | Cb | 4.6 ± 0.1 | 2.1 | In test | <0.1 | 61 | 0 | 0 |
Ostrya carpinifolia | Oc | 4.5 ± 0.2 | 1.1 | Suited | 0.1 | 187 | 90 | 0 |
Gleditsia triacanthos ‘Skyline’ | Gt | 5.1 ± 0.1 | 1.2 | Well suited | 0.1 | 153 | 98 | 1 |
Liquidambar styraciflua | Ls | 4.9 ± 0.4 | 2.2 | Suited | 0.3 | 352 | 155 | 54 |
Amelanchier lamarckii | Al | 5.0 ± 0.1 | 3.1 | n.d. | 0.1 | 52 | 53 | 78 |
Koelreuteria paniculata | Kp | 5.1 ± 0.2 | 1.2 | Partly suited | <0.1 | 28 | 2 | 0 |
Planting Soil | Fine Tex. < 2 mm | Coarse Tex. > 2 mm | OM | pH | BD | Hydrological Properties | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | IC | FC | PAWC | ||||||
(v/v) | (v/v) | (v/v) | (w/v) | (v/v) | (v/v) | CaCl2 | (g cm−1) | (cm min−1) | (v/v) | (v/v) | |
‘Sand’ | 95 | 4 | 1 | 2 | n.d. | 0.1 | 6.8 | 1.4 | 1.5 | 9.1 | 6.0 |
‘FLL’ | 93 | 5 | 2 | 35 | 20 | 0.6 | 6.5 | 1.4 | 1.9 | 14.6 | 10.3 |
‘Loamy Silt’ | 29 | 61 | 10 | 1 | n.d. | 0.9 | 5.7 | 1.4 | 0.3 | 33.0 | 23.0 |
Tree Species ‘Cultivar’ | Vitality Score 1 | |||||
---|---|---|---|---|---|---|
‘Sand’ | ‘FLL’ | ‘Loamy Silt’ | ||||
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
Tilia cordata ‘Greenspire’ | 1.6 ± 0.9 | 1.4 ± 0.5 | 1.0 ± 0.0 | 1.0 ± 0.0 | 1.0 ± 0.0 | 1.0 ± 0.0 |
Quercus cerris | 2.2 ± 0.4 | 2.4 ± 0.5 | 1.4 ± 0.5 | 1.2 ± 0.4 | 1.6 ± 0.9 | 1.8 ± 0.8 |
Quercus palustris | 2.8 ± 0.4 | 2.8 ± 0.4 | 1.6 ± 0.5 | 1.4 ± 0.5 | 1.0 ± 0.0 | 1.6 ± 0.5 |
Carpinus betulus ‘Lucas’ | 2.2 ± 0.4 | 1.8 ± 0.4 | 1.8 ± 0.4 | 1.2 ± 0.4 | 1.2 ± 0.4 | 1.0 ± 0.0 |
Ostrya carpinifolia | 2.6 ± 0.5 | 2.2 ± 0.8 | 1.8 ± 0.4 | 1.8 ± 0.4 | 1.2 ± 0.4 | 1.2 ± 0.4 |
Gleditsia triacanthos ‘Skyline’ | 2.4 ± 0.5 | 1.6 ± 0.5 | 2.2 ± 0.4 | 1.6 ± 0.5 | 1.2 ± 0.4 | 1.0 ± 0.0 |
Liquidambar styraciflua | 2.2 ± 0.4 | 2.0 ± 0.0 | 1.0 ± 0.0 | 1.0 ± 0.0 | 1.2 ± 0.4 | 1.2 ± 0.4 |
Amelanchier lamarckii | 3.0 ± 1.0 | 3.6 ± 0.9 | 1.6 ± 0.5 | 1.6 ± 0.5 | 1.4 ± 0.5 | 1.0 ± 0.0 |
Koelreuteria paniculata | 2.4 ± 0.9 | 2.8 ± 0.8 | 2.4 ± 0.9 | 2.0 ± 0.7 | 2.4 ± 1.1 | 3.2 ± 1.5 |
Weekly SDI | n | REW0–35 cm | REW0–100 cm | p | VPD |
---|---|---|---|---|---|
Tilia cordata ‘Greenspire’ | 3 | 0.43 ** | 0.53 ** | ns | ns |
Quercus cerris | 2 | ns | ns | ns | ns |
Quercus palustris | 3 | 0.42 | 0.45 *** | 0.43 | −0.41 |
Carpinus betulus ‘Lucas’ | 3 | 0.32 | 0.51 ** | ns | ns |
Ostrya carpinifolia | 3 | 0.69 *** | 0.85 *** | 0.53 ** | ns |
Gleditsia triacanthos ‘Skyline’ | 3 | 0.64 *** | 0.37 | ns | ns |
Liquidambar styraciflua | 3 | 0.61 *** | 0.73 *** | ns | ns |
Amelanchier lamarckii | 3 | 0.44 ** | ns | 0.38 ** | ns |
mds | |||||
Tilia cordata ‘Greenspire’ | 3 | 0.67 *** | 0.72 *** | 0.23 ** | −0.42 *** |
Quercus cerris | 2 | 0.6 *** | 0.64 *** | ns | −0.57 *** |
Quercus palustris | 3 | 0.47 *** | 0.48 *** | ns | −0.43 *** |
Carpinus betulus ‘Lucas’ | 3 | 0.67 *** | 0.53 *** | 0.16 ** | −0.38 *** |
Ostrya carpinifolia | 3 | 0.35 *** | 0.4 *** | ns | −0.49 *** |
Gleditsia triacanthos ‘Skyline’ | 3 | 0.34 *** | 0.39 *** | ns | ns |
Liquidambar styraciflua | 3 | 0.6 *** | 0.42 *** | 0.19 ** | −0.4 *** |
Amelanchier lamarckii | 3 | 0.63 *** | 0.43 *** | 0.26 ** | −0.51 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schütt, A.; Becker, J.N.; Reisdorff, C.; Eschenbach, A. Growth Response of Nine Tree Species to Water Supply in Planting Soils Representative for Urban Street Tree Sites. Forests 2022, 13, 936. https://doi.org/10.3390/f13060936
Schütt A, Becker JN, Reisdorff C, Eschenbach A. Growth Response of Nine Tree Species to Water Supply in Planting Soils Representative for Urban Street Tree Sites. Forests. 2022; 13(6):936. https://doi.org/10.3390/f13060936
Chicago/Turabian StyleSchütt, Alexander, Joscha Nico Becker, Christoph Reisdorff, and Annette Eschenbach. 2022. "Growth Response of Nine Tree Species to Water Supply in Planting Soils Representative for Urban Street Tree Sites" Forests 13, no. 6: 936. https://doi.org/10.3390/f13060936
APA StyleSchütt, A., Becker, J. N., Reisdorff, C., & Eschenbach, A. (2022). Growth Response of Nine Tree Species to Water Supply in Planting Soils Representative for Urban Street Tree Sites. Forests, 13(6), 936. https://doi.org/10.3390/f13060936