Climatic Suitability and Distribution Overlap of Sawflies (Hymenoptera: Diprionidae) and Threatened Populations of Pinaceae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining Presence Records
2.2. Environmental Variables
2.3. Model Calibration
2.4. Development of Candidate Models
2.5. Model Evaluation
2.6. Model Extrapolation Analysis
3. Results
3.1. Parameterization and Environmental Variables That Defined the Models
3.2. Environmental Suitability
3.3. Distribution of Host Species
3.4. Multivariate Environmental Similarity Surface (MESS) Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gernandt, D.S.; Pérez-de la Rosa, J.A. Biodiversidad e Pinophyta (coníferas) en México. Rev. Mex. Biodivers. 2014, 85, S126–S133. [Google Scholar] [CrossRef] [Green Version]
- Farjon, A. Biodiversity of Pinus (Pinaceae) in Mexico speciation and palaeo-endemism. Bot. J. Linn. Soc. 1996, 121, 365–384. [Google Scholar] [CrossRef]
- Sánchez-González, A. Una visión actual de la diversidad y distribución de los pinos en México. Madera Bosques 2008, 14, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Rosete-Vergés, F.A.; Pérez-Samián, J.L.; Villalobos-Delgado, M.; Navarro-Salas, E.N. El avance de la deforestación en México 1976–2000. Madera Bosques 2014, 20, 21–35. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Dorantes, D.B.; Villaseñor, J.L.; Ortiz, E.; Gernandt, D.S. Biodiversity, distribution, and conservation status of Pinaeceae in Puebla, Mexico. Rev. Mex. Biodivers. 2017, 88, 215–223. [Google Scholar] [CrossRef]
- Secretaría de Medio Ambiente y Recursos Naturales. Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección Ambiental-Especies Nativas de México de Flora y Fauna Silvestres-Categorías de Riesgo y Especificaciones para su Inclusión, Exclusión o Cambio-Lista de Especies en Riesgo. Diario Oficial de la Federación. 15 de Diciembre de 2010. Available online: https://dof.gob.mx/nota_detalle.php?codigo=5173091&fecha=30/12/2010#gsc.tab=0 (accessed on 3 November 2021).
- Cervantes-Martínez, R.; Cerano-Paredes, J.; Sánchez-Martínez, G.; Villanueva-Díaz, J.; Esquive-Arriaga, G.; Cambrón-Sandoval, V.H.; Méndez-González, J.; Castruita-Esparza, L.U. Historical bark beetle outbreaks in Mexico, Guatemala and Honduras (1895–2015) and their relationship with droughts. Rev. Chapingo Ser. Cienc. For. Ambient. 2019, 25, 269–290. [Google Scholar]
- Smith, D.R. List of the sawflies (Hymenoptera: Sypmphyta) of Virginia. Banisteria 2006, 28, 1–23. [Google Scholar]
- Price, P.W.; Roininen, H.; Ohgushi, T. Adaptive radiation into ecological niches with eruptive dynamics: A comparison of tenthredinid and diprionid sawflies. J. Anim. Ecol. 2005, 74, 397–408. [Google Scholar] [CrossRef]
- Aguilera-Molina, V.M.; Munguía-Ortega, K.K.; López-Reyes, E.; Martínez-Aquino, A.; Ceccarelli, F.S. Climate change and forest plagues: Assessing current and future impacts of diprionid sawflies on the pine forests of north-western Mexico. PeerJ 2019, 7, e7220. [Google Scholar] [CrossRef]
- Aguirre-Hidalgo, V.; Casasola-González, J.A.; Alfonso-Corrado, C.; Santiago-García, E.; Clark-Tapia, R. Registro y ecología de Zadiprion howdeni (Hymenoptera: Diprionidae) en Ixtlán de Juárez, Oaxaca. Madera Bosques 2020, 26, e2631943. [Google Scholar] [CrossRef]
- Knerer, G.; Atwood, C.E. Evolutionary trends in the subsocial sawflies belonging to the Neodrprion abietis complex (Hymenoptera; Tenthredinoidea). Am. Zool. 1972, 12, 407–418. [Google Scholar] [CrossRef] [Green Version]
- Lucarotti, C.J.; Whittome-Waygood, B.H.; Levin, D.B. Histology of the larval Neodiprion abietis (Hymenoptera: Diprionidae) digestive tract. Psyche 2011, 2011, 910286. [Google Scholar]
