Fire Impact on Carbon Pools and Basic Properties of Retisols in Native Spruce Forests of the European North and Central Siberia of Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area Description
2.2. Dendrochronology
2.3. General Soil Analyses
2.4. Soil Organic Matter Analysis
2.5. Statistics
3. Results
3.1. Dendrochronology
3.2. Morphological Soil Properties
3.3. Basic Chemical Properties of Soils
3.4. Content of Carbon and Nitrogen
3.5. Densimetric Fractionation
3.6. Contents of PAHs
4. Discussion
4.1. Morphological and Chemical Properties of Soils
4.2. Soil Organic Matter
4.3. PAH Content
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Site | Soil Horizon | Depth, cm | Sand | Silt | Clay | Name According to the Ferre Triangle | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
2.000–1.000 | 1.000–0.500 | 0.500–0.250 | 0.250–0.100 | 0.100–0.050 | 0.050–0.020 | 0.020–0.002 | <0.002 | ||||
Very Corse | Corse | Medium | Fine | Very Fine | Coarse | Medium and Fine | |||||
Krasnoyarsk region | |||||||||||
I-CS | Epyr | 5–18 | 0 | 1 | 1 | 2 | 4 | 30 | 43 | 19 | Silt loam |
E | 18–30 | 0 | 1 | 1 | 2 | 5 | 26 | 44 | 21 | ||
BE | 30-55 | 0 | 1 | 1 | 2 | 4 | 33 | 41 | 19 | ||
Bt | 55–75 | 0 | 2 | 1 | 3 | 3 | 25 | 41 | 25 | ||
BC | 75–90 | 1 | 8 | 7 | 13 | 5 | 18 | 27 | 22 | Loam | |
II-CS | Epyr | 5–10 | 1 | 1 | 1 | 2 | 6 | 2 | 61 | 27 | Silt loam |
E | 10–35 | 1 | 2 | 1 | 2 | 6 | 15 | 51 | 23 | ||
E2 | 35–60 | 0 | 1 | 1 | 2 | 5 | 26 | 45 | 20 | ||
BE | 60–75 | 0 | 1 | 1 | 1 | 4 | 23 | 36 | 35 | Silty clay loam | |
Bt | 75–90 | 0 | 0 | 0 | 1 | 2 | 8 | 40 | 49 | Silty clay | |
BC | 90–110 | 0 | 0 | 0 | 1 | 2 | 15 | 31 | 51 | ||
III-CS | Epyr | 5–17 | 0 | 1 | 1 | 2 | 4 | 31 | 41 | 21 | Silt loam |
E | 17–30 | 0 | 1 | 1 | 2 | 3 | 31 | 41 | 21 | ||
E2 | 30–50 | 0 | 1 | 1 | 2 | 4 | 21 | 48 | 23 | ||
BE | 50–70 | 0 | 2 | 1 | 2 | 2 | 26 | 29 | 38 | Silty clay loam | |
Bt | 70–90 | 0 | 1 | 1 | 3 | 3 | 29 | 24 | 40 | ||
Komi Republic | |||||||||||
I-EN | Epyr | 16–30 | 1 | 3 | 14 | 17 | 2 | 8 | 23 | 32 | Clay loam |
E2 | 30–50 | 0 | 3 | 12 | 16 | 2 | 9 | 24 | 33 | ||
BE | 50–75 | 0 | 2 | 11 | 16 | 2 | 12 | 23 | 34 | ||
Bt | 75–90 | 0 | 1 | 6 | 8 | 1 | 18 | 27 | 39 | Silty clay loam | |
II-EN | Epyr | 8–12 | 0 | 0 | 0 | 1 | 2 | 12 | 32 | 53 | Silty clay |
E | 12–20 | 0 | 0 | 0 | 1 | 2 | 13 | 31 | 52 | ||
BE | 20–35 | 0 | 0 | 0 | 0 | 1 | 15 | 32 | 50 | ||
BE2 | 35–55 | 0 | 0 | 0 | 1 | 1 | 15 | 34 | 49 | ||
Bt | 55–80 | 0 | 0 | 0 | 1 | 2 | 16 | 33 | 48 | ||
BC | 80–100 | 0 | 0 | 0 | 0 | 2 | 15 | 29 | 53 | ||
III-EN | Epyr | 6–10 | 0 | 0 | 1 | 2 | 9 | 6 | 20 | 62 | Clay |
E | 10–25 | 1 | 1 | 1 | 3 | 8 | 7 | 20 | 60 | ||
E2 | 25–35 | 0 | 0 | 0 | 1 | 6 | 6 | 20 | 65 | ||
BE | 35–45 | 0 | 0 | 1 | 2 | 5 | 14 | 23 | 56 | ||
Bt | 50–70 | 0 | 0 | 0 | 1 | 4 | 19 | 26 | 50 | Silty clay | |
BC | 70–100 | 0 | 0 | 1 | 1 | 6 | 18 | 24 | 50 |
Site | Horizon | Depth, cm | (PYR+FLA)/ (CHR+PHE) | (PYR+BaP)/ CHR+PHE) | ANT/(ANT+PHE) | PHE/ ANT | FLA /(FLA+PYR) | BaA/228 | BaA/ (BaA+CHR) |
---|---|---|---|---|---|---|---|---|---|
Pyrogenic Origin Index | >0.5 | >0.1 | >0.1 | <10 | >0.5 | >0.5 | >0.35 | ||
Krasnoyarsk region | |||||||||
I-CS | O(e/a)pyr | 2–5 | 0.45 | 0.27 | 0.04 | 23.38 | 0.66 | 0.03 | 0.17 |
Epyr | 5–18 | 0.56 | 0.35 | 0.03 | 29.00 | 0.50 | 0.00 | 0.17 | |
II-CS | O(e/a)pyr | 2–5 | 0.55 | 0.30 | 0.03 | 32.00 | 0.68 | 0.03 | 0.23 |
Epyr | 5–10 | 0.48 | 0.20 | 0.03 | 30.00 | 0.59 | 0.00 | 0.31 | |
III-CS | O(e/a)pyr | 2–5 | 0.30 | 0.16 | 0.02 | 63.67 | 0.65 | 0.02 | 0.22 |
Epyr | 5–17 | 0.53 | 0.27 | 0.05 | 18.00 | 0.62 | 0.00 | 0.24 | |
Komi Republic | |||||||||
I-EN | Oapyr | 11–16 | 0.20 | 0.10 | 0.04 | 26.56 | 0.69 | 0.01 | 0.21 |
Epyr | 16–30 | 0.78 | 0.37 | 0.53 | 0.88 | 0.53 | 0.00 | 0.00 | |
II-EN | Oapyr | 6–8 | 0.15 | 0.04 | 0.02 | 50.29 | 0.89 | 0.00 | 0.02 |
Epyr | 8–12 | 0.20 | 0.08 | 0.04 | 22.80 | 0.61 | 0.00 | 0.00 | |
III-EN | Oa | 4–6 | 0.43 | 0.22 | 0.04 | 24.43 | 0.64 | 0.03 | 0.32 |
Epyr | 6–10 | 0.18 | 0.09 | 0.02 | 51.00 | 0.54 | 0.00 | 0.00 |
References
- Dixon, R.K.; Brown, S.; Houghton, R.A.; Solomon, A.M.; Trexler, M.C.; Wisniewski, J. Carbon pools and flux of global forest ecosystems. Science 1994, 263, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Ide, J.; Ohashi, M.; Köster, K.; Berninger, F.; Miura, I.; Makita, N.; Yamase, K.; Palviainen, M.; Pumpanen, J. Molecular composition of soil dissolved organic matter in recently-burned and long-unburned boreal forests. Int. J. Wildland Fire 2020, 29, 541–547. [Google Scholar] [CrossRef]
- Scharlemann, J.; Tanner, E.V.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Gauthier, S.; Raulier, F.; Ouzennou, H.; Saucier, J.-P. Strategic analysis of forest vulnerability to risk related to fire: An example from the coniferous boreal forest of Quebec. Can. J. For. Res. 2015, 45, 553–565. [Google Scholar] [CrossRef]
- Ward, D.S.; Shevliakova, E.; Malyshev, S.; Rabin, S. Trends and Variability of Global Fire Emissions Due To Historical Anthropogenic Activities. Glob. Biogeochem. Cycles 2018, 32, 122–142. [Google Scholar] [CrossRef]
