Population Development of Alien Gall-Forming Aphid Tetraneura nigriabdominalis on Ulmus minor and Ulmus glabra
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Study
2.2.1. The Development of Fundatrices
2.2.2. Maximum Fecundity of Fundatrices
2.3. Meteorological Data
2.4. Statistical Analyses
3. Results
3.1. The Development of Fundatrices
3.2. Maximum Fecundity of Fundatrices
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blackman, R.L.; Eastop, V.F. Aphids on the World’s Crops: An Identification and Information Guide, 2nd ed.; Wiley & Sons: Chichester, UK, 2000; pp. 349–350. [Google Scholar]
- Mifsud, D.; Pérez Hidalgo, N.; Barbagallo, S. Aphids (Hemiptera: Aphidoidea) associated with native trees in Malta (Central Mediterranean) Bull. ESM 2009, 2, 81–93. [Google Scholar]
- Modic, S.; Razinger, J.; Urek, G. Tetraneura (Tetraneurella) nigriabdominalis (Sasaki), gall-forming aphid found on maize roots in Slovenia. Acta Entomol. Slov. 2012, 20, 147–152. [Google Scholar]
- Nieto Nafria, J.M. Fauna Europaea: Tetraneura (Tetraneurella) nigriabdominalis (Sasaki, 1899). Fauna Europaea Version 2.6. 2013. Available online: http://www.fauna-eu.org/ (accessed on 16 May 2022).
- Walczak, U.; Borowiak-Sobkowiak, B.; Wilkaniec, B. Tetraneura (Tetraneurella) nigriabdominalis (Hemiptera: Aphidoidea)–a species extending its range in Europe, and morphological comparison with Tetraneura (Tetraneura) ulmi. Entomol. Fennica 2017, 28, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Kmieć, K.; Kot, I. Tetraneura ulmi (L.) (Hemiptera, Eriosomatinae) on elm as its primary host. Aphids Other Hemipterous Insects 2007, 13, 145–149. [Google Scholar]
- Blackman, R.L.; Eastop, V.F. Aphids on the World’s Herbaceous Plants and Shrubs. Vol. 1. Host Lists and Keys; J. Wiley & Sons: Chichester, UK, 2006; p. 1439. [Google Scholar] [CrossRef]
- Takei, M.; Yoshida, S.; Kawai, T.; Hasegawa, M.; Suzuki, Y. Adaptive significance of gall formation for a hall- inducing aphids on Japanese elm trees. J. Insect Physiol. 2015, 72, 43–51. [Google Scholar] [CrossRef]
- Lee, W.; Otsuki, A.; Akimoto, S. Rapid diagnostic method for discriminating two types of COI sequences in the gall-forming aphid Tetraneura nigriabdominalis (Hemiptera: Aphididae) by multiplex polymerase chain reaction. Entomol. Sci. 2012, 16, 243–247. [Google Scholar] [CrossRef]
- Heinrichs, E.; Barrion, A. Rice-Feeding Insects and Selected Natural Enemies in West Africa: Biology, Ecology, Identification; WARDA–The Africa Rice Center: Los Baños, Philippines, 2004; p. 243. [Google Scholar]
- Akibo-Betts, D.T.; Raymundo, S.A. Aphids as rice pests in Sierra Leone. Int. Rice Res. Newsl. 1978, 3, 15–16. [Google Scholar]
- Galli, E.; Bonvicini-Pagliai, A.M. Field and laboratory research on myrmecophily of Tetraneura akinire. In Aphids in Natural and Managed Ecosystem; Nieto Nafria, J.M., Dixon, A.F.G., Eds.; University of Leon: Leon, Spain, 1988; pp. 183–188. [Google Scholar]
- Kuo, M.-H.; Lu, W.-N.; Chiu, M.C.; Kuo, Y.-H.; Hwang, S.-H. Temperature - Dependent, Development and Population Growth of Tetraneura nigriabdominalis (Homoptera: Pemphigidae) on Three Host Plants. J. Econ. Entomol. 2006, 99, 1209–1213. [Google Scholar] [CrossRef]