- González-Gaona, E.; Gómez-Nísino, A.; De Lira-Ramos, K.V.; Rodríguez-Cruz, Y.E.; Olivo-Martínez, J.A.; Rascón-Mendoza, A.A.; Sánchez-Martínez, G. Primer registro documentado de Neodiprion abietis (Harris, 1841) (Hymenoptera: Diprionidae) para México. Rev. Mex. Cienc. For. 2021, 12, e21. [Google Scholar] [CrossRef]
- Johns, R.C.; Fidgen, J.; Ostaff, D.P. Host-tree oviposition preference of balsam fir sawfly, Neodiprion abietis (Hymenoptera: Diprionidae), in New Brunswick, Canada. Can. Entomol. 2013, 145, 430–434. [Google Scholar] [CrossRef]
- Smith, D.R. A synopsis of the sawflies (Hymenoptera: Symphyta) of America south of the United States: Introduction, Xyelidae, Pamphiliidae, Cimbicidae, Diprionidae, Xiphydriidae, Siricidae, Orussidae, Cephidae. Syst. Entomol. 1988, 13, 205–261. [Google Scholar] [CrossRef]
- Smith, D.R. The genus Zadiprion Rohwer (Hymenoptera: Diprionidae). Proc. Entomol. Soc. Wash. 1971, 73, 187–197. [Google Scholar]
- Smith, D.R.; Monjarás-Barrera, J.I.; Aguilar-Hernández, J.C.; Quiñones-Dena, H. New host and distribution records for Zadiprion rohweri (Middleton) (Hymenoptera: Diprionidae), a pinyon pine sawfly. Proc. Entomol. Soc. Wash. 2016, 118, 300–301. [Google Scholar] [CrossRef]
- Suárez-Mota, M.E.; Pacheco-García, M.M.; Cristobal-Angulo, O.P.; Antúnez, P.; Santiago-García, W.; Bautista-Juárez, I. La plaga defoliadora Zadiprion howdeni Smith en la sierra norte de Oaxaca, México: Estado actual y perspectivas. Agro Product. 2018, 11, 35–41. [Google Scholar]
- Blackburn, T.M.; Pyšek, P.; Bacher, S.; Carlton, J.T.; Duncan, R.P.; Jarošik, V.; Wilson, J.R.U.; Richardson, D.M. A proposed unified framework for biological invasions. Trends Ecol. Evol. 2011, 26, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Lockwood, J.L.; Hoopes, M.F.; Marchetti, M.P. Invasion Ecology; Wiley-Blackwell: Oxford, UK, 2013. [Google Scholar]
- BOLDSYSTEMS. 2014. Available online: http://v3.boldsystems.org/ (accessed on 29 July 2020).
- Boria, R.A.; Olson, L.E.; Goodman, S.M.; Anderson, R.P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Modell. 2014, 275, 73–77. [Google Scholar] [CrossRef]
- Aiello-Lammenes, M.E.; Boria, R.A.; Radosavljevic, A.; Vilela, B.; Anderson, R.P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 2015, 38, 541–545. [Google Scholar] [CrossRef]
- RStudio: Integrated Development for R. Available online: http://www.rstudio.com/ (accessed on 13 June 2021).
- Beck, J.; Ballesteros-Mejia, L.; Nagel, P.; Kitching, I.J. Online solutions and the “Wallacean shortfall”: What does GBIF contribute to our knowledge of species’ ranges? Divers. Distrib. 2013, 19, 1043–1050. [Google Scholar] [CrossRef]
- Shirey, V.; Seppälä, S.; Branco, V.V.; Cardoso, P. Current GBIF occurrence data demonstrates both promise and limitations for potential red listing of spiders. Biodivers. Data J. 2019, 7, e47369. [Google Scholar] [CrossRef]
- Zizka, A.; Carvalho, F.A.; Calvente, A.; Baez-Lizarazo, M.R.; Cabral, A.; Coelho, J.F.R.; Colli-Silva, M.; Fantinati, M.R.; Fernandes, M.F.; Ferreira-Araújo, T.; et al. No one-size-fits-all solution to clean GBIF. PeerJ 2020, 8, e9916. [Google Scholar] [CrossRef]
- GBIF.org GBIF Occurrence Download. Available online: https://doi.org/10.15468/dl.9ajazt (accessed on 9 January 2021).
- iNaturalist. Available online: https://www.inaturalist.org (accessed on 8 January 2021).
- Southeast Regional Network of Expertise and Collections. Available online: http://sernecportal.org/portal/collections/individual/index.php?occid=157953 (accessed on 3 August 2020).
