Nitrogen Addition Does Not Change AMF Colonization but Alters AMF Composition in a Chinese Fir (Cunninghamia lanceolata) Plantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling
2.2. Soil Properties Analysis
2.3. AMF Colonization and Extraradical Hphae Length Density
2.4. AMF Spore Separation and Identification
2.5. AMF Community Parameters and Statistical Analysis
3. Results
3.1. Effects of N Addition on Soil AMF Colonization, Spore Density, and External Hyphal Length Density
3.2. Effects of N Addition on Soil AMF Community Composition
3.3. Effects of N addition on Soil Nutrients
3.4. Relationship between Soil Properties and AMF
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ackerman, D.; Millet, D.B.; Chen, X. Global Estimates of Inorganic Nitrogen Deposition Across Four Decades. Glob. Biogeochem. Cycles 2018, 33, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Guo, X.; Xiao, B. What causes growth of global greenhouse gas emissions? Evidence from 40 countries. Sci. Total Environ. 2019, 661, 750–766. [Google Scholar] [CrossRef]
- Wen, Z.; Wang, R.; Li, Q.; Liu, J.; Ma, X.; Xu, W.; Tang, A.; Collett, J.L.; Li, H.; Liu, X. Spatiotemporal variations of nitrogen and phosphorus deposition across China. Sci. Total Environ. 2022, 830, 154740. [Google Scholar] [CrossRef]
- Thomas, R.Q.; Canham, C.; Weathers, K.C.; Goodale, C. Increased tree carbon storage in response to nitrogen deposition in the US. Nat. Geosci. 2009, 3, 229–244. [Google Scholar] [CrossRef]
- Stevens, C.J.; David, T.I.; Storkey, J. Atmospheric nitrogen deposition in terrestrial ecosystems: Its impact on plant communities and consequences across trophic levels. Funct. Ecol. 2018, 32, 1757–1769. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Chen, H.Y.H.; Ruan, H. Global negative effects of nitrogen deposition on soil microbes. ISME J. 2018, 12, 1817–1825. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.E.; Smith, F.A. Roles of Arbuscular Mycorrhizas in Plant Nutrition and Growth: New Paradigms from Cellular to Ecosystem Scales. Annu. Rev. Plant Biol. 2010, 62, 227–250. [Google Scholar] [CrossRef] [Green Version]
- Etesami, H.; Jeong, B.R.; Glick, B.R. Contribution of Arbuscular Mycorrhizal Fungi, Phosphate–Solubilizing Bacteria, and Silicon to P Uptake by Plant. Front. Plant Sci. 2021, 12, 699618. [Google Scholar] [CrossRef]
- Liu, H.; Wu, Y.; Xu, H.; Ai, Z.; Zhang, J.; Liu, G.; Xue, S. N enrichment affects the arbuscular mycorrhizal fungi-mediated relationship between a C4 grass and a legume. Plant Physiol. 2021, 187, 1519–1533. [Google Scholar] [CrossRef]
- Ma, X.; Geng, Q.; Zhang, H.; Bian, C.; Chen, H.Y.H.; Jiang, D.; Xu, X. Global negative effects of nutrient enrichment on arbuscular mycorrhizal fungi, plant diversity and ecosystem multifunctionality. New Phytol. 2020, 229, 2957–2969. [Google Scholar] [CrossRef]
- Han, Y.; Feng, J.; Han, M.; Zhu, B. Responses of arbuscular mycorrhizal fungi to nitrogen addition: A meta-analysis. Glob. Chang. Biol. 2020, 26, 7229–7241. [Google Scholar] [CrossRef]