- Akimoto, S.; Yamaguchi, Y. Phenotypic Selection on the Process of Gall Formation of a Tetraneura Aphid (Pemphigidae). J. Anim. Ecology. 1994, 63, 727–738. [Google Scholar] [CrossRef]
- Raman, A. Morfogenesis of insect-induced plant galls: Facts and questions. Flora 2011, 206, 517–533. [Google Scholar] [CrossRef]
- Kmieć, K.; Rubinowska, K.; Golan, K. Tetraneura ulmi (Hemiptera: Eriosomatinae) induces oxidative stress and alters antioxidant enzyme activities in elm leaves. Environ. Entomol. 2018, 47, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Rehill, B.J.; Schulz, J.C. Opposing survivorship and fecundity effects of host phenology on the gall-inducing aphid Hormaphis hamamelidis. Ecol. Entomol. 2002, 27, 475–483. [Google Scholar] [CrossRef]
- Wool, D. Galling aphids: Specialization, biological complexity, and variation. Annu. Rev. Entomol. 2004, 49, 175–192. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.C.; Isaias, R.M.S.; . Fernandes, G.W.; Ferreira, B.G.; Carneiro, R.G.S.; Fuzaro, L. Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds. J. Insect Physiol. 2016, 84, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Vitasse, Y.; Baumgarten, F.; Zohner, C.M.; Kaewthongrach, R.; Fu, Y.H.; Walde, M.G.; Moser, B. Impact of microclimatic conditions and resource availability on spring and autumn phenology of temperate tree seedlings. New Phytol. 2021, 232, 537–550. [Google Scholar] [CrossRef]
- Basler, D. Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe. Agric. For. Meteorol. 2016, 217, 10–21. [Google Scholar] [CrossRef]
- Komatsu, T.; Akimoto, S. Genetic differentiation as a result of adaptation to the phenologies of individual host trees in the galling aphid Kaltenbachiella japonica. Ecol. Entomol. 1995, 20, 33–42. [Google Scholar] [CrossRef]
- Dampc, J.; Mołoń, M.; Durak, T.; Durak, R. Changes in Aphid—Plant Interactions under Increased Temperature. Biology 2021, 10, 480. [Google Scholar] [CrossRef]
- Samways, M.J. Insect Diversity Conservation; Cambridge University Press: Cambridge, UK, 2005; p. 356. [Google Scholar]
- Merrill, R.; Gutiérrez, D.; Lewis, O.; Gutiérrez, J.; Díez, S.; Wilson, R. Combined effects of climate and biotic interactions on the elevational range of a phytophagous insect. J. Anim. Ecol. 2008, 77, 145–155. [Google Scholar] [CrossRef]
- Bale, J.S.; Tatchell, G.M. Aphids in a changing climate. In Insects in a Changing Environment; Harrington, R., Stork, N.E., Eds.; Academic Press: London, UK, 1995; pp. 125–155. [Google Scholar]
- Bale, J.B.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M.; Brown, V.K.; Butterfield, J.; Buse, A.; Coulson, J.C.; Farrar, J.; et al. Herbivory in global climate change research: Direct effect of rising temperature on insect herbivores. Glob. Chang. Biol. 2002, 8, 1–16. [Google Scholar] [CrossRef]
- Rehill, B.J.; Schulz, J.C. Hormaphis hamamelidis and gall size: A test of the plant vigor hypothesis. Oikos 2001, 95, 94–104. [Google Scholar] [CrossRef]
- Aoyama, T.; Akimoto, S.; Hasegawa, E. Gall distribution as a compromise between the optimal gall-site selection and the synchrony to host-plant phenology in the aphid Kaltenbachiella japonica. Arthropod-Plant Interac. 2012, 6, 461–469. [Google Scholar] [CrossRef]
