Assessment of Soil Physical and Chemical Properties among Urban and Peri-Urban Forests: A Case Study from Metropolitan Area of Brasov
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Analyses
2.3. Romanian Approach to Soil Richness: Global Potential Trophicity Index (Tp)
2.4. Statistical Analysis
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Greinert, A. The heterogeneity of urban soils in the light of their properties. J. Soils Sediments 2015, 15, 1725–1737. [Google Scholar] [CrossRef] [Green Version]
- Grimm, N.B.; Grove, J.M.; Pickett, S.T.A.; Redman, C.L. Integrated approaches to long-term studies of urban ecological systems. Bioscience 2000, 50, 571–584. [Google Scholar] [CrossRef] [Green Version]
- Dobbs, C.; Escobedo, F.J.; Zipperer, W.C. A framework for developing urban forest ecosystem services and goods indicators. Landsc. Urban Plan. 2011, 99, 196–206. [Google Scholar] [CrossRef]
- Doichinova, V.; Zhiyanski, M.; Hursthouse, A.; Bech, J. Study on the mobility and bioavailability of PTEs in soils from Urban Forest Parks in Sofia, Bulgaria. J. Geochem. Explor. 2014, 147, 222–228. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Madrid, L.; Diaz-Barrientos, E.; Ruiz-Corte´s, E.; Reinoso, R.; Biasioli, M.; Davidson, C.M.; Duarte, A.C.; Grcman, H.; Hossack, I.; Hursthouse, A.; et al. Potentially toxic metals in urban soils of six European cities: A pilot study on selected parks. J. Environ. Monitor. 2006, 8, 1158–1165. [Google Scholar] [CrossRef] [Green Version]
- Morel, J.L.; Heinrich, A.B. SUITMA—Soils in urban, industrial, traffic, mining and military areas. J. Soils Sediments 2008, 8, 206–207. [Google Scholar] [CrossRef]
- Trammell, T.L.; Schneid, B.P.; Carreiro, M.M. Forest soils adjacent to urban interstates: Soil physical and chemical properties, heavy metals, disturbance legacies, and relationships with woody vegetation. Urban Ecosyst. 2011, 14, 525–552. [Google Scholar] [CrossRef]
- Biasioli, M.; Barberis, R.; Ajmone-Marsan, F. The influence of a large city on some soil properties and metals content. Sci. Total Environ. 2006, 356, 154–164. [Google Scholar] [CrossRef]
- Fang, S.; Hu, H.; Sun, W.C.; Pan, J.J. Spatial variations of heavy metals in the soils of vegetable-growing land along urban–rural gradient of Nanjing, China. Int. J. Environ. Res. Public Health 2011, 8, 1805–1816. [Google Scholar] [CrossRef]
- Śkrbić, B.; Mladenović, N. Distribution of heavy elements in urban and rural surface soils: The Novi Sad city and the surrounding settlements, Serbia. Environ. Monit. Assess. 2013, 186, 457–471. [Google Scholar] [CrossRef] [PubMed]
- Morel, J.L.; Schwartz, C.; Florentin, L.; de Kimpe, C. Urban soils. In Encyclopedia of Soils in the Environment; Hillel, D., Hatfield, J.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 3, pp. 202–208. [Google Scholar]
- Alvey, A.A. Promoting and preserving biodiversity in the urban forest. Urban For. Urban Green 2006, 5, 195–201. [Google Scholar] [CrossRef]
- Zhiyanski, M.; Sokolovska, M.; Glushkova, M.; Vilhar, U.; Lozanova, L. Soil Quality. In The Urban Forest: Cultivating Green Infrastructure for People and the Environment; Pearlmutter, D., Calfapietra, C., Samson, R., O’Brien, L., Ostoić, S.K., Sanesi, G., del Amo, R.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 7, pp. 49–58. [Google Scholar]
- Lorenz, K.; Lal, R. Biochemical C and N cycles in urban soils. Environ. Int. 2009, 35, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zheng, H.; Ren, Z.; Zhang, D.; Zhai, C.; Mao, Z.; He, X. Effects of urbanization, soil property and vegetation configuration on soil infiltration of urban forest in Changchun, Northeast China. Chin. Geogr. Sci. 2018, 28, 482–494. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Wang, H.; Bai, S. Heavy metal contents and magnetic susceptibility of soils along an urban–rural gradient in rapidly growing city of eastern China. Environ. Monit. Assess. 2009, 155, 91–101. [Google Scholar] [CrossRef]