- Weber, S.E.; Diez, J.M.; Andrews, L.V.; Goulden, M.L.; Aronson, E.L.; Allen, M.F. Responses of arbuscular mycorrhizal fungi to multiple coinciding global change drivers. Fungal Ecol. 2019, 40, 62–71. [Google Scholar] [CrossRef]
- Xiao, D.; Che, R.; Liu, X.; Tan, Y.; Yang, R.; Zhang, W.; He, X.; Xu, Z.; Wang, K. Arbuscular mycorrhizal fungi abundance was sensitive to nitrogen addition but diversity was sensitive to phosphorus addition in karst ecosystems. Biol. Fertil. Soils 2019, 55, 457–469. [Google Scholar] [CrossRef]
- Liu, M.; Shen, Y.; Li, Q.; Xiao, W.; Song, X. Arbuscular mycorrhizal fungal colonization and soil pH induced by nitrogen and phosphorus additions affects leaf C:N:P stoichiometry in Chinese fir (Cunninghamia lanceolata) forests. Plant Soil 2021, 461, 421–440. [Google Scholar] [CrossRef]
- Van Diepen, L.T.A.; Lilleskov, E.A.; Pregitzer, K.S.; Miller, R.M. Decline of arbuscular mycorrhizal fungi in northern hardwood forests exposed to chronic nitrogen additions. New Phytol. 2007, 176, 175–183. [Google Scholar] [CrossRef]
- Pan, S.; Wang, Y.; Qiu, Y.; Chen, D.; Zhang, L.; Ye, C.; Guo, H.; Zhu, W.; Chen, A.; Xu, G.; et al. Nitrogen-induced acidification, not N-nutrient, dominates suppressive N effects on arbuscular mycorrhizal fungi. Glob. Chang. Biol. 2020, 26, 6568–6580. [Google Scholar] [CrossRef]
- Lekberg, Y.; Arnillas, C.A.; Borer, E.T.; Bullington, L.S.; Fierer, N.; Kennedy, P.G.; Leff, J.W.; Luis, A.D.; Seabloom, E.W.; Henning, J.A. Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils. Nat. Commun. 2021, 12, 3484. [Google Scholar] [CrossRef]
- Wang, X.; Sui, X.; Liu, Y.; Xiang, L.; Zhang, T.; Fu, J.; Li, A.; Yang, P. NP fertilization did not reduce AMF abundance or diversity but alter AMF composition in an alpine grassland infested by a root hemiparasitic plant. Plant Divers. 2018, 40, 117–126. [Google Scholar] [CrossRef]
- Eom, A.H.; Hartnett, D.C.; Wilson, G.W.; Figge, D.A. The Effect of Fire, Mowing and Fertilizer Amendment on Arbuscular Mycorrhizas in Tallgrass Prairie. Am. Midl. Nat. 1999, 142, 55–70. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, X.; Guo, R.; Guo, J. Response of AM fungi spore population to elevated temperature and nitrogen addition and their influence on the plant community composition and productivity. Sci. Rep. 2016, 6, 24749. [Google Scholar] [CrossRef] [Green Version]
- Treseder, K.K.; Allen, M.F. Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: A model and field test. New Phytol. 2002, 155, 507–515. [Google Scholar] [CrossRef] [Green Version]
- Camenzind, T.; Homeier, J.; Dietrich, K.; Hempel, S.; Hertel, D.; Krohn, A.; Leuschner, C.; Oelmann, Y.; Olsson, P.A.; Suárez, J.P.; et al. Opposing effects of nitrogen versus phosphorus additions on mycorrhizal fungal abundance along an elevational gradient in tropical montane forests. Soil Biol. Biochem. 2016, 94, 37–47. [Google Scholar] [CrossRef]
- Camenzind, T.; Hempel, S.; Homeier, J.; Horn, S.; Velescu, A.; Wilcke, W.; Rillig, M.C. Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Glob. Chang. Biol. 2014, 20, 3646–3659. [Google Scholar] [CrossRef] [Green Version]