- Anstey, L.J.; Quiring, D.T.; Ostaff, D.P. Seasonal changes in intra-tree distribution of immature balsam fir sawfly (Hymenoptera: Diprionidae). Can. Entomol. 2002, 134, 529–538. [Google Scholar] [CrossRef]
- Li, S.Y. Virulence of a nucleopolyhedrovirus to Neodiprion abietis (Hymenoptera: Diprionidae). J. Econ. Entomol. 2005, 98, 1870–1875. [Google Scholar] [CrossRef]
- Linnen, C.R.; Farrell, B.D. Mitonuclear discordance is caused by rampant mitochondrial introgression in Neodiprion (Hymenoptera: Diprionidae) sawflies. Evolution 2007, 61, 1417–1438. [Google Scholar] [CrossRef]
- Smith, D.R.; Sánchez-Martínez, G.; Ojeda-Aguilera, A. A new species of Zadiprion (Hymenoptera: Diprionidae) on Pinus durangensis from Chihuahua, Mexico, and a review of other species of the genus. Proc. Entomol. Soc. Wash. 2012, 114, 224–237. [Google Scholar] [CrossRef]
- Paleontological Statistics Version 4.07. Available online: https://www.nhm.uio.no/english/research/infrastructure/past/ (accessed on 1 August 2020).
- Fick, S.E.; Hijmans, R.H. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- O’Donnell, M.S.; Ignizio, D.A. Bioclimatic Predictors for Supporting Ecological Applications in the Conterminous United States; U.S. Geological Survey: Reston, VA, USA, 2012; pp. 4–9.
- Qiao, H.; Feng, X.; Escobar, L.E.; Peterson, A.T.; Soberón, J.; Zhu, G.; Papes, M. An evaluation of transferability of ecological niche models. Ecography 2019, 42, 521–534. [Google Scholar] [CrossRef] [Green Version]
- Simões, M.; Romero, D.; Nuñez, C.; Jiménez, L.; Cobos, M.E. General theory and good practices in ecological niche modeling: A basic guide. Biodivers. Inform. 2020, 15, 67–68. [Google Scholar] [CrossRef]
- Barve, N.; Jiménez-Valverde, A.; Lira-Noriega, A.; Maher, S.P.; Peterson, A.T.; Soberón, J.; Villalobos, F. The crucial role of the accesible area in ecological niche modeling and species distribution modeling. Ecol. Modell. 2011, 11, 1810–1819. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.D.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial ecoregions of the world: A new map of life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 2021, 51, 933–938. [Google Scholar] [CrossRef]
- Soberón, J.; Peterson, A.T. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform. 2005, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Soberón, J.; Osorio, L.; Peterson, A.T. Diferencias conceptuales entre modelación de nichos y modelación de áreas de distribución. Rev. Mex. Biodivers. 2017, 88, 437–441. [Google Scholar] [CrossRef]
- QGIS 3.16 Hannover. Available online: https://docs.qgis.org/3.16/en/docs/index.html (accessed on 22 August 2020).
- Cobos, M.E.; Peterson, A.T.; Barve, N.; Osorio, L. Kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 2019, 7, e6281. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 1–7. [Google Scholar] [CrossRef]
- Morales, N.S.; Fernández, I.C.; Baca, V. MaxEnt’s parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ 2017, 5, e3093. [Google Scholar] [CrossRef]
- Radosavljevic, A.; Anderson, R.P. Making better MAXENT models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 2014, 41, 629–643. [Google Scholar] [CrossRef]
- Escobar, L.E.; Qiao, H.; Cabello, J.; Peterson, A.T. Ecological niche modeling re-examined: A case study with the Darwin’s fox. Ecol. Evol. 2018, 8, 4757–4770. [Google Scholar] [CrossRef]
- Maxent Software for Modeling Species Niches ans Distributions (Version 3.4.1.). Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 15 August 2020).
- Archis, J.N.; Akcali, C.; Stuart, B.L.; Kikuchi, D.; Chunco, A.J. Is the future already here? The impact of climate change on the distribution of the eastern coral snake (Micrurus fulvius). PeerJ 2018, 6, e4647. [Google Scholar] [CrossRef]
- Provincias Biogeográficas de México. Escala 1:4,000,000. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Available online: http://geoportal.conabio.gob.mx/metadatos/doc/html/rbiog4mgw.html (accessed on 1 August 2020).