- Pouyat, R.V.; Yesilonis, I.D.; Szlavecz, K.; Csuzdi, C.; Hornung, E.; Korsós, Z.; Russell-Anelli, J.; Giorgio, V. Response of forest soil properties to urbanization gradients in three metropolitan areas. Landsc. Ecol. 2008, 23, 1187–1203. [Google Scholar] [CrossRef]
- McDonnell, M.J.; Pickett, S.T.A.; Pouyat, R.V.; Parmelee, R.W.; Carreiro, M.M.; Groffman, P.M.; Bohlen, P.; Zipperer, W.C.; Medley, K. Ecosystem processes along urban-torural gradients. Urban Ecosyst. 1997, 1, 21–36. [Google Scholar] [CrossRef]
- Trammell, T.L.; Pouyat, R.V.; D’Amico, V. Soil chemical properties in forest patches across multiple spatiotemporal scales in mid-Atlantic US metropolitan areas. Urban Ecosyst. 2021, 24, 1085–1100. [Google Scholar] [CrossRef]
- Guzmán, P.; Benítez, Á.; Carrión-Paladines, V.; Salinas, P.; Cumbicus, N. Elevation and Soil Properties Determine Community Composition, but Not Vascular Plant Richness in Tropical Andean Roadside. Forests 2022, 13, 685. [Google Scholar] [CrossRef]
- Horváth, A.; Szűcs, P.; Bidló, A. Soil condition and pollution in urban soils: Evaluation of the soil quality in a Hungarian town. J. Soils Sediments 2015, 15, 1825–1835. [Google Scholar] [CrossRef] [Green Version]
- Vázquez De La Cueva, A.; Marchant, B.P.; Quintana, J.R.; de Santiago, A.; Lafuente, A.L.; Webster, R. Spatial variation of trace elements in the peri-urban soil of Madrid. J. Soils Sediments 2014, 14, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, S.M.; Cruz, N.; Coelho, C.; Henriques, B.; Carvalho, L.; Duarte, A.C.; Pereira, E.; Römkens, A.M. Risk assessment for Cd, Cu, Pb and Zn in urban soils: Chemical availability as the central concept. Environ. Pollut. 2013, 183, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Yang, B.; Wang, H.; Sun, W.; Jiao, K.; Qin, G. Changes in Soil Ectomycorrhizal Fungi Community in Oak Forests along the Urban–Rural Gradient. Forests 2022, 13, 675. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, X.; Bai, J.; Shih, K.; Zeng, E.Y.; Cheng, H. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environ. Sci. Pollut. Res. 2013, 20, 6150–6159. [Google Scholar] [CrossRef]
- Spârchez, G.; Târziu, D.R.; Dincă, L. Pedology with Elements of Geology and Geomorphology (in Romanian); Transilvania University Publishing House: Brașov, Romania, 2013; p. 348. [Google Scholar]
- Kiryushin, V.I. Assessment of Land Quality and Soil Fertility for Planning Farming Systems and Agrotechnologies. Eurasian Soil Sci. 2007, 40, 785–791. [Google Scholar] [CrossRef]
- Târziu, D.; Spârchez, G. Forest Soils; Transilvania University Publishing House: Brașov, Romania, 2013; p. 257. (In Romanian) [Google Scholar]
- Enescu, R.; Davidescu, Ş.; Cǎtǎlin, C.; Zup, M.; Mirițǎ, M.G.; Samoilǎ, A.; Pitar, D. Methodology of delimitation the urban and peri-urban forests with recreational, cultural, and historical functions. Rev. Silvic. Cineg. 2019, 24, 70–77. [Google Scholar]
- Vasile, D.; Enescu, R.; Vechiu, E.; Ienășoiu, G.; Cătălin, C.; Davidescu, Ș. Biodiversity assessment and monitoring at the level of the herbaceous plant species in the forests managed by RPLP Kronstadt. Rev. Silvic. Cineg. 2021, 26, 95–102. [Google Scholar]
- Davidescu, Ş.; Ungurean, C.; Mărțoiu, N.; Enescu, R.; Zup, M.; Olteanu, D.; Comănici, A.; Tudose, N.C. Involving stakeholders in the development of recreational infrastructure in forests nearby Braşov municipality. Rev. Silvic. Cineg. 2020, 25, 77–84. [Google Scholar]
- National Statistics Institute 2021. Data. Available online: www.insse.ro (accessed on 25 May 2022).