- Gromtsev, A. Natural disturbance dynamics in the boreal forests of European Russia: A review. Silva Fenn. 2002, 36, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Dymov, A.A.; Gorbach, N.M.; Goncharova, N.N.; Karpenko, L.V.; Gabov, D.N.; Kutyavin, I.N.; Startsev, V.V.; Mazur, A.S.; Grodnitskaya, I.D. Holocene and recent fires influence on soil organic matter, microbiological and physico-chemical properties of peats in the European North-East of Russia. Catena 2022, 217, 106449. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Ranson, K.J.; Dvinskaya, M.L.; Im, S.T. Wildfires innorthern Siberian larch dominated communities. Environ. Res. Lett. 2011, 6, 045208. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Dvinskaya, M.L.; Ranson, K.J. Fire return intervalswithin the northern boundary of the larch forest in Central Siberia. Int. J. Wildland Fire 2013, 22, 207–211. [Google Scholar] [CrossRef]
- Preston, C.M.; Schmidt, M.W.I. Black (pyrogenic) carbon: A synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 2006, 3, 397–420. [Google Scholar] [CrossRef] [Green Version]
- Forbes, M.S.; Raison, R.J.; Skjemstad, J.O. Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Sci. Total Environ. 2006, 370, 190–206. [Google Scholar] [CrossRef] [PubMed]
- Reisser, M.; Purves, R.S.; Schmidt, M.W.I.; Abiven, S. Pyrogenic carbon in soils: A literature-based inventoryand a global estimation of its content in soil organic carbon and stocks. Front. Earth Sci. 2016, 4, 80. [Google Scholar] [CrossRef] [Green Version]
- Certini, G. Fire as a soil-forming factor. Ambio 2014, 43, 191–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doerr, S.H.; Santın, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150345. [Google Scholar] [CrossRef] [PubMed]
- Krasilnikov, P.V. Stable carbon compounds in soils: Their origin and functions. Eurasian Soil Sci. 2015, 48, 997–1008. [Google Scholar] [CrossRef]
- Golchin, A.; Clarke, P.; Baldock, J.A.; Higashi, T.; Skjemstad, J.O.; Oades, J.M. The effects of vegetation and burning on the chemical composition of soil organic matter in a volcanic ash soil as shown by 13C NMR spectroscopy. I. Whole soil and humic acid fraction. Geoderma 1997, 76, 155–174. [Google Scholar] [CrossRef]
- Golchin, A.; Baldock, J.A.; Clarke, P.; Higashi, T.; Oades, J.M. The effects of vegetation and burning on the chemical composition of soil organic matter of a volcanic ash soil as shown by 13C NMR spectroscopy. II. Density fractions. Geoderma 1997, 76, 175–192. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Noack, A.G. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Glob. Biogeochem. Cycles 2000, 14, 777–793. [Google Scholar] [CrossRef]
- Czimczik, C.I.; Masiello, C.A. Controls on black carbon storage in soils. Glob. Biogeochem. Cycles 2007, 21, 1–8. [Google Scholar] [CrossRef]
- Prokushkin, S.G.; Bogdanov, V.V.; Prokushkin, A.S.; Tokareva, I.V. Post-fire restoration of organic matter in the ground cover of leaf-bearing cryolithozones of Central Evenkia. Izv. RAS. Ser. Biol. 2011, 2, 227–234. (In Russain) [Google Scholar]
- Dymov, A.A.; Gabov, D.N. Pyrogenic alterations of Podzols at the North-East European part of Russia: Morphology, carbon pools, PAH content. Geoderma 2015, 241–242, 230–237. [Google Scholar] [CrossRef]
- Denis, E.H.; Toney, J.L.; Tarozo, R.; Anderson, R.S.; Roach, L.D.; Huang, Y. Polycyclic aromatic hydrocarbons (PAHs) in lake sediments record historic fire events: Validation using HPLC-fluorescence detection. Org. Geochem. 2012, 45, 7–17. [Google Scholar] [CrossRef]
- Bezkorovainaya, I.N.; Tarasov, P.A.; Ivanova, G.A.; Bogorodskaya, A.V.; Krasnoshchekova, E.N. The nitrogen reserves in sandy podzols after controlled fires in pine forests of Central Siberia. Eurasian Soil Sci. 2007, 6, 700–707. [Google Scholar] [CrossRef]
- Tarasov, P.A.; Ivanov, V.A.; Ivanova, G.A.; Krasnoshchekova, E.N. Post-pyrogenic changes in the hydrothermal parameters of soils in middle-taiga pine forests. Eurasian Soil Sci. 2011, 44, 731–738. [Google Scholar] [CrossRef]
- Startsev, V.V.; Dymov, A.A.; Prokushkin, A.S. Soils of postpyrogenic larch stands in Central Siberia: Morphology, physicochemicalproperties, and specificity of soil organic matter. Eurasian Soil Sci. 2017, 50, 885–897. [Google Scholar] [CrossRef]
- Zhang-Turpeinen, H.; Kivimäenpää, M.; Aaltonen, H.; Berninger, F.; Köster, E.; Köster, K.; Menyailo, O.; Prokushkin, A.; Pumpanen, J. Wildfire effects on BVOC emissions from boreal forest floor on permafrost soil in Siberia. Sci. Total Environ. 2020, 711, 134851. [Google Scholar] [CrossRef]
- Ponomarev, E.; Masyagina, O.; Ponomareva, T.; Shvetsov, E.; Finnikov, K.; Litvintsev, K. The effect of post-fire disturbances on a seasonally thawed layer in the permafrost larch forests of Central Siberia. Forests 2020, 11, 790. [Google Scholar] [CrossRef]
- Krasnoshchekov, Y. Influence of ground fires on soil erosion in mountain forests of Cisbaikalia. Geogr. Nat. Resour. 2022, 43, 54–64. [Google Scholar] [CrossRef]
- Niklasson, M.; Drakenberg, B. A 600-year tree-ring fire history from Norra Kvills National Park, southern Sweden: Implications for conservation strategies in the hemiboreal zone. Biol. Conserv. 2001, 101, 63–71. [Google Scholar] [CrossRef]
- Rinn, F. Computer Program for Tree-Ring Analysis and Presentation. In Tsap Version 3.5. Reference Manual; Frank Rinn: Helenberg, Germany, 1996; p. 264. [Google Scholar]
- Holmes, R.L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 1983, 44, 69–75. [Google Scholar] [CrossRef]
- Grissino-Mayer, H.D. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Res. 2001, 57, 205–221. [Google Scholar]
- Oyama, M.; Takehara, H. Revised Standard Soil Color Charts, 2nd ed.; Ministry of Agriculture and Forestry: Tokyo, Japan, 1967.