- Mueller, R.C.; Bohannan, B.J.M. Shifts in the phylogenetic structure of arbuscular mycorrhizal fungi in response to experimental nitrogen and carbon dioxide additions. Oecologia 2015, 179, 175–185. [Google Scholar] [CrossRef]
- Corkidi, L.; Rowland, D.L.; Johnson, N.C.; Allen, E.B. Nitrogen fertilization alters the functioning of arbuscular mycorrhizas at two semiarid grasslands. Plant Soil 2002, 240, 299–310. [Google Scholar] [CrossRef]
- Li, L.; McCormack, M.L.; Chen, F.; Wang, H.; Ma, Z.; Guo, D. Different responses of absorptive roots and arbuscular mycorrhizal fungi to fertilization provide diverse nutrient acquisition strategies in Chinese fir. For. Ecol. Manag. 2019, 433, 64–72. [Google Scholar] [CrossRef]
- Sheldrake, M.; Rosenstock, N.P.; Mangan, S.; Revillini, D.; Sayer, E.J.; Olsson, P.A.; Verbruggen, E.; Tanner, E.V.J.; Turner, B.L.; Wright, S.J. Responses of arbuscular mycorrhizal fungi to long-term inorganic and organic nutrient addition in a lowland tropical forest. ISME J. 2018, 12, 2433–2445. [Google Scholar] [CrossRef] [Green Version]
- Xiang, W.; Li, L.; Ouyang, S.; Xiao, W.; Zeng, L.; Chen, L.; Lei, P.; Deng, X.; Zeng, Y.; Fang, J.; et al. Effects of stand age on tree biomass partitioning and allometric equations in Chinese fir (Cunninghamia lanceolata) plantations. Forstwiss. Centralblatt 2021, 140, 317–332. [Google Scholar] [CrossRef]
- Wu, H.; Xiang, W.; Ouyang, S.; Xiao, W.; Li, S.; Chen, L.; Lei, P.; Deng, X.; Zeng, Y.; Zeng, L.; et al. Tree growth rate and soil nutrient status determine the shift in nutrient-use strategy of Chinese fir plantations along a chronosequence. For. Ecol. Manag. 2020, 460, 117896. [Google Scholar] [CrossRef]
- Lu, N.; Xu, X.; Wang, P.; Zhang, P.; Ji, B.; Wang, X. Succession in arbuscular mycorrhizal fungi can be attributed to a chronosequence of Cunninghamia lanceolata. Sci. Rep. 2019, 9, 18057. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Lin, T.-C.; Yang, Z.; Zheng, Y.; Xie, L.; Xiong, D.; Yang, Y. Warming exerts a stronger effect than nitrogen addition on the soil arbuscular mycorrhizal fungal community in a young subtropical Cunninghamia lanceolata plantation. Geoderma 2020, 367, 114273. [Google Scholar] [CrossRef]
- Deng, B.-L.; Wang, S.-L.; Xu, X.-T.; Wang, H.; Hu, D.-N.; Guo, X.-M.; Shi, Q.-H.; Siemann, E.; Zhang, L. Effects of biochar and dicyandiamide combination on nitrous oxide emissions from Camellia oleifera field soil. Environ. Sci. Pollut. Res. 2019, 26, 4070–4077. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, H.; Pumpanen, J.; Sietiö, O.-M.; Heinonsalo, J.; Köster, K.; Berninger, F. The impact of wildfire on microbial C:N:P stoichiometry and the fungal-to-bacterial ratio in permafrost soil. Biogeochemistry 2010, 142, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Lin, T.-C.; Xiong, D.; Yang, Z.; Liu, X.; Chen, G.; Xie, J.; Li, Y.; Yang, Y. Organic carbon mineralization in soils of a natural forest and a forest plantation of southeastern China. Geoderma 2019, 344, 119–126. [Google Scholar] [CrossRef]