- Statistic Data on Brasov County. Available online: https://brasov.insse.ro/ (accessed on 28 June 2022).
- Cristea, M.; Mare, C.; Moldovan, C.; China, A.; Farole, T.; Vințan, A.; Park, J.; Garrett, K.P.; Ionescu-Heroiu, M. Magnet Cities: Migration and Commuting in Romania; World Bank: Washington, DC, USA, 2017; p. 494. (In Romanian) [Google Scholar]
- European Commision. European Commision on Environmental Issue in Romania. 2014. Available online: https://ec.europa.eu/commission/presscorner/detail/MT/MEMO_14_537 (accessed on 2 May 2022).
- Maftei, C.; Muntean, R.; Poinareanu, I. The Impact of Air Pollution on Pulmonary Diseases: A Case Study from Brasov County, Romania. Atmosphere 2022, 13, 902. [Google Scholar] [CrossRef]
- Irisilva Forest Planning Company. U.P.IV Brasov Forest Management Plan of Brasov Municipality Forest Managed by R.P.L.P. Kronstadt R.A. Private Forest District; Irisilva Publisher: Brașov, Romania, 2015; p. 553. [Google Scholar]
- STAS 7184/1-84; 1984: Soils. Sample Collection for Soil and Agrochemical Studies. Romanian Standardization Association: Bucharest, Romania, 1984; p. 10.
- ISO 18400-205; Soil Quality—Sampling—Part 205: Guidance on the Procedure for Investigation of Natural, Near-Natural and Cultivated Sites. International Standardisation Organisation: Geneva, Switzerland, 2018; p. 14.
- SR 7184-13; Soil–Determination of pH in Water and Saline Suspensions (Mass/Volume) and in Saturated Paste. Romanian Standardization Association: Bucharest, Romania, 2001; p. 6.
- ISO 10390; Soil Quality-Determination of pH. International Standardisation Organisation: Geneva, Switzerland, 2005; p. 5.
- STAS 7184/21-82; Soil–Determination of Humus Content. Romanian Standardization Association: Bucharest, Romania, 1982; p. 4.
- FAO. Standard Operating Procedure for Soil Organic Carbon. Walkley-Black Method Titration and Colorimetric Method; FAO: Rome, Italy, 2019; p. 27. [Google Scholar]
- SR ISO 11261; Soil Quality–Determination of Total Nitrogen–Modified Kjeldahl Method. Romanian Standardization Association: Geneva, Romania, 2000; p. 8.
- STAS 7184/12-88; Soil–Determination of Cation Exchange Properties. Romanian Standardization Association: Geneva, Romania, 1988; p. 26.
- SR ISO 11047; Soil Quality–Determination of Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Nikel and Zinc in Aqua regia Extracts of Soil–Flame and Electrothermal Atomic Absorption Spectrometric Methods. Romanian Standardization Association: Geneva, Romania, 1999; p. 22.
- ISO 11277; Soil Quality-Determination of Particle Size Distribution in Mineral Soil Material–Method by Sieving and Sedimentation. International Standardisation Organisation: Geneva, Switzerland, 1998; p. 34.