- Van Reeuwijk, L.P. Procedures for Soil Analysis; Technical Paper; ISRIC: Wageningen, The Netherlands, 2002; p. 9. [Google Scholar]
- Mehra, O.P.; Jackson, M.L. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 1960, 7, 317–327. [Google Scholar] [CrossRef]
- Vadyunina, A.F.; Korchagina, Z.A. Methods of Investigation of Physical Properties of Soils; Agropromizdat: Moscow, Russia, 1986; p. 416. (In Russian) [Google Scholar]
- Hiederer, R.; Köchy, M. Global Soil Organic Carbon Estimates and the Harmonized World Soil Database; EUR 25225 EN; Publications Office of the European Union: Luxembourg, 2011; p. 79. [CrossRef]
- Grünewald, G.; Kaiser, K.; Jahn, R.; Guggenberger, G. Organic matter stabilization in young calcareous soils as revealed by density fractionation and analysis of lignin-derived constituents. Org. Geochem. 2006, 37, 1573–1589. [Google Scholar] [CrossRef]
- Cerli, C.; Celi, L.; Kalbitz, K.; Guggenberger, G.; Kaiser, K. Separation of light and heavy organic matter fractions in soil—Testing for proper density cut-off and dispersion level. Geoderma 2012, 170, 403–416. [Google Scholar] [CrossRef]
- Vodyanitskii, Y.N.; Shoba, S.A. Disputable issues in interpreting of the results of chemical extraction of iron compounds from soils. Eurasian Soil Sci. 2014, 47, 697–704. [Google Scholar] [CrossRef]
- Baeyens, L. Bodemkaart van België: Verklarende tekst bij het kaartblad; Centrum voor Bodemkartering en I.W.O.N.L: Brussel, Belgium, 1959; Volume 26, pp. 3–4. [Google Scholar]
- Louis, A. Carte des sols de la Belgique: Texte explicatif de la planchette de La Hulpe; Centrum voor Bodemkartering en I.W.O.N.L: Brussel, Belgium, 1973; p. 116. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports; FAO: Rome, Italy, 2015; p. 106. [Google Scholar]
- Loiko, S.V.; Kuzmina, D.M.; Dudko, A.A.; Konstantinov, A.O.; Vasilyeva, Y.A.; Kurasova, A.O.; Lim, A.G.; Kulizhsky, S.P. Charcoals of Albic Podzols of the middle taiga of Western Siberia as indicator of ecosystem history. Eurasian Soil Sci. 2022, 2, 176–192. [Google Scholar] [CrossRef]
- Robin, V.; Nelle, O. Contribution to the reconstruction of central European fire history, based on the soil charcoal analysis of study sites in northern and central Germany. Veg. Hist. Archaeobotany 2014, 23, 51–65. [Google Scholar] [CrossRef]
- Bird, M.I.; Wynn, J.G.; Saiz, G.; Wurster, C.M.; McBeath, A. The pyrogenic carbon cycle. Annu. Rev. Earth Planet. Sci. 2015, 43, 273–298. [Google Scholar] [CrossRef]
- Mergelov, N.; Petrov, D.; Zazovskaya, E.; Dolgikh, A.; Golyeva, A.; Matskovsky, V.; Bichurin, R.; Turchinskaya, S.; Belyaev, V.; Goryachkin, S. Soils in karst sinkholes record the Holocene history of local forest fires at the north of European Russia. Forests 2020, 11, 1268. [Google Scholar] [CrossRef]
- Dymov, A.A.; Gabov, D.N.; Milanovskii, E.Y. 13C-NMR, PAHs, WSOC and repellence of fire affected soils (Albic Podzols, Russia). Environ. Earth Sci. 2017, 76, 275. [Google Scholar] [CrossRef]
- Ohlson, M.; Dahlberg, B.; Økland, T.; Brown, K.J.; Halvorsen, R. The charcoal carbon pool in boreal forest soils. Nat. Geosci. 2009, 2, 692–695. [Google Scholar] [CrossRef]
- Han, C.-L.; Sun, Z.-X.; Shao, S.; Wang, Q.-B.; Libohova, Z.; Owens, P.R. Changes of Soil Organic Carbon after Wildfire in a Boreal Forest, Northeast CHINA. Agronomy 2021, 11, 1925. [Google Scholar] [CrossRef]
- Köster, K.; Aaltonen, H.; Berninger, F.; Heinonsalo, J.; Köster, E.; Ribeiro-Kumara, C.; Sun, H.; Tedersoo, L.; Zhou, X.; Pumpanen, J. Impacts of wildfire on soil microbiome in Boreal environments. Environ. Sci. Health 2021, 22, 100258. [Google Scholar] [CrossRef]
- Kalbitz, K.; Soliger, S.; Park, J.-H.; Michalzik, B.; Matzner, E. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Sci. 2000, 165, 277–304. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Domanski, G. Carbon input by plants into the soil. J. Plant Nutr. Soil Sci. 2000, 163, 421–431. [Google Scholar] [CrossRef]
- Hockaday, W.C.; Grannas, A.M.; Kim, S.; Hatche, P.G. Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil. Org. Geochem. 2006, 37, 501–510. [Google Scholar] [CrossRef]
- Christensen, B.T. Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur. J. Soil Sci. 2001, 52, 345–353. [Google Scholar] [CrossRef]