- Kot, I.; Kmieć, K. Poplar tree response to feeding by the petiole gall aphid Pemphigus spyrothecae Pass. Insects 2020, 11, 282. [Google Scholar] [CrossRef] [PubMed]
- Kmieć, K.; Kot, I. Physiological response of Populus nigra ‘Italica’ to galling aphids feeding. Plant Biol. 2021, 23, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Giron, D.; Huguet, E.; Stone, G.N.; Body, M. Insectinduced effects on plants and possible effectors used by galling and leaf-mining insect to manipulate their host-plant. J. Insect Physiol. 2016, 84, 70–89. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, R.S.; González-Sierra, S.; Candelas, A.; Martinez, J.J.I. Histological study of galls induced by aphids on leaves of Ulmus minor: Tetraneura ulmi induces globose galls and Eriosoma ulmi induces pseudogalls. Arthropod-Plant Interact. 2013, 7, 643–650. [Google Scholar] [CrossRef]
- Larson, K.C.; Whitham, T.G. Manipulation of food resources by a gall-inducing aphid: The physiology of sink source interactions. Oecologia 1991, 88, 15–21. [Google Scholar] [CrossRef]
- Witham, T.G. The theory of habitat selection: Examined and extended using Pempighus aphids. Am. Nat. 1980, 115, 449–466. [Google Scholar] [CrossRef]
- Akimoto, S. Competition and niche relationships among Eriosoma aphids occurring on the Japanese elm. Oecologia 1988, 75, 44–53. [Google Scholar] [CrossRef]
- Akimoto, S. Host preference and galling success in closely related aphids, Tetraneura yezoensis and T. radicola (Pemphidae: Aphidoidea), associated with the Japanese elm. Appl. Entomol. Zool. 1999, 34, 31–38. [Google Scholar] [CrossRef]
- Inbar, M.; Wool, D. Phloem-feeding specialists sharing a host tree: Resource partitioning minimizes interference competition among galling aphid species. Oikos 1995, 73, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Li, J.; Liu, H.; Qiao, G.; Huang, X. Investigating the Impact of Climate Warming on Phenology of Aphid Pests in China Using Long-Term Historical Data. Insects 2020, 11, 167. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Ma, C.S. Effect of global warming on insect: A literature review. Acta Ecol. Sin. 2010, 30, 2157–2172. [Google Scholar]
- Sun, Y.-C.; Guo, H.-J.; Ge, F. Progress in research on the responses of insects to global climate change. J. Appl. Entomol. 2017, 54, 539–552. [Google Scholar] [CrossRef]
- Wilkaniec, B.; Borowiak-Sobkowiak, B.; Wilkaniec, A.; Trzciński, P.; Kozłowska, M. Effect of climate change on seasonal flight activity of aphid males in urban green area. Acta Sci. Pol. Hortorum Cultus 2016, 15, 157–169. [Google Scholar]
- Durak, R.; Węgrzyn, E.; Leniowski, K. Do all aphids benefit from climate warming? An effect of temperature increase on a native species of temperate climatic zone Cinara juniperi. Ethol. Ecol. Evol. 2016, 28, 188–201. [Google Scholar] [CrossRef]
- Yamamura, K.; Kiritani, K. A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl. Entomol. Zool. 1998, 33, 289–298. [Google Scholar] [CrossRef] [Green Version]
Month | Poznań | Lublin | Rzeszów | |||
---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
January | −2.1 | 2.3 | −5.6 | 1.6 | −5.8 | 0.8 |