- UNCPE-ICP Forest. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests, Part X-Sampling and analysis of soil, Annex. United Nations Economic Comission for Europe: Convention on Long-Range Transboundary Air Pollution; International Co-Operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests); UNECE: Geneva, Switzerland, 2016; p. 29. [Google Scholar]
- Târziu, D.; Spârchez, G.; Dincă, L. Soils. Practical Aspects; Transilvania University Publishinghouse: Brașov, Romania, 2000; p. 164. (In Romanian) [Google Scholar]
- Schoenholtz, S.H.; Van Miegroet, H.; Burger, J.A. A review of chemical and physical properties as indicators of forest soil quality: Challenges and opportunities. For. Ecol. Manag. 2000, 138, 335–356. [Google Scholar] [CrossRef]
- Sándor, G.; Szabó, G. Influence of human activities on the soils of Debrecen, Hungary. Soil Sci. Ann. 2014, 65, 2. [Google Scholar] [CrossRef] [Green Version]
- Romanian Geological Institute. Geological Map of Romania. Available online: http://geo-spatial.org/vechi/ (accessed on 5 May 2022).
- Rodrigues, S.; Urquhart, G.; Hossack, I.; Pereira, M.E.; Duarte, A.C.; Davidson, C. The influence of anthropogenic and natural geochemical factors on urban soil quality variability: A comparison between Glasgow, UK and Aveiro, Portugal. Environ. Chem. Lett. 2009, 27, 141–148. [Google Scholar] [CrossRef]
- Romanian Government. Ministerial Order No. 756: Regulation on Environmental Pollution Assessment; Romanian Government: Bucharest, Romania, 1997.
- Papa, S.; Bartoli, G.; Pellegrino, A.; Fioretto, A. Microbial activities and trace element contents in an urban soil. Environ. Monit. Assess. 2010, 165, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Simon, E.; Vidic, A.; Braun, M.; Fábián, I.; Tóthmérész, B. Trace element concentrations in soils along urbanization gradients in the city of Wien, Austria. Environ. Sci. Pollut. Res. 2013, 20, 917–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cicșa, A.; Tudoran, G.M.; Boroeanu, M.; Dobre, A.C.; Spârchez, G. Influence of Soil Genesis Factors on Gurghiu Mountain Forest Soils’ Physical and Chemical Properties. Bull. Transilv. Univ. Bras. II For. Wood Ind. Agric. Food Eng. 2021, 14, 1–14. [Google Scholar] [CrossRef]
- Wu, X.; Fu, D.; Duan, C.; Huang, G.; Shang, H. Distributions and Influencing Factors of Soil Organic Carbon Fractions under Different Vegetation Restoration Conditions in a Subtropical Mountainous Area, SW China. Forests 2022, 13, 629. [Google Scholar] [CrossRef]
- Malunguja, G.K.; Thakur, B.; Devi, A. Heavy Metal Contamination of Forest Soils by Vehicular Emissions: Ecological Risks and Effects on Tree Productivity. Environ. Process. 2022, 9, 11. [Google Scholar] [CrossRef]
- Amossé, J.; Le Bayon, R.C.; Gobat, J.M. Are urban soils similar to natural soils of river valleys? J. Soils Sediments 2015, 15, 1716–1724. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Liu, X.; Wu, W.; Zeng, H.; Liu, M.; Xu, G. Effects of Urbanization Intensity on the Distribution of Black Carbon in Urban Surface Soil in South China. Forests 2022, 13, 406. [Google Scholar] [CrossRef]
- Lal, R.; Bouma, J.; Brevik, E.; Dawson, L.; Field, D.J.; Glaser, B.; Hatano, R.; Hartemink, A.E.; Kosaki, T.; Lascelles, B.; et al. Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Reg. 2021, 25, e00398. [Google Scholar] [CrossRef]
- European Environmental Agency. Available online: www.eea.europa.eu (accessed on 11 May 2022).
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commision. Soil Strategy for 2030. 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0699&from=EN (accessed on 11 May 2022).
- European Commision. The European green Deal. European Commision. 2019. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF (accessed on 11 May 2022).