- Phillips, J.M. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Mcgonigle, T.P.; Miller, M.H.; Evans, D.G.; Fairchild, G.L.; Swan, J.A. A new method which gives an objective measure of colonization of roots by vesicular—Arbuscular mycorrhizal fungi. New Phytol. 1990, 115, 495–501. [Google Scholar] [CrossRef]
- Jakobsen, I.; Abbott, L.; Robson, A.D. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. Spread of hyphae and phosphorus inflow into roots. New Phytol. 1992, 120, 371–380. [Google Scholar] [CrossRef]
- Brundrett, M.C. Mycorrhizas in Natural Ecosystems. Adv. Ecol. Res. 1991, 21, 171–313. [Google Scholar]
- Krüger, M.; Krüger, C.; Walker, C.; Stockinger, H.; Schüßler, A. Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol. 2011, 193, 970–984. [Google Scholar] [CrossRef]
- Oehl, F.; Sieverding, E.; Palenzuela, J.; Ineichen, K.; Silva, G. Advances in Glomeromycota taxonomy and classification. IMA Fungus 2011, 2, 191–199. [Google Scholar] [CrossRef]
- Wang, J.; Wang, G.G.; Zhang, B.; Yuan, Z.; Fu, Z.; Yuan, Y.; Zhu, L.; Ma, S.; Zhang, J. Arbuscular Mycorrhizal Fungi Associated with Tree Species in a Planted Forest of Eastern China. Forests 2019, 10, 424. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; The University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Simpson, E.H. Measurement of Diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Ma, X.; Zhu, B.; Nie, Y.; Liu, Y.; Kuzyakov, Y. Root and mycorrhizal strategies for nutrient acquisition in forests under nitrogen deposition: A meta-analysis. Soil Biol. Biochem. 2021, 163, 108418. [Google Scholar] [CrossRef]
- Johnson, N.C. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol. 2010, 185, 631–647. [Google Scholar] [CrossRef]
- Avolio, M.L.; Koerner, S.; La Pierre, K.J.; Wilcox, K.; Wilson, G.W.T.; Smith, M.D.; Collins, S. Changes in plant community composition, not diversity, during a decade of nitrogen and phosphorus additions drive above-ground productivity in a tallgrass prairie. J. Ecol. 2015, 102, 1649–1660. [Google Scholar] [CrossRef] [Green Version]
- Isbell, F.; Reich, P.B.; Tilman, D.; Hobbie, S.E.; Polasky, S.; Binder, S. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc. Natl. Acad. Sci. USA 2013, 110, 11911–11916. [Google Scholar] [CrossRef] [Green Version]
- Egerton-Warburton, L.M.; Johnson, N.C.; Allen, E.B. Mycorrhizal community dynamics following nitrogen fertilization: A cross-site test in five grasslands. Ecol. Monogr. 2007, 77, 527–544. [Google Scholar] [CrossRef] [Green Version]
- Jansa, J.; Mozafar, A.; Kuhn, G.; Anken, T.; Ruh, R.; Sanders, I.R.; Frossard, E.J.E.A. Soil tillage affects the community structure of mycorrhizal dungi in maize roots. Ecol. Appl. 2003, 13, 1164–1176. [Google Scholar] [CrossRef] [Green Version]
- Campos, P.D.S.; Borie, F.; Cornejo, P.; Lopez-Raez, J.A.; López-García, J.A.; Seguel, A. Phosphorus Acquisition Efficiency Related to Root Traits: Is Mycorrhizal Symbiosis a Key Factor to Wheat and Barley Cropping? Front. Plant Sci. 2018, 9, 752. [Google Scholar] [CrossRef]
- López-García, Á.; Varela-Cervero, S.; Vasar, M.; Öpik, M.; Barea, J.M.; Azcón-Aguilar, C. Plant traits determine the phylogenetic structure of arbuscular mycorrhizal fungal communities. Mol. Ecol. 2017, 26, 6948–6959. [Google Scholar] [CrossRef]