- Kögel-Knabner, I.; Amelung, W. Dynamics, Chemistry, and Preservation of Organic Matter in Soils. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2014; Volume 12, pp. 157–215. [Google Scholar]
- Wang, W.; Wang, Q.; Lu, Z. Science in China. Series, D. Earth Sci. 2009, 52, 660–668. [Google Scholar] [CrossRef]
- Guareschi, R.; Pereira, M.; Perin, A.; Guareschi, R. Densimetric fractionation of organic matter in an agricultural chronosequence in no-till areas in the Cerrado region, Brazil. Semin. Ciências Agrárias Londrina 2016, 37, 595–610. [Google Scholar] [CrossRef] [Green Version]
- Startsev, V.V.; Khaydapova, D.D.; Degteva, S.V.; Dymov, A.A. Soils on the southern border of the cryolithozone of European part of Russia (the Subpolar Urals) and their soil organic matter fractions and rheological behavior. Geoderma 2020, 361, 114006. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Biochar sequestration in terrestrial ecosystems: A review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Maksimova, E.; Abakumov, E. Soil organic matter quality and composition in a postfire Scotch pine forest in Tolyatti, Samara region. Biol. Commun. 2017, 62, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Sevastas, S.; Gasparatos, D.; Botsis, D.; Siarkos, I.; Diamantaras, K.I.; Bilas, G. Predicting bulk density using pedotransfer functions for soils in the Upper Anthemountas basin, Greece. Geoderma Reg. 2018, 14, e00169. [Google Scholar] [CrossRef]
- Ivanova, G.A.; Konard, S.G.; Makrae, D.D. The Impact of Fires on the Components of the Ecosystem of Middle-Taiga Pine Forests of Siberia; Nauka: Novosibirsk, Russia, 2014; p. 232. (In Russain) [Google Scholar]
- Waring, R.H.; Running, S.W. Mineral cycles. For. Ecosyst. 2007, 223, 99–144. [Google Scholar]
- Dymov, A.A.; Zhangurov, E.V.; Starcev, V.V. Soils of the northern part of the Subpolar Urals: Morphology, physicochemical properties, and carbon and nitrogen pools. Eurasian Soil Sci. 2013, 5, 459–467. [Google Scholar] [CrossRef]
- Pastukhov, A.V.; Kaverin, D.A. Soil carbon pools in tundra and taiga ecosystems of northeastern Europe. Eurasian Soil Sci. 2013, 46, 958–967. [Google Scholar] [CrossRef]
- Dymov, A.A.; Dubrovskiy, Y.A.; Startsev, V.V. Postagrogenic development of Retisols in the middle taiga subzone of European Russia (Komi Republic). Land Degrad. Dev. 2018, 29, 495–505. [Google Scholar] [CrossRef]
- Osipov, A.F.; Bobkova, K.S.; Dymov, A.A. Carbon stocks of soils under forest in the Komi Republic of Russia. Geoderma Reg. 2021, 27, e00427. [Google Scholar] [CrossRef]
- Stolbovoy, V. Carbon in Russian soils. Clim. Chang. 2002, 55, 131–156. [Google Scholar] [CrossRef]
- Matsuura, Y. Soil characteristics of forest ecosystems in circumpolar regions. Tohoku Geophys. J. 2003, 36, 374–379. [Google Scholar]
- Garcia, R.; Diaz-Somoano, M.; Calvo, M.; Lopez-Anton, M.A.; Suarez, S.; Suarez Ruiz, I.; Martinez-Tarazona, M.R. Impact of a semi-industrial coke processing plant in the surrounding surface soil. Part II: PAH content. Fuel Process. Technol. 2012, 104, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Rey-Salgueiro, L.; Martínez-Carballo, E.; Merino, A.; Vega, J.A.; Fonturbel, M.T.; Simal-Gandara, J. Polycyclic Aromatic Hydrocarbons in Soil Organic Horizons Depending on the Soil Burn Severity and Type of Ecosystem. Land Degrad. Dev. 2018, 29, 2112–2123. [Google Scholar] [CrossRef]
- Campos, I.; Abrantes, N.; Pereira, P.; Micaelo, A.C.; Vale, C.; Keizer, J.J. Forest fires as potential triggers for production and mobilization of polycyclic aromatic hydrocarbons to the terrestrial ecosystem. Land Degrad. Dev. 2019, 30, 2360–2370. [Google Scholar] [CrossRef]
- Lu, G.-N.; Danga, Z.; Tao, X.-Q.; Yanga, C.; Yi, X.-Y. Estimation of Water Solubility of Polycyclic Aromatic Hydrocarbons Using Quantum Chemical Descriptors and Partial Least Squares. QSAR Comb. Sci. 2008, 27, 618–626. [Google Scholar] [CrossRef]
- Gennadiev, A.N. Tsibart Pyrogenic polycyclic aromatic hydrocarbons in soils of reserved and anthropogenically modified areas: Factors and features of accumulation. Eurasian Soil Sci. 2013, 46, 28–36. [Google Scholar] [CrossRef]
- Tsibart, A.S.; Gennadiev, A.N. Associations of polycyclic aromatic hydrocarbons in fire-affected soils. Bull. Mosc. Univ. Ser. 5 Geogr. 2011, 3, 13–19. [Google Scholar]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Pies, C.; Yang, Y.; Hofmann, T. Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in Floodplain Soils of the Mosel and Saar River. J. Soils Sediments 2007, 7, 216–222. [Google Scholar] [CrossRef]