Soil Property | Urban Forest Mean ± st. Error (Min–Max) | Peri-Urban Forest Mean ± st. Error (Min–Max) |
---|---|---|
pH | 7.22 ± 0.242 (5.26–7.81) | 5.36 ± 0.183 (3.84–7.33) |
N (%) | 0.28 ± 0.069 (0.037–0.66) | 0.24 ± 0.035 (0.03–0.90) |
SOM (%) | 5.53 ± 1.356 (0.72–12.98) | 4.69 ± 0.689 (0.53–17.51) |
SB (me 100 g soil−1) | 33.13 ± 4.804 (9.47–49.60) | 15.17 ± 2.287 (2.85–49.60) |
SH (me 100 g soil−1) | 3.62 ± 1.226 (1.20–11.95) | 10.04 ± 0.807 (1.01–17.40) |
CEC (me 100 g soil−1) | 36.76 ± 4.100 (21.42–53.50) | 25.21 ± 1.958 (13.25–57.25) |
V (%) | 87.68 ± 5.788 (47.60–97.38) | 54.13 ± 4.383 (21.95–97.18) |
Sand (%) | 29.28 ± 7.338 (6.19–63.61) | 49.83 ± 3.179 (6.33–68.12) |
Silt (%) | 34.48 ± 4.140 (20.23–60.91) | 28.30 ± 1.532 (20.55–65.62) |
Clay (%) | 36.23 ± 4.749 (16.15–56.39) | 21.88 ± 2.287 (11.34–54.20) |
Ve (m3 m−2) | 0.35 ± 0.079 (0.14–0.57) | 0.50 ± 0.048 (0.12–0.81) |
Tp | 92.50 ± 19.722 (45.07–127.60) | 67.76 ± 12.291 (22.78–168.91) |
Altitude (m) | 774.4 ± 49.552 (644–944) | 1239.53 ± 68.883 (875–1750) |
Slope (°) | 32.40 ± 3.709 (20–40) | 31.40 ± 1.459 (15–38) |
Soil Property | No. of Samples | p-Value |
---|---|---|
pH | 39 | 0.000 b |
N | 39 | 0.558 |
SOM | 39 | 0.558 |
SB | 37 | 0.001 b |
SH | 37 | 0.000 b |
T | 37 | 0.011 a |
V | 37 | 0.000 b |
Sand | 39 | 0.005 b |
Silt | 39 | 0.089 |
Clay | 39 | 0.004 b |
Ve | 20 | 0.129 |
Tp | 20 | 0.355 |
Altitude | 20 | 0.001 b |
Slope | 20 | 0.763 |
Slope aspect | 20 | 0.311 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enescu, R.E.; Dincă, L.; Zup, M.; Davidescu, Ș.; Vasile, D. Assessment of Soil Physical and Chemical Properties among Urban and Peri-Urban Forests: A Case Study from Metropolitan Area of Brasov. Forests 2022, 13, 1070. https://doi.org/10.3390/f13071070
Enescu RE, Dincă L, Zup M, Davidescu Ș, Vasile D. Assessment of Soil Physical and Chemical Properties among Urban and Peri-Urban Forests: A Case Study from Metropolitan Area of Brasov. Forests. 2022; 13(7):1070. https://doi.org/10.3390/f13071070
Chicago/Turabian StyleEnescu, Raluca Elena, Lucian Dincă, Mihai Zup, Șerban Davidescu, and Diana Vasile. 2022. "Assessment of Soil Physical and Chemical Properties among Urban and Peri-Urban Forests: A Case Study from Metropolitan Area of Brasov" Forests 13, no. 7: 1070. https://doi.org/10.3390/f13071070
APA StyleEnescu, R. E., Dincă, L., Zup, M., Davidescu, Ș., & Vasile, D. (2022). Assessment of Soil Physical and Chemical Properties among Urban and Peri-Urban Forests: A Case Study from Metropolitan Area of Brasov. Forests, 13(7), 1070. https://doi.org/10.3390/f13071070