- Oehl, F.; Sieverding, E.; Ineichen, K.; Ris, E.; Boller, T.; Wiemken, A. Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol. 2005, 165, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Jamiołkowska, A.; Księżniak, A.; Gałązka, A.; Hetman, B.; Kopacki, M.; Skwaryło-Bednarz, B. Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil: A Review. Int. Agrophys. 2018, 32, 133–140. [Google Scholar] [CrossRef]
- Tedone, L.; Ruta, C.; De Cillis, F.; De Mastro, G. Effects of Septoglomus viscosum inoculation on biomass yield and steviol glycoside concentration of some Stevia rebaudiana chemotypes. Sci. Hortic. 2020, 262, 109026. [Google Scholar] [CrossRef]
- Todeschini, V.; AitLahmidi, N.; Mazzucco, E.; Marsano, F.; Gosetti, F.; Robotti, E.; Bona, E.; Massa, N.; Bonneau, L.; Marengo, E.; et al. Impact of Beneficial Microorganisms on Strawberry Growth, Fruit Production, Nutritional Quality, and Volatilome. Front. Plant Sci. 2018, 9, 1611. [Google Scholar] [CrossRef] [PubMed]
- Alguacil, M.D.M.; Torrecillas, E.; García-Orenes, F.; Roldan, A. Changes in the composition and diversity of AMF communities mediated by management practices in a Mediterranean soil are related with increases in soil biological activity. Soil Biol. Biochem. 2014, 76, 34–44. [Google Scholar] [CrossRef]
- Borriello, R.; Lumini, E.; Girlanda, M.; Bonfante, P.; Bianciotto, V. Effects of different management practices on arbuscular mycorrhizal fungal diversity in maize fields by a molecular approach. Biol. Fertil. Soils 2012, 48, 911–922. [Google Scholar] [CrossRef]
- Avio, L.; Castaldini, M.; Fabiani, A.; Bedini, S.; Sbrana, C.; Turrini, A.; Giovannetti, M. Impact of nitrogen fertilization and soil tillage on arbuscular mycorrhizal fungal communities in a Mediterranean agroecosystem. Soil Biol. Biochem. 2013, 67, 285–294. [Google Scholar] [CrossRef]
- Karasawa, T.; Hodge, A.; Fitter, A.H. Growth, respiration and nutrient acquisition by the arbuscular mycorrhizal fungus Glomus mosseae and its host plant Plantago lanceolata in cooled soil. Plant Cell Environ. 2012, 35, 819–828. [Google Scholar] [CrossRef]
- Cappellazzo, G.; Lanfranco, L.; Fitz, M.; Wipf, D.; Bonfante, P. Characterization of an Amino Acid Permease from the Endomycorrhizal Fungus Glomus mosseae. Plant Physiol. 2008, 147, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Shi, Z.; Yang, M.; Lu, S.; Cao, L.; Wang, X. Molecular Diversity and Distribution of Arbuscular Mycorrhizal Fungi at Different Elevations in Mt. Taibai of Qinling Mountain. Front. Microbiol. 2021, 12, 609386. [Google Scholar] [CrossRef]
- Shi, G.; Yao, B.; Liu, Y.; Jiang, S.; Wang, W.; Pan, J.; Zhao, X.; Feng, H.; Zhou, H. The phylogenetic structure of AMF communities shifts in response to gradient warming with and without winter grazing on the Qinghai–Tibet Plateau. Appl. Soil Ecol. 2017, 121, 31–40. [Google Scholar] [CrossRef]
- Panneerselvam, P.; Kumar, U.; Senapati, A.; Parameswaran, C.; Anandan, A.; Kumar, A.; Jahan, A.; Padhy, S.R.; Nayak, A.K. Influence of elevated CO2 on arbuscular mycorrhizal fungal community elucidated using Illumina MiSeq platform in sub-humid tropical paddy soil. Appl. Soil Ecol. 2019, 145, 103344. [Google Scholar] [CrossRef]