- Froehner, S.; de Souza, D.B.; Machado, K.S.; Falcao, F.; Fernandes, C.S.; Bleninger, T.; Neto, D.M. Impact of coal tar pavement on polycyclic hydrocarbon distribution in lacustrine sediments from non-traditional sources. Int. J. Environ. Sci. Technol. 2012, 9, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Tobiszewski, M.; Namiesnik, J. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 2012, 162, 110–119. [Google Scholar] [CrossRef]
- Chen, R.; Lv, J.; Zhang, W.; Liu, S.; Feng, J. Polycyclic aromatic hydrocarbon (PAH) pollution in agricultural soil in Tianjin, China: A spatio-temporal comparison study. Environ. Earth Sci. 2015, 74, 2743–2748. [Google Scholar] [CrossRef]
- Mizwar, A.; Trihadiningrum, Y. PAH Contamination in Soils Adjacent to a Coal-Transporting Facility in Tapin District, South Kalimantan, Indonesia. Arch. Environ. Contam. Toxicol. 2015, 69, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Ping, L.F.; Luo, Y.M.; Zhang, H.B.; Li, Q.B.; Wu, L.H. Distribution of polycyclic aromatic hydrocarbons in thirty typical soil profiles in the Yangtze River Delta region, east China. Environ. Pollut. 2007, 147, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, T.; Khillare, P.S.; Shridhar, V.; Ray, S. Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi. India J. Hazard. Mater. 2009, 163, 1033–1039. [Google Scholar] [CrossRef]
- Rongguang, S.; Mengmeng, X.; Aifeng, L.; Yong, T.; Zongshan, Z. Characteristics of PAHs in farmland soil and rainfall runoff in Tianjin, China. Environ. Monit. Assess. 2017, 189, 558. [Google Scholar] [CrossRef]
Site | Coordinates Height a.s.l., m | Time after Fire, Years | Vegetation | Soil Diagnostic Horizons |
---|---|---|---|---|
Krasnoyarsk region | ||||
I-CS | 60°56′23.3″ N 89°56′00.6″ E h = 165 | 146 | Blueberry-green-moss spruce forest Grass-shrub layer (TCP 40%–60%) Vaccinium myrtillus, Gymnocarpium dryopteris, Linnaea borealis, Oxalis acetosella, Maianthemum bifolium, Lycopodium annotinum, Carex globularis, Calamagrostis obtusata. Moss-lichen layer (TCP 90%) Pleurozium schereberi u Hylocomium splendens, Polytrichum commune, Ptilium crista-castrensis, Sphagnum sp. | Oi–O(e/a)pyr–Epyr–E–BE–Bt–BC |
II-CS | 60°57′11.5″ N 89°53′06.6″ E h = 179 | 196 | Fern-green moss spruce forest Grass-shrub layer (TCP 50%–70%) Gymnocarpium dryopteris, Vaccinium myrtillus, Calamagrostis purpurea, Linnaea borealis, Equisetum sylvaticum, Oxalis acetosella, Maianthemum bifolium, Lycopodium annotinum, Trientalis europaea, Lycopodium clavatum, Calamagrostis obtusata. Moss-lichen layer (TCP 80%–90%) Pleurozium schereberi, Polytrichum commune, Sphagnum girgensohnii, Hylocomium splendens. | Oi–O(e/a)pyr–Epyr–E1–E2–BE–Bt–BC |
III-CS | 61°04′07.7″ N 89°48′48.0″ E h = 142 | >100. | Blueberry-green-moss spruce forest Grass-shrub layer (TCP 50%) Vaccinium myrtillus, Gymnocarpium dryopteris, Oxalis acetosella, Maianthemum bifolium, Linnaea borealis, Equisetum pratense, Pyrola rotundifolia, Calamagrostis obtusata, Lycopodium annotinum. Moss-lichen layer (TCP 90%) Pleurozium schreberi, Ptilium crista-castrensis, Hylocomium splendens, Polytrichum commune | Oi–O(e/a)pyr–Epyr–E1–E2–BE–Bt |
Komi Republic | ||||
I-EN | 59°58′52.5″ N 50°08′49.5″ E h = 168 | 140 | Blueberry-sphagnum spruce forest Grass-shrub layer (TCP 30%) Vaccinium myrtillus, Vaccinium vitis-idaea, Trientalis europaea, Carex globularis, Maianthemum bifolium. Moss-lichen layer (TCP 80%) Sphagnum angustifolium, Sphagnum girgensohnii, Polytrichum commune, Pleurozium schreberi, Ptilium crista-castrensis. | Oi–Oe–Oa–Epyr–E2–BE–Bt |
II-EN | 62°03′49.5″ N 58°27′02.6″ E h = 210 | 204 | Blueberry-green-moss spruce forest Grass-shrub layer (TCP 60%) Vaccinium myrtillus, Equisetum sylvaticum, Carex globularis, Lycopodium annotinum, Linnaea borealis, Dryopteris expansa. Moss-lichen layer (TCP 95%) Polytrichum commune, Sphagnum girgensohnii, Sphagnum balticum, Pleurozium schreberi, Hylocomium splendens | Oi–Oe–Oa–Epyr–E–BE–BE2–Bt–BC |
III-EN | 61°39′45.2″ N 50°41′09.1″ E h = 151 | 100 | Blueberry-green-moss spruce forest Grass-shrub layer (TCP 70%) Vaccinium myrtillus, Rubis saxatilis, Stellaria longifolia, Mainathemum bifolium, Oxalis acetosella. Moss-lichen layer (TCP 95%) Pleurozium schreberi, Climacium dendroides, Polytrichum commune | Oi–Oe–Oa–Epyr–E1–E2–BE–Bt–BC |