February | 0.8 | −2.4 | −1.7 | −4.1 | −0.2 | −3.6 |
March | 6.9 | 1.0 | 5.4 | −0.5 | 6.4 | 0.3 |
April | 7.9 | 13.5 | 7.0 | 13.0 | 8.1 | 13.9 |
May | 14.1 | 17.4 | 13.5 | 16.7 | 13.7 | 17.0 |
June | 18.1 | 19.8 | 17.7 | 18.3 | 19.0 | 18.5 |
July | 18.6 | 20.6 | 18.1 | 19.9 | 19.0 | 20.1 |
August | 19.3 | 21.8 | 19.1 | 20.2 | 20.0 | 20.3 |
September | 13.9 | 16.6 | 13.6 | 15.3 | 14.0 | 15.3 |
October | 11.4 | 11.2 | 8.8 | 9.8 | 9.9 | 10.5 |
November | 5.6 | 7.8 | 3.7 | 3.5 | 4.4 | 5.7 |
December | 2.9 | 2.6 | 1.6 | 0.1 | 2.1 | 0.8 |
Term | Ulmus minor 1 * | Ulmus minor 2 ** | Ulmus glabra | |||
---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
First hatching of fundatrices | 12/05 | 2/05 | 6/05 | 27/04/ | 8/05 | 29/04 |
Appearance of first galls | 19/05 | 8/05 | 14/05 | 6/05 | 16/05 | 7/05 |
Appearance of first nymphs | 2/06 | 15/05 | 24/05 | 9/05 | 29/05 | 15/05 |
Gall cracks | 21/06 | 2/06 | 16/06 | 25/05 | 12/06 | 8/06 |
Ulmus minor 1 * | Ulmus minor 2 ** | Ulmus glabra | ||||
---|---|---|---|---|---|---|
No. of Galls per Leaf | No. of Galls per Leaf | No. of Galls per Leaf | ||||
Year | Min–Max | Mean (±SE) | Min–Max | Mean (±SE) | Min–Max | Mean (±SE) |
2017 | 1–8 | 2.5 ± 0.24 | 1–7 | 1.47 ± 0.19 | 1–12 | 3.14 ± 0.25 |
2018 | 1–2 | 1.08 ± 0.04 | 1–3 | 1.58 ± 0.26 | 1–2 | 1.33 ± 0.06 |
U. minor 1 * | U. minor 2 ** | U. glabra | |
---|---|---|---|
Mean no. of nymphs/gall/year | |||
2017 | 23.13 ± 0.29 | 4.34 ± 0.44 | 15.94 ± 1.04 |
2018 | 7.45 ± 0.42 | 7.6 ± 0.33 | 21.25 ± 1.23 |
2019 | 10.71 ± 0.47 | 9.01 ± 0.59 | 17.48 ± 1.17 |
Mean max fecundity of the fundatrices 2017–2019 | 13.76 ± 3.9a | 6.98 ± 1.13a | 18.22 ± 1.29b |
Average gall width/year | |||
2017 | 5.28 ± 0.53 | 5.63 ± 0.2 | 4.53 ± 0.11 |
2018 | 4.45 ± 0.16 | 4.26 ± 0.07 | 4.54 ± 0.11 |
2019 | 5.84 ± 0.15 | 4.08 ± 0.11 | 4.76 ± 0.11 |
Average gall width in 2017–2019 | 5.19 ± 0.33a | 4.65 ± 0.4a | 4.61 ± 0.06a |
Average gall height/year | |||
2017 | 17.6 ± 0.45 | 11.8 ± 0.47 | 21.4 ± 0.42 |
2018 | 12.6 ± 0.5 | 13.3 ± 0.4 | 21.1 ± 0.37 |
2019 | 16.2 ± 0.4 | 18.1 ± 0.49 | 21.2 ± 0.43 |
Average gall height in 2017–2019 | 15.46 ± 1.21a | 14.39 ± 1.55a | 21.23 ± 0.07b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borowiak-Sobkowiak, B.; Durak, R.; Kmieć, K.; Walczak, U. Population Development of Alien Gall-Forming Aphid Tetraneura nigriabdominalis on Ulmus minor and Ulmus glabra. Forests 2022, 13, 1069. https://doi.org/10.3390/f13071069
Borowiak-Sobkowiak B, Durak R, Kmieć K, Walczak U. Population Development of Alien Gall-Forming Aphid Tetraneura nigriabdominalis on Ulmus minor and Ulmus glabra. Forests. 2022; 13(7):1069. https://doi.org/10.3390/f13071069
Chicago/Turabian StyleBorowiak-Sobkowiak, Beata, Roma Durak, Katarzyna Kmieć, and Urszula Walczak. 2022. "Population Development of Alien Gall-Forming Aphid Tetraneura nigriabdominalis on Ulmus minor and Ulmus glabra" Forests 13, no. 7: 1069. https://doi.org/10.3390/f13071069
APA StyleBorowiak-Sobkowiak, B., Durak, R., Kmieć, K., & Walczak, U. (2022). Population Development of Alien Gall-Forming Aphid Tetraneura nigriabdominalis on Ulmus minor and Ulmus glabra. Forests, 13(7), 1069. https://doi.org/10.3390/f13071069