- Neuenkamp, L.; Zobel, M.; Koorem, K.; Jairus, T.; Davison, J.; Öpik, M.; Vasar, M.; Moora, M. Light availability and light demand of plants shape the arbuscular mycorrhizal fungal communities in their roots. Ecol. Lett. 2021, 24, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Bunn, R.; Lekberg, Y.; Zabinski, C. Arbuscular mycorrhizal fungi ameliorate temperature stress in thermophilic plants. Ecology 2009, 90, 1378–1388. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, J.; Wang, C.; Ren, G.; Yang, Y.; Wang, D. Precipitation exerts a strong influence on arbuscular mycorrhizal fungi community and network complexity in a semiarid steppe ecosystem. Eur. J. Soil Biol. 2021, 102, 103268. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Xu, Z.-W.; Xu, T.-L.; Veresoglou, S.D.; Yang, G.; Chen, B. Nitrogen deposition and precipitation induced phylogenetic clustering of arbuscular mycorrhizal fungal communities. Soil Biol. Biochem. 2017, 115, 233–242. [Google Scholar] [CrossRef]
- Li, X.; Qi, Z.; Yu, X.; Xu, M.; Liu, Z.; Du, G.; Yang, Y. Soil pH drives the phylogenetic clustering of the arbuscular mycorrhizal fungal community across subtropical and tropical pepper fields of China. Appl. Soil Ecol. 2021, 165, 103978. [Google Scholar] [CrossRef]
- Antunes, P.M.; Lehmann, A.; Hart, M.M.; Baumecker, M.; Rillig, M.C. Long-term effects of soil nutrient deficiency on arbuscular mycorrhizal communities. Funct. Ecol. 2012, 26, 532–540. [Google Scholar] [CrossRef]
- Zhang, J.; Quan, C.; Ma, L.; Chu, G.; Liu, Z.; Tang, X. Plant community and soil properties drive arbuscular mycorrhizal fungal diversity: A case study in tropical forests. Soil Ecol. Lett. 2021, 3, 52–62. [Google Scholar] [CrossRef]
- Gryndler, M.; Hršelová, H.; Sudová, R.; Gryndlerová, H.; Řezáčová, V.; Merhautová, V. Hyphal growth and mycorrhiza formation by the arbuscular mycorrhizal fungus Glomus claroideum BEG 23 is stimulated by humic substances. Mycorrhiza 2005, 15, 483–488. [Google Scholar] [CrossRef]
- Oehl, F.; Sieverding, E.; Ineichen, K.; Mäder, P.; Wiemken, A.; Boller, T. Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. Agric. Ecosyst. Environ. 2009, 134, 257–268. [Google Scholar] [CrossRef]
- Mosbah, M.; Philippe, D.L.; Mohamed, M. Molecular identification of arbuscular mycorrhizal fungal spores associated to the rhizosphere of Retama raetam in Tunisia. Soil Sci. Plant Nutr. 2018, 64, 335–341. [Google Scholar] [CrossRef]
- Wolf, J.; Johnson, N.C.; Rowland, D.L.; Reich, P.B. Elevated CO2 and plant species richness impact arbuscular mycorrhizal fungal spore communities. New Phytol. 2003, 157, 579–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
CK | LN | MN | HN | F-Value | p-Value | |
---|---|---|---|---|---|---|
Colonization (%) | 81.75 ± 2.25 | 84.75 ± 1.60 | 83.00 ± 3.10 | 82.00 ± 2.70 | 0.30 | 0.82 |
SD (spore g−1 air-dried soil) | 255.69 ± 39.84 | 297.69 ± 32.33 | 364.63 ± 37.85 | 318.94 ± 41.76 | 1.65 | 0.23 |