Site | Soil Horizon | Depth, cm | pH | Ca2+ | Mg2+ | K+ | Na+ | ∑ | CEC | BS | Alox | Feox | Fedith | Ks | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H2O | KCl | cmol kg−1 | % | ||||||||||||
Krasnoyarsk region | |||||||||||||||
I-CS | Oi | 0–2 | 5.4 | 4.6 | 23.8 | 8.8 | 10.7 | 0.07 | 43.4 | 66.2 | 66 | – | – | – | – |
O(e/a)pyr | 2–5 | 4.3 | 3.1 | 12.4 | 3.5 | 2.1 | 0.05 | 18.0 | 79.4 | 23 | – | – | – | – | |
Epyr | 5–18 | 4.1 | 3.2 | 0.4 | 0.4 | 0.3 | 0.03 | 1.0 | 21.2 | 5 | 0.54 ± 0.13 | 0.62 ± 0.09 | 0.96 | 0.6 | |
E | 18–30 | 5.1 | 3.8 | 0.9 | 0.7 | 0.2 | 0.02 | 1.8 | 11.3 | 16 | 0.63 ± 0.15 | 0.63 ± 0.09 | 1.09 | 0.6 | |
BE | 30–55 | 5.2 | 3.8 | 1.1 | 0.9 | 0.2 | 0.02 | 2.2 | 9.5 | 24 | 0.51 ± 0.12 | 0.50 ± 0.08 | 1.02 | 0.5 | |
Bt | 55–75 | 5.3 | 3.6 | 2.8 | 1.8 | 0.2 | 0.03 | 4.9 | 12.2 | 40 | 0.45 ± 0.11 | 0.34 ± 0.05 | 1.16 | 0.3 | |
BC | 75–90 | 5.6 | 3.5 | 6.7 | 3.0 | 0.2 | 0.03 | 9.9 | 13.0 | 77 | 0.27 ± 0.07 | 0.52 ± 0.08 | 1.67 | 0.3 | |
II-CS | Oi | 0–2 | 5.1 | 4.3 | 22.8 | 8.6 | 9.9 | 0.06 | 41.4 | 70.5 | 59 | – | – | – | – |
O(e/a)pyr | 2–5 | 4.4 | 3.3 | 8.4 | 3.6 | 2.0 | 0.13 | 14.2 | 88.5 | 16 | – | – | – | – | |
Epyr | 5–10 | 4.3 | 3.3 | 0.5 | 0.3 | 0.1 | 0.02 | 0.9 | 15.2 | 6 | 0.50 ± 0.12 | 0.64 ± 0.10 | 0.79 | 0.8 | |
E | 10–35 | 5.1 | 3.6 | 1.0 | 0.7 | 0.1 | 0.03 | 1.9 | 10.1 | 19 | 0.37 ± 0.09 | 0.68 ± 0.10 | 0.86 | 0.8 | |
E2 | 35–60 | 5.5 | 3.6 | 2.7 | 1.6 | 0.1 | 0.05 | 4.5 | 10.3 | 43 | 0.31 ± 0.07 | 0.67 ± 0.10 | 0.76 | 0.9 | |
BE | 60–75 | 5.9 | 3.7 | 8.6 | 4.9 | 0.3 | 0.08 | 13.9 | 17.4 | 79 | 0.36 ± 0.09 | 0.55 ± 0.08 | 0.78 | 0.7 | |
Bt | 75–90 | 6.2 | 3.9 | 14.2 | 7.7 | 0.4 | 0.13 | 22.4 | 22.6 | 99 | 0.36 ± 0.09 | 0.52 ± 0.08 | 0.91 | 0.6 | |
BC | 90–110 | 6.3 | 4.0 | 15.6 | 8.5 | 0.4 | 0.14 | 24.7 | 24.1 | 102 | 0.37 ± 0.09 | 0.58 ± 0.09 | 0.97 | 0.6 | |
III-CS | Oi | 0–2 | 5.0 | 4.3 | 22.9 | 5.8 | 10.0 | 0.04 | 38.8 | 65.0 | 60 | – | – | – | – |
O(e/a)pyr | 2–5 | 4.5 | 3.3 | 14.3 | 3.3 | 3.3 | 0.04 | 20.9 | 79.4 | 26 | – | – | – | – | |
Epyr | 5–17 | 4.6 | 3.5 | 1.0 | 0.5 | 0.2 | 0.01 | 1.7 | 16.2 | 11 | 0.55 ± 0.13 | 0.86 ± 0.13 | 1.07 | 0.8 | |
E1 | 17–30 | 5.2 | 3.7 | 1.5 | 0.9 | 0.1 | 0.02 | 2.5 | 12.3 | 20 | 0.46 ± 0.11 | 0.71 ± 0.11 | 0.96 | 0.7 | |
E2 | 30–50 | 5.3 | 3.6 | 2.4 | 1.5 | 0.1 | 0.03 | 4.1 | 11.1 | 37 | 0.35 ± 0.08 | 0.56 ± 0.08 | 0.86 | 0.6 | |
BE | 50–70 | 6.0 | 3.7 | 11.1 | 7.2 | 0.4 | 0.06 | 18.7 | 21.7 | 86 | 0.42 ± 0.10 | 0.43 ± 0.06 | 1.04 | 0.4 | |
Bt | 70–90 | 7.3 | 6.1 | 19.0 | 12.0 | 0.4 | 0.06 | 31.6 | 24.2 | 131 | 0.35 ± 0.08 | 0.43 ± 0.06 | 1.24 | 0.3 | |
Komi Republic | |||||||||||||||
I-EN | Oi | 0–3 | 4.6 | 3.4 | 15.7 | 6.5 | 14.3 | 0.33 | 36.9 | 46.7 | 79 | – | – | – | – |
Oe | 3–11 | 4.1 | 3.0 | 7.1 | 2.7 | 2.1 | 0.22 | 12.1 | 96.7 | 12 | – | – | – | – | |
Oapyr | 11–16 | 4.4 | 3.5 | 2.6 | 1.3 | 1.7 | 0.14 | 5.8 | 130.0 | 4 | – | – | – | – | |
Epyr | 16–30 | 4.8 | 3.8 | 0.2 | 0.1 | 0.1 | 0.01 | 0.3 | 8.6 | 4 | 0.25 ± 0.06 | 0.34 ± 0.11 | 0.32 | 1.1 | |
E2 | 30–50 | 5.2 | 4.0 | 0.3 | 0.2 | 0.1 | 0.02 | 0.6 | 7.2 | 8 | 0.30 ± 0.07 | 0.64 ± 0.10 | 0.74 | 0.9 | |
BE | 50–75 | 5.4 | 3.9 | 2.3 | 1.1 | 0.2 | 0.03 | 3.5 | 11.0 | 32 | 0.34 ± 0.08 | 0.54 ± 0.08 | 0.84 | 0.6 | |
Bt | 75–90 | 5.7 | 3.8 | 10.3 | 4.6 | 0.4 | 0.07 | 15.3 | 20.9 | 73 | 0.38 ± 0.09 | 0.43 ± 0.06 | 0.98 | 0.4 | |
II-EN | Oi | 0–2 | 5.1 | 4.2 | 19.4 | 6.6 | 11.6 | 0.13 | 37.8 | 70.0 | 54 | – | – | – | – |
Oe | 2–6 | 4.2 | 3.1 | 11.7 | 2.7 | 2.2 | 0.12 | 16.8 | 78.0 | 22 | – | – | – | – | |
Oapyr | 6–8 | 4.1 | 3.0 | 5.1 | 1.7 | 1.3 | 0.15 | 8.2 | 90.9 | 9 | – | – | – | – | |
Epyr | 8–12 | 4.2 | 3.4 | 0.3 | 0.3 | 0.3 | 0.09 | 1.0 | 21.7 | 5 | 0.54 ± 0.13 | 0.40 ± 0.14 | 0.51 | 0.8 | |
E | 12–20 | 4.4 | 3.6 | 0.2 | 0.2 | 0.2 | 0.06 | 0.6 | 23.7 | 3 | 0.69 ± 0.16 | 0.85 ± 0.13 | 0.97 | 0.9 | |
BE | 20–35 | 4.9 | 4.0 | 0.4 | 0.4 | 0.4 | 0.04 | 1.2 | 14.0 | 9 | 0.65 ± 0.15 | 0.60 ± 0.09 | 0.92 | 0.7 | |
BE2 | 35–55 | 5.2 | 4.0 | 2.9 | 1.9 | 0.7 | 0.21 | 5.8 | 37.2 | 16 | 0.63 ± 0.15 | 0.57 ± 0.09 | 1.14 | 0.5 | |
Bt | 55–80 | 5.6 | 3.9 | 13.0 | 6.9 | 0.8 | 0.25 | 20.9 | 39.6 | 53 | 0.51 ± 0.12 | 0.45 ± 0.07 | 0.95 | 0.5 | |
BC | 80–100 | 6.1 | 4.1 | 9.0 | 4.3 | 0.3 | 0.10 | 13.7 | 15.2 | 90 | 0.29 ± 0.07 | 0.30 ± 0.10 | 1.00 | 0.3 | |