- Martínez-Méndez, N.; Aguirre-Planter, E.; Eguiarte, L.E.; Jaramillo-Correa, J.P. Ecological niche modeling of species of the genus Abies (Pinaceae) in Mexico: Some taxonomic implications and for conservation. Bot. Sci. 2016, 1, 362–371. [Google Scholar]
- Tulloch, A.I.T.; Auerbach, N.; Avery-Gomm, S.; Bayraktarov, N.B.; Dickman, C.R.; Ehmke, G.; Fisher, D.O.; Granhtham, H.; Holden, M.H.; Lavery, T.H.; et al. A decision tree for assessing the risks and benefits of publishing biodiversity data. Nat. Ecol. Evol. 2018, 2, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Konowalik, K.; Nosol, A. Evaluation metrics and validation of presence-only species distribution models based on distributional maps with varying coverage. Sci. Rep. 2021, 11, 1482. [Google Scholar] [CrossRef]
- Peterson, A.T.; Papeş, M.; Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Modell. 2008, 213, 63–72. [Google Scholar] [CrossRef]
- Lundholm, A.; Black, K.; Corrigan, E.; Nieuwenhuis, M. Evaluating the impact of future global climate change and bioeconomy scenarios on ecosystem services using a strategic forest management decision support system. Front. Ecol. 2020, 8, 200. [Google Scholar] [CrossRef]
- Barredo, J.I.; Strona, G.; de Rigo, D.; Caudullo, G.; Stancanelli, G.; San-Miguel-Ayanz, J. Assessing the potential distribution of insect pests: Case studies on large pine weevil (Hylobius abietis L.) and horse-chesnut leaf miner (Cameraria ohridella) under present and future climate conditions in European forests. EPPO Bull. 2015, 45, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Méndez-Encina, F.M.; Méndez-González, J.; Mendieta-Oviedo, R.; López-Díaz, J.Ó.; Nájera-Luna, J.A. Ecological niches and suitability areas of three host pine species of bark beetle Dendroctonus mexicanus Hopkins. Forests 2021, 12, 385. [Google Scholar] [CrossRef]
- Kutywayo, D.; Chemura, A.; Kusena, W.; Chidokom, P.; Mahoya, C. The impact of climate change on the potential distribution of agricultural pests: The case of the coffee white stem borer (Monochamus leuconotus P.) in Zimbabwe. PLoS ONE 2013, 8, e73432. [Google Scholar] [CrossRef]
- Godefroid, M.; Rasplus, J.Y.; Rossi, J.-P. Is phylogeography helpful for invasive species risk assessment? The case study of the bark beetle genus Dendroctonus. Ecography 2016, 39, 1197–1209. [Google Scholar] [CrossRef]
- Early, R.; González-Moreno, P.; Murphy, S.T.; Day, R. Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. NeoBiota 2018, 40, 25–50. [Google Scholar] [CrossRef] [Green Version]
- Twisa, S.; Buchroithner, M.F. Impact on rural water supply services in the Wami river basin, Tanzania. Water 2019, 11, 2055. [Google Scholar] [CrossRef] [Green Version]
- Banhadi-Marín, J.; Fereres, A.; Pereira, J.A. A model to predict the expansion of Trioza erytreae throughout the Iberian peninsula using a pest risk analysis approach. Insects 2020, 11, 576. [Google Scholar] [CrossRef] [PubMed]
- Orr, M.C.; Kock, J.B.; Griswold, T.L.; Pitts, J.P. Taxonomic utility of niche models in validating species concepts: A case study in Anthophora (Heliophila) (Hymenoptera: Apidae). Zootaxa 2014, 3846, 411–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamtimin, A.; Wang, Y.; Sayit, H.; Yang, X.-H.; Yang, F.; Huo, W.; Zhou, C. Seasonal variations to the near-surface atmospheric boundary layer structure in China´s Gurbantünggüt desert. Adv. Meteorol. 2020, 2020, 6137237. [Google Scholar] [CrossRef]
- Ashraf, U.; Chaudhry, M.N.; Peterson, A.T. Ecological niche models of biotic interactions predict increasing pest risk to olive cultivars with changing climate. Ecosphere 2021, 12, e03714. [Google Scholar] [CrossRef]
- De Somviele, B.; Lyytikäinen-Saarenmaa, P.; Niemelä, P. Sawfly (Hym., Diprionidae) outbreaks on Scots pine: Effect of stand structure, site quality and relative tree position on defoliation intensity. For. Ecol. Manag. 2004, 194, 305–317. [Google Scholar] [CrossRef]
- Kosunen, M.; Kantola, T.; Starr, M.; Blomqvist, M.; Talvitie, M.; Lyytikäinen-Saarenmaa, P. Influence of soil and topography on defoliation intensity during an extended outbreak of the common pine sawfly (Diprion pini L.). iForest 2016, 10, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, J.; Duivenvoorden, J.F. Can we expect to protect threatened species in protected areas? A case study of the genus Pinus in Mexico. Rev. Mex. Biodiv. 2010, 81, 875–882. [Google Scholar]
- Laacke, R.J. Abies Concolor (Gord. & Glend.) Lindl. ex Hildebr. White Fir; Burns, R.M., Honkala, B.H., Eds.; Silvics of North America, U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1990; pp. 36–46.