HLD (m/g) | 5.10 ± 0.95 | 3.53 ± 0.77 | 3.73 ± 0.46 | 4.53 ± 0.68 | 0.98 | 0.44 |
SR | 21 | 21 | 20 | 19 | - | - |
H | 1.89 ± 0.11 | 1.96 ± 0.11 | 1.67 ± 0.21 | 1.94 ± 0.01 | 1.02 | 0.42 |
D | 0.79 ± 0.02 | 0.80 ± 0.03 | 0.69 ± 0.07 | 0.81 ± 0.01 | 1.92 | 0.18 |
Species Number | AMF | Nitrogen Treatment | FO (%) | RA (%) | IV (%) | |||
---|---|---|---|---|---|---|---|---|
CK | LN | MN | HN | |||||
1 | Acaulospora bierticulata | + | + | + | + | 81.25% | 11.79% | 46.52% |
2 | Acaulospora denticulata | − | + | + | − | 12.50% | 1.59% | 7.05% |
3 | Acaulospora excavat | + | + | + | + | 93.75% | 81.63% | 87.69% |
4 | Acaulospora foveata | + | + | + | + | 25.00% | 4.99% | 15.00% |
5 | Archaeospora schenckii | + | − | − | − | 6.25% | 0.91% | 3.58% |
6 | Claroideoglomus claroideum | + | + | − | − | 12.50% | 15.00% | 13.75% |
7 | Claroideoglomus ethunicatum | + | + | + | + | 43.75% | 85.00% | 64.38% |
8 | Dentiscutata heterogama | − | − | + | + | 12.50% | 100.00% | 56.25% |
9 | Diversispora etunicatum | − | + | + | + | 25.00% | 100.00% | 62.50% |
10 | Entrophospora infrequens | + | − | − | − | 6.25% | 100.00% | 53.13% |
11 | Funneliformis mosseae | + | + | + | + | 37.50% | 100.00% | 68.75% |
12 | Funneliformis geosporum | + | + | + | + | 31.25% | 54.41% | 42.83% |
13 | Gigaspora albida | − | + | + | + | 25.00% | 45.59% | 35.30% |
14 | Glomus aggregatum | + | − | + | − | 6.25% | 100.00% | 53.13% |
15 | Glomus ambisporum | + | − | − | − | 6.25% | 2.21% | 4.23% |
16 | Glomus clarum | + | + | + | + | 93.75% | 0.12% | 46.94% |
17 | Glomus melanosporum | + | + | + | + | 68.75% | 6.39% | 37.57% |
18 | Glomus microaggregatum | + | + | − | + | 18.75% | 3.14% | 10.95% |
19 | Glomus multicaule | + | + | + | + | 62.50% | 3.72% | 33.11% |
20 | Glomus multiforum | + | + | + | + | 93.75% | 27.53% | 60.64% |
21 | Glomus reticulatum | + | + | + | + | 100.00% | 34.61% | 67.31% |
22 | Rhizophagus aggregatus | + | + | + | + | 100.00% | 97.39% | 98.70% |
23 | Rhizophagus intraradices | − | + | − | − | 6.25% | 2.61% | 4.43% |
24 | Sclerocystis liquidambaris | + | + | + | + | 37.50% | 40.98% | 39.24% |
25 | Sclerocystis sinuosum | + | + | + | + | 87.50% | 59.02% | 73.26% |
26 | Septoglomus viscosum | + | + | + | + | 100.00% | 100.00% | 100.00% |
CK | LN | MN | HN | F-Value | p-Value | |
---|---|---|---|---|---|---|
pH | 4.00 ± 0.08 | 4.02 ± 0.18 | 3.83 ± 0.08 | 3.93 ± 0.08 | 0.57 | 0.64 |
TOC (g/kg) | 1.39 ± 0.09 | 1.24 ± 0.26 | 1.36 ± 0.14 | 1.50 ± 0.11 | 1.35 | 0.30 |
NH4+-N (mg/kg) | 28.07 ± 1.04 | 29.48 ± 1.92 | 32.48 ± 2.91 | 33.57 ± 3.05 | 1.16 | 0.37 |
AN (mg/kg) | 61.43 ± 0.54 | 60.90 ± 2.60 | 64.52 ± 3.84 | 64.65 ± 2.76 | 0.54 | 0.67 |
AP (mg/kg) | 7.82 ± 0.96 | 8.98 ± 0.52 | 8.03 ± 0.73 | 8.05 ± 0.59 | 0.51 | 0.69 |
C (g/kg) | 89.78 ± 4.06 | 98.75 ±0.35 | 93.10 ± 5.25 | 91.68 ± 3.20 | 0.70 | 0.58 |
N (g/kg) | 5.78 ± 0.25 | 6.65 ± 0.28 | 6.00 ± 0.28 | 5.65 ± 0.13 | 3.37 | 0.06 |
P (mg/kg) | 234.64 ± 22.57 | 239.81 ± 21.02 | 228.52 ± 15.05 | 223.15 ± 25.56 | 0.12 | 0.95 |
C/N | 15.54 ± 0.05 | 15.67 ± 0.59 | 16.55 ± 0.68 | 16.22 ± 0.33 | 1.03 | 0.42 |
N/P | 25.31 ± 2.60 | 25.62 ± 2.78 | 26.73 ± 2.50 | 26.81 ± 1.70 | 0.10 | 0.96 |