III-EN | Oi | 0–1 | 6.0 | 5.4 | 51.9 | 14.8 | 7.3 | 0.16 | 74.2 | 77.3 | 96 | – | – | – | – |
Oe | 1–4 | 5.3 | 4.6 | 38.7 | 5.1 | 3.7 | 0.12 | 47.7 | 78.5 | 61 | – | – | – | – | |
Oa | 4–6 | 4.8 | 3.9 | 18.8 | 2.0 | 1.3 | 0.18 | 22.3 | 76.8 | 29 | – | – | – | – | |
Epyr | 6–10 | 4.7 | 3.7 | 1.6 | 0.2 | 0.1 | 0.06 | 2.0 | 7.9 | 25 | 0.17 ± 0.04 | 0.14 ± 0.05 | 0.19 | 0.7 | |
E1 | 10–25 | 5.2 | 4.4 | 0.4 | 0.1 | 0.1 | 0.02 | 0.6 | 5.8 | 10 | 0.36 ± 0.09 | 0.63 ± 0.09 | 0.74 | 0.8 | |
E2 | 25–35 | 5.6 | 4.1 | 1.4 | 0.5 | 0.1 | 0.05 | 2.0 | 3.5 | 57 | 0.14 ± 0.03 | 0.33 ± 0.05 | 0.47 | 0.7 | |
BE | 35–45 | 5.7 | 3.8 | 5.2 | 2.1 | 0.2 | 0.07 | 7.6 | 11.4 | 66 | 0.25 ± 0.06 | 0.41 ± 0.06 | 0.78 | 0.5 | |
Bt | 45–70 | 5.9 | 4.0 | 12.1 | 5.0 | 0.5 | 0.14 | 17.7 | 17.5 | 101 | 0.31 ± 0.07 | 0.31 ± 0.05 | 0.97 | 0.3 | |
BC | 70–100 | 6.2 | 4.2 | 11.9 | 4.9 | 0.4 | 0.10 | 17.4 | 17.3 | 100 | 0.24 ± 0.06 | 0.024 ± 0.08 | 0.93 | 0.3 |
Site | Soil Horizon | Depth. cm | Ctot | Ntot | C/N | WSOC | WSON | C/NWS | Cstock | Nstock |
---|---|---|---|---|---|---|---|---|---|---|
g kg−1 | mg g−1 | kg m−2 | ||||||||
Krasnoyarsk region | ||||||||||
I-CS | Oi | 0–2 | 373 ± 13 | 11.3 ± 1.2 | 39 | 10.31 | 0.82 | 15 | 0.7 | 0.02 |
O(e/a)pyr | 2–5 | 424 ± 15 | 14.8 ± 1.6 | 33 | 3.55 | 0.18 | 23 | 1.1 | 0.04 | |
Epyr | 5–18 | 48 ± 7 | 2.3 ± 0.5 | 24 | 0.67 | 0.02 | 32 | 5.5 | 0.26 | |
E | 18–30 | 8.5 ± 2 | 0.58 ± 0.12 | 17 | 0.21 | 0.01 | 36 | 1.2 | 0.08 | |
BE | 30–55 | 5.2 ± 1.2 | 0.44 ± 0.09 | 14 | 0.18 | 0.005 | 44 | 1.7 | 0.15 | |
Bt | 55–75 | 3.1 ± 0.7 | 0.39 ± 0.11 | 9 | 0.16 | 0.003 | 52 | 0.9 | 0.12 | |
BC | 75–90 | 2.7 ± 0.6 | 0.44 ± 0.09 | 7 | 0.14 | 0.003 | 58 | 1.0 | 0.16 | |
12.1 */15 **/45 *** | 0.83/7/31 | |||||||||
II-CS | Oi | 0–2 | 480 ± 17 | 14.2 ± 1.6 | 39 | 15.73 | 0.87 | 21 | 0.7 | 0.02 |
O(e/a)pyr | 2–5 | 398 ± 14 | 17.1 ± 1.9 | 27 | 5.19 | 0.24 | 25 | 0.8 | 0.04 | |
Epyr | 5–10 | 16±4 | 0.81±0.16 | 23 | 0.32 | 0.01 | 44 | 1.0 | 0.05 | |
E1 | 10–35 | 3.8±0.9 | 0.35±0.10 | 13 | 0.17 | 0.003 | 64 | 1.4 | 0.13 | |
E2 | 35–60 | 2.8±0.6 | 0.30±0.09 | 11 | 0.16 | 0.003 | 62 | 1.2 | 0.12 | |
BE | 60–75 | 2.6±0.6 | 0.34±0.10 | 9 | 0.15 | 0.002 | 72 | 0.6 | 0.08 | |
Bt | 75–90 | 2.7±0.6 | 0.37±0.11 | 9 | 0.13 | 0.005 | 31 | 0.7 | 0.09 | |
BC | 90–110 | 3.1 ± 0.7 | 0.44 ± 0.09 | 8 | 0.15 | 0.003 | 59 | 0.5 | 0.07 | |
6.9/22/15 | 0.61/9/8 | |||||||||
III-CS | Oi | 0–2 | 460 ± 16 | 12.3 ± 1.4 | 44 | 16.64 | 0.63 | 31 | 0.7 | 0.02 |
O(e/a)pyr | 2–5 | 399 ± 14 | 14.3 ± 1.6 | 33 | 6.24 | 0.34 | 21 | 1.0 | 0.03 | |
Epyr | 5–17 | 27 ± 4 | 1.23 ± 0.25 | 26 | 0.47 | 0.01 | 42 | 3.3 | 0.15 | |
E1 | 17–30 | 7.6 ± 1.8 | 0.48 ± 0.10 | 18 | 0.20 | 0.004 | 53 | 1.2 | 0.07 | |
E2 | 30–50 | 4.5 ± 1.0 | 0.39 ± 0.11 | 13 | 0.18 | 0.004 | 57 | 1.3 | 0.11 | |
BE | 50–70 | 3.7 ± 0.9 | 0.46 ± 0.09 | 9 | 0.14 | 0.003 | 63 | 1.2 | 0.15 | |
Bt | 70–90 | 7.9 ± 1.8 | 0.50 ± 0.10 | 18 | 0.13 | 0.003 | 49 | 3.9 | 0.25 | |
12.5/14/26 | 0.78/7/19 | |||||||||
Komi Republic | ||||||||||
I-EN | Oi | 0–3 | 366±13 | 11.1±1.2 | 38 | 12.00 | 0.70 | 20 | 1.4 | 0.04 |
Oe | 3–11 | 470±16 | 13.2±1.5 | 42 | 3.28 | 0.25 | 15 | 4.9 | 0.14 | |
Oapyr | 11–16 | 281±28 | 10.0±1.1 | 33 | 1.78 | 0.08 | 25 | 1.8 | 0.07 | |
Epyr | 16–30 | 18±4 | 0.80±0.16 | 26 | 0.18 | 0.02 | 12 | 3.9 | 0.17 | |
E2 | 30–50 | 4.7 ± 1.1 | 0.48 ± 0.10 | 11 | 0.12 | 0.01 | 13 | 1.6 | 0.17 | |
BE | 50–75 | 2.6 ± 0.6 | 0.41 ± 0.08 | 7 | 0.10 | 0.01 | 9 | 1.1 | 0.17 | |
Bt | 75–90 | 2.3 ± 0.5 | 0.40 ± 0.12 | 7 | 0.08 | 0.01 | 7 | 0.9 | 0.17 | |
15.7/52/25 | 0.92/27/19 | |||||||||
II-EN | Oi | 0–2 | 415 ± 15 | 14.3 ± 1.6 | 34 | 7.79 | 0.45 | 20 | 0.5 | 0.02 |
Oe | 2–6 | 447 ± 16 | 17.3 ± 1.9 | 30 | 2.75 | 0.17 | 19 | 1.1 | 0.04 | |
Oapyr | 6–8 | 421 ± 15 | 6.8 ± 0.7 | 72 | 1.74 | 0.09 | 22 | 0.5 | 0.01 | |
Epyr | 8–12 | 30 ± 4 | 1.5 ± 0.3 | 23 | 0.36 | 0.01 | 44 | 1.0 | 0.05 | |
E | 12–20 | 28 ± 4 | 1.46 ± 0.29 | 22 | 0.31 | 0.01 | 40 | 1.3 | 0.07 | |
BE | 20–35 | 5.0 ± 1.1 | 0.49 ± 0.10 | 12 | 0.18 | 0.01 | 39 | 1.0 | 0.09 | |
BE2 | 35–55 | 3.4 ± 0.8 | 0.42 ± 0.08 | 9 | 0.08 | 0.003 | 28 | 0.9 | 0.11 | |
Bt | 55–80 | 2.0 ± 0.5 | 0.36 ± 0.10 | 6 | 0.06 | 0.003 | 18 | 0.8 | 0.15 | |
BC | 80–100 | 1.4 ± 0.3 | 0.29 ± 0.08 | 6 | 0.05 | 0.004 | 14 | 0.5 | 0.10 | |
7.5/28/13 | 0.64/11/8 | |||||||||
III-EN | Oi | 0–1 | 220 ± 22 | 10.0 ± 1.1 | 26 | 13.14 | 0.64 | 24 | 0.4 | 0.02 |