Sawfly | Host |
---|---|
Neodiprion abietis | Abies concolor (Gordon) Lindl. Ex Hildebr. *, Pinus ponderosa Douglas ex C.Lawson, P. strobiformis Engelm. *, Pseudotsuga mensiezii (Mirb.) Franco |
Neodiprion omosus | Pinus ayacahuite Ehrenb. Ex Schtdl., P. lawsonii Roezl ex Gordon, P. leiophylla Schiede ex Schltdl. & Cham., P. patula Schiede ex Schltdl. & Cha. |
Zadiprion rohweri | Pinus cembroides Zucc., P. edulis Engelm., P. monophylla Torr. & Frém. * |
Species | Model | Mean AUC | Partial ROC | Omission Rate at 5% | AICc | Delta AICc | W AICc | Num Parameters |
---|---|---|---|---|---|---|---|---|
N. abietis | M_2_F_p_Set_01 | 1.08 | 0 | 0.07 | 1394.36 | 0 | 1 | 1 |
N. abietis | M_1_F_p_Set2 | 1.07 | 0 | 0.07 | 1395.72 | 1.33 | 1 | 2 |
N. omosus | M_1_F_lpt_Set_01 | 1.48 | 0 | 0.00 | 606.00 | 0 | 0.82 | 7 |
Z. rohweri | M_3_F_lq_Set_01 | 1.33 | 0 | 0.04 | 453.18 | 0 | 1 | 1 |
Z. rohweri | M_3_F_lq_Set_02 | 1.35 | 0 | 0.04 | 453.21 | 0.03 | 1 | 1 |
Species | Bioclimatic Variable * | % of Contribution to Explain the Model |
---|---|---|
Neodiprion abietis | Precipitation of wettest month (bio 13) | 50.0% |
Precipitation seasonality (bio 15) | 49.2% | |
Mean temperature of coldest quarter (bio 11) | 0.8% | |
Neodiprion omosus | Isothermality (bio 3) | 78.4% |
Precipitation seasonality (bio 15) | 15.7% | |
Minimum temperature of coldest month (bio 6) | 4.6% | |
Temperature annual range (bio 7) | 1.3% | |
Zadiprion rohweri | Mean temperature of wettest quarter (bio 8) | 44.1% |
Temperature seasonality (bio 4) | 40.0% | |
Precipitation of driest month (bio 14) | 15.9% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Martínez, G.; González-Gaona, E.; López-Martínez, V.; Espinosa-Zaragoza, S.; López-Baez, O.; Sanzón-Gómez, D.; Pérez-De la O, N.B. Climatic Suitability and Distribution Overlap of Sawflies (Hymenoptera: Diprionidae) and Threatened Populations of Pinaceae. Forests 2022, 13, 1067. https://doi.org/10.3390/f13071067
Sánchez-Martínez G, González-Gaona E, López-Martínez V, Espinosa-Zaragoza S, López-Baez O, Sanzón-Gómez D, Pérez-De la O NB. Climatic Suitability and Distribution Overlap of Sawflies (Hymenoptera: Diprionidae) and Threatened Populations of Pinaceae. Forests. 2022; 13(7):1067. https://doi.org/10.3390/f13071067
Chicago/Turabian StyleSánchez-Martínez, Guillermo, Ernesto González-Gaona, Víctor López-Martínez, Saul Espinosa-Zaragoza, Orlando López-Baez, Diana Sanzón-Gómez, and Nidia Bélgica Pérez-De la O. 2022. "Climatic Suitability and Distribution Overlap of Sawflies (Hymenoptera: Diprionidae) and Threatened Populations of Pinaceae" Forests 13, no. 7: 1067. https://doi.org/10.3390/f13071067
APA StyleSánchez-Martínez, G., González-Gaona, E., López-Martínez, V., Espinosa-Zaragoza, S., López-Baez, O., Sanzón-Gómez, D., & Pérez-De la O, N. B. (2022). Climatic Suitability and Distribution Overlap of Sawflies (Hymenoptera: Diprionidae) and Threatened Populations of Pinaceae. Forests, 13(7), 1067. https://doi.org/10.3390/f13071067