pH | TOC | NH4+-N | AN | AP | C | N | P | C/N | N/P | |
---|---|---|---|---|---|---|---|---|---|---|
Colonization | 0.012 | −0.643 * | −0.437 | −0.571 | −0.245 | −0.14 | −0.126 | 0.142 | 0.025 | −0.112 |
HLD | −0.062 | 0.267 | 0.245 | 0.288 | −0.531 | −0.26 | −0.197 | −0.701 * | −0.154 | 0.564 |
SD | −0.338 | 0.214 | 0.008 | 0.251 | 0.161 | 0.679 * | 0.477 | 0.283 | 0.489 | 0.002 |
SR | 0.101 | 0.604 * | 0.488 | 0.551 | 0.114 | 0.63 * | 0.478 | 0.039 | 0.33 | 0.117 |
H | 0.623 * | 0.478 | 0.341 | 0.142 | 0.081 | 0.306 | 0.328 | −0.023 | −0.098 | 0.117 |
D | 0.560 | 0.408 | 0.264 | 0.105 | 0.12 | 0.193 | 0.209 | 0.002 | −0.066 | 0.07 |
Acaulospora | −0.378 | −0.575 | −0.506 | −0.52 | 0.004 | −0.332 | −0.418 | 0.575 | 0.332 | −0.708 * |
Archaeospora | 0.087 | 0.428 | 0.016 | 0.007 | −0.237 | −0.532 | −0.537 | −0.027 | 0.072 | −0.25 |
Claroideoglomus | 0.464 | −0.303 | 0.302 | −0.029 | −0.047 | 0.077 | 0.175 | 0.071 | −0.268 | −0.045 |
Dentiscutata | 0.014 | 0.244 | 0.434 | 0.451 | 0.17 | 0.453 | 0.349 | 0.165 | 0.203 | −0.047 |
Diversispora | 0.057 | 0.482 | −0.205 | −0.057 | −0.051 | −0.173 | −0.304 | 0.384 | 0.399 | −0.447 |
Entrophospora | 0.087 | 0.428 | 0.016 | 0.007 | −0.237 | −0.532 | −0.537 | −0.027 | 0.072 | −0.25 |
Funneliformis | 0.05 | 0.764 ** | 0.175 | 0.266 | −0.045 | −0.163 | −0.201 | −0.093 | 0.113 | −0.033 |
Gigaspora | −0.644 * | −0.385 | −0.672 * | −0.466 | 0.042 | −0.24 | −0.419 | 0.636 * | 0.581 * | −0.711 ** |
Glomus | 0.341 | −0.133 | 0.242 | 0.033 | −0.086 | 0.199 | 0.279 | −0.363 | −0.258 | 0.393 |
Rhizophagus | 0.275 | −0.152 | −0.376 | −0.438 | −0.378 | 0.023 | 0.081 | −0.056 | −0.124 | 0.208 |
Septogolomus | −0.138 | 0.252 | 0.23 | 0.404 | 0.21 | 0.179 | 0.193 | −0.194 | −0.104 | 0.288 |
Ancestral | −0.367 | −0.508 | −0.508 | −0.524 | −0.036 | −0.425 | −0.513 | 0.575 | 0.347 | −0.757 ** |
Edaphophilic | −0.083 | 0.381 | −0.341 | −0.154 | −0.04 | −0.218 | −0.381 | 0.505 | 0.509 | −0.582 * |
Rhizophilic | 0.361 | 0.431 | 0.53 | 0.52 | 0.04 | 0.435 | 0.541 | −0.617 * | −0.4 | 0.801 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Zheng, X.; Cao, M.; Guan, X.; Jiang, J. Nitrogen Addition Does Not Change AMF Colonization but Alters AMF Composition in a Chinese Fir (Cunninghamia lanceolata) Plantation. Forests 2022, 13, 979. https://doi.org/10.3390/f13070979
Wu F, Zheng X, Cao M, Guan X, Jiang J. Nitrogen Addition Does Not Change AMF Colonization but Alters AMF Composition in a Chinese Fir (Cunninghamia lanceolata) Plantation. Forests. 2022; 13(7):979. https://doi.org/10.3390/f13070979
Chicago/Turabian StyleWu, Fan, Xiang Zheng, Minmin Cao, Xin Guan, and Jiang Jiang. 2022. "Nitrogen Addition Does Not Change AMF Colonization but Alters AMF Composition in a Chinese Fir (Cunninghamia lanceolata) Plantation" Forests 13, no. 7: 979. https://doi.org/10.3390/f13070979
APA StyleWu, F., Zheng, X., Cao, M., Guan, X., & Jiang, J. (2022). Nitrogen Addition Does Not Change AMF Colonization but Alters AMF Composition in a Chinese Fir (Cunninghamia lanceolata) Plantation. Forests, 13(7), 979. https://doi.org/10.3390/f13070979