Oe | 1–4 | 271 ± 27 | 13.6 ± 1.5 | 23 | 8.92 | 0.48 | 22 | 1.5 | 0.08 | |
Oa | 4–6 | 233 ± 23 | 7.3 ± 0.8 | 37 | 3.02 | 0.15 | 23 | 0.9 | 0.03 | |
Epyr | 6–10 | 9.1 ± 2.1 | 0.67 ± 0.13 | 16 | 0.28 | 0.01 | 29 | 0.5 | 0.04 | |
E1 | 10–25 | 3.9 ± 0.9 | 0.26 ± 0.08 | 18 | 0.11 | 0.003 | 38 | 0.8 | 0.05 | |
E2 | 25–35 | <1.0 | <0.01 | - | 0.04 | – | – | 0.1 | 0.01 | |
BE | 35–45 | <1.0 | 0.14 ± 0.04 | - | 0.04 | – | – | 0.2 | 0.02 | |
Bt | 45–70 | 1.6 ± 0.4 | 0.26 ± 0.08 | 7 | 0.04 | – | – | 0.7 | 0.11 | |
BC | 70–100 | 1.16 ± 0.27 | 0.23 ± 0.07 | 6 | 0.04 | – | – | 0.6 | 0.11 | |
5.7/50/9 | 0.47/26/8 |
Site | fPOM<1.6 | oPOM<1.6 | MaOM>1.6 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mass % | C | N | C/N | Mass % | C | N | C/N | Mass % | C | N | C/N | |
g kg−1 | g kg−1 | g kg−1 | ||||||||||
I-CS | 1.5 | 444 ± 16 | 11.1 ± 1.2 | 47 | 2.7 | 469 ± 16 | 9.4 ± 1.0 | 58 | 98.7 | 31 ± 5 | 1.8 ± 0.4 | 20 |
II-CS | 0.2 | 177 ± 18 | 3.9 ± 0.8 | 53 | 0.9 | 404 ± 14 | 5.5 ± 1.1 | 86 | 92.8 | 7 ± 1.6 | 5.5 ± 1.1 | 1 |
III-CS | 0.4 | 291 ± 29 | 6.7 ± 0.7 | 51 | 1.4 | 484 ± 17 | 8.8 ± 1.0 | 64 | 98.6 | 15 ± 4 | 0.97 ± 0.19 | 18 |
I-EN | 0.2 | 330 ± 12 | 3.9 ± 0.8 | 99 | 0.6 | 444 ± 16 | 3.5 ± 0.7 | 148 | 94.4 | 2.8 ± 0.6 | 0.16 ± 0.05 | 20 |
II-EN | 2.9 | 425 ± 15 | 10.1 ± 1.1 | 49 | 1.8 | 403 ± 14 | 7.4 ± 0.8 | 64 | 97.8 | 19 ± 4 | 1.08 ± 0.22 | 21 |
III-EN | 1.3 | 300 ± 30 | 5.8 ± 1.2 | 60 | 1.5 | 252 ± 25 | 4.4 ± 0.9 | 67 | 97.0 | 4.6 ± 1 | 0.36 ± 0.11 | 15 |
Site | Soil Horizon | Depth, cm | 2-Ring | 3-Ring | 4-Ring | 5-Ring | 6-Ring | ∑ | ∑LP | ∑HP | CPAHs | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NP | ACE | FL | PHE | ANT | FLA | PYR | BaA | CHR | BbF | BkF | BaP | DahA | BghiP | IcdP | |||||||
Krasnoyarsk region | |||||||||||||||||||||
I-CS | O(e/a)pyr | 2–5 | 90 | 40 | 3 | 37 | 2 | 19 | 10 | 6 | 27 | 28 | 7 | 7 | 3 | 9 | 22 | 311 | 234 | 77 | 293 |
Epyr | 5–18 | 29 | 0 | 1 | 7 | 0 | 3 | 3 | 0 | 2 | 3 | 0 | 1 | 1 | 2 | 0 | 52 | 45 | 7 | 49 | |
II-CS | O(e/a)pyr | 2–5 | 55 | 8 | 3 | 56 | 2 | 29 | 14 | 7 | 23 | 44 | 8 | 9 | 3 | 28 | 49 | 337 | 196 | 141 | 319 |
Epyr | 5–10 | 15 | 0 | 1 | 6 | 0 | 2 | 1 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 30 | 28 | 2 | 28 | |
III-CS | O(e/a)pyr | 2–5 | 57 | 106 | 2 | 96 | 2 | 22 | 12 | 5 | 16 | 29 | 5 | 6 | 2 | 13 | 24 | 393 | 316 | 78 | 370 |
Epyr | 5–17 | 13 | 0 | 1 | 4 | 0 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 24 | 23 | 1 | 22 | |
Komi Republic | |||||||||||||||||||||
I-EN | Oapyr | 11–16 | 192 | 0 | 14 | 151 | 6 | 22 | 10 | 3 | 12 | 14 | 5 | 6 | 3 | 6 | 30 | 473 | 410 | 63 | 445 |
Epyr | 16–30 | 22 | 0 | 4 | 6 | 7 | 3 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 46 | 46 | 0 | 43 | |
II-EN | Oapyr | 6–8 | 141 | 0 | 27 | 256 | 5 | 40 | 5 | 1 | 37 | 36 | 0 | 8 | 0 | 0 | 50 | 605 | 512 | 93 | 570 |
Epyr | 8–12 | 83 | 0 | 13 | 55 | 2 | 7 | 4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 169 | 165 | 4 | 158 | |
III-EN | Oa | 4–6 | 160 | 0 | 14 | 140 | 6 | 43 | 24 | 7 | 16 | 14 | 6 | 10 | 0 | 4 | 30 | 476 | 411 | 65 | 448 |
Epyr | 6–10 | 25 | 0 | 10 | 45 | 1 | 4 | 4 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 90 | 89 | 1 | 85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Startsev, V.V.; Yakovleva, E.V.; Kutyavin, I.N.; Dymov, A.A. Fire Impact on Carbon Pools and Basic Properties of Retisols in Native Spruce Forests of the European North and Central Siberia of Russia. Forests 2022, 13, 1135. https://doi.org/10.3390/f13071135
Startsev VV, Yakovleva EV, Kutyavin IN, Dymov AA. Fire Impact on Carbon Pools and Basic Properties of Retisols in Native Spruce Forests of the European North and Central Siberia of Russia. Forests. 2022; 13(7):1135. https://doi.org/10.3390/f13071135
Chicago/Turabian StyleStartsev, Viktor V., Evgenia V. Yakovleva, Ivan N. Kutyavin, and Alexey A. Dymov. 2022. "Fire Impact on Carbon Pools and Basic Properties of Retisols in Native Spruce Forests of the European North and Central Siberia of Russia" Forests 13, no. 7: 1135. https://doi.org/10.3390/f13071135
APA StyleStartsev, V. V., Yakovleva, E. V., Kutyavin, I. N., & Dymov, A. A. (2022). Fire Impact on Carbon Pools and Basic Properties of Retisols in Native Spruce Forests of the European North and Central Siberia of Russia. Forests, 13(7), 1135. https://doi.org/10.3390/f13071135