Compressive Strength Characteristic Values of Nine Structural Sized Malaysian Tropical Hardwoods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Compressive Strength Properties Evaluation for Parallel and Perpendicular to the Grain
2.3. Evaluation of Compressive Strength Characteristic Value
2.4. Statistical Analysis
3. Results and Discussion
3.1. Compressive Strength Properties
3.2. Characteristic Value of Compressive Strength Properties
3.3. Verification of Equation in EN338
4. Conclusions
- The compressive strength of the timber specimens was influenced by their size. In some cases, the compressive strength of the specimens decreased as the size of the samples increased from 75 × 150 × 450 to 100 × 150 × 600 mm.
- The grain direction has a substantial influence on compressive characteristics, with all specimens examined parallel to the grain having a higher compressive strength and MOE than specimens tested perpendicular to the grain. The compressive performance of Kempas (SG2) is the highest than the other species studied in this study.
- Compressive strength and stiffness were positively correlated. Meanwhile, density also exerts substantial effect on the compressive strength of the timber specimens.
- With exception of Keruing, the compressive characteristic values for other species are higher than the values stipulated in EN 338 [6] for corresponding strength classes, notably for hardwood timber, with a density greater than 700 kg/m3.
- An equation that differed than the one given in EN 384 [15] was developed in this study for the determination of compressive strength characteristic values. The equation developed was . Based on this equation, it was revealed that the equation in EN 384 [15] is only suitable for low-density timber such as Mengkulang, Light Red Meranti, and Geronggang. The equation stipulated in EN 384 [15] is unsuitable for timber with densities higher than 700 kg/m3 because it underestimates the strength of the timber, making structural timber design uneconomical.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bodig, J.; Jayne, B.A. Mechanics of Wood and Wood Composite; Van Norstrand Reinhold Company Inc.: New York, NY, USA, 1982. [Google Scholar]
- Hassan, R.; Ahmad, Z.; Ibrahim, A.; Mohd Nor, M.S. Compressive Strength Properties of Structural Size Timber Made from Selected Malaysian Tropical Timber; Institut Penyelidikan, Pembangunan dan Pengkomersilan, Universiti Teknologi MARA: Shah Alam, Malaysia, 2004. [Google Scholar]
- Puaad, M.B.F.M.; Ahmad, Z. Comparing the Compressive Strength Properties of Structural Size and small Clear Specimens for Malaysian Tropical Timber. Sci. Int. 2017, 29, 25–29. [Google Scholar]
- Ali, K.H.; Hussain, T.; Kamali, A. Compression Perpendicular to Grain in Timber-Bearing Strength for a Sill Plate. Master’s Thesis, Linnaeus University, Växjö, Sweden, 2014. [Google Scholar]
- MS 544: Part 2: 2017; Code of Timber Practice for Structural Use of Timber: Part 2: Permissible Stress Design of Solid Timber. Department of Standards Malaysia: Cyberjaya, Malaysia, 2017.
- MS 544: Part 3: 2001; Permissible Stress Design of Glued Laminated Timber. Department of Standards Malaysia: Cyberjaya, Malaysia, 2001.
- BS 5268-2:2002; Structural use of timber: Part 2: Code of Practice for Permissible Stress Design, Materials and Workmanship. The British Standards Institution: London, UK, 2002.
- Wahab, M.J.A.; Jumaat, M.Z.; Khaidzir, M.O.M. Statistical Technique for Grouping Tropical Timbers into Similar Strength Groups. Mod. Appl. Sci. 2012, 6, 73–80. [Google Scholar]
- EN 1995-1-1; Eurocode 5: Design of Timber Structures. European Committee for Standardization: Geneva, Switzerland, 1995.
- Sheikh, S.; Ahmad, Y. Flexural Timber Design to Eurocode 5 And the Malaysian Timber Code MS 544: 2001. Malays. J. Civ. Eng. 2015, 27, 207–223. [Google Scholar]
- EN 338:2016; Structural Timber-Strength Classes. European Committee for Standardization: Geneva, Switzerland, 2016.
- Ahmad, Z.; Bon, Y.C.; Abd Wahab, E.S. Tensile Strength Properties of Tropical Hardwoods in Structural Size Testing. Int. J. Basic Appl. Sci. 2010, 10, 1–6. [Google Scholar]
- Wahab, M.J.A.; Jumaat, M.Z. Investigation of Linearity between Mechanical Properties of Wood Using Graphical Method. Sains Malays. 2014, 43, 211–218. [Google Scholar]
- Mohd Jamil, A.W.; Mohd Zamin, J.; Mohamad Omar, M.K. Relationship between Mechanical Properties of Structural Size and Small Clear Specimens of Timber. J. Trop. For. Sci. 2013, 25, 12–21. [Google Scholar]
- EN 384:2016; Determination of Characteristic Values of Mechanical Properties and Density. European Committee for Standardization: Geneva, Switzerland, 2016.
- EN 408:2010; Timber Structures-Structural Timber and Glued Laminated Timber—Determination of Some Physical and Mechanical Properties. European Committee for Standardization: Geneva, Switzerland, 2010.
- BS 5756:2007+A1:2011; Visual Strength Grading of Hardwood. Specification. The British Standards Institution: London, UK, 2011.
- MS 1714:2003; Specification for Visual Strength Grading of Tropical Hardwood Timber. Department of Standards Malaysia: Cyberjaya, Malaysia, 2003.
- EN 14081-1:2005; Timber Structures—Strength Graded Structural Timber with Rectangular cross Section. General Requirements (+A1:2011). European Committee for Standardization (CEN): Brussels, Belgium, 2005.
- Anon. 100 Malaysian Timbers: 2010 Edition; Malaysian Timber Industry Board: Kuala Lumpur, Malaysia, 2010.
- EN 14358:2016; Timber Structures—Calculation and Verification of Characteristic Values. European Committee for Standardization: Geneva, Switzerland, 2016.
- EN 13183-1 (2002); Moisture Content of a Piece of Sawn Timber–Part 1: Determination by Oven Dry Method. European Committee for Standardization (CEN): Brussels, Belgium, 2002.
- Dinwoodie, J.M. Timber-A Review of the Structure-Mechanical Property Relationship. J. Microsc. 1975, 104, 3–32. [Google Scholar] [CrossRef]
- Porteons, J.; Kermani, A. Structural Timber Design Eurocode 5, 2nd ed.; Wiley-Blackwell: Oxford, UK, 2013. [Google Scholar]
- Ravenshorst, G.J.P. Species Independent Strength Grading of Structural Timber. Ph.D. Thesis, Faculty of Civil Engineering, Delft University of Technology, Delft, The Netherlands, 2015. [Google Scholar]
- Hamid, N.H.A.; Ahmad, M.; Suratman, M.N. Bending and Compression Properties of Malaysian Medium Hardwood in Orthotropic Directions Kelat (Syzygium spp.). Appl. Mech. Mater. 2013, 330, 938–941. [Google Scholar] [CrossRef]
- Hallai, J. Fracture of Orthotropic Materials under Mixed Mode Loading; Department of Aerospace Engineering and Engineering Mechanic, The University of Texas at Austin: Austin, TX, USA, 2008. [Google Scholar]
- Md Ali, E.S.S. Bending behavior of Timber Beams Strengthened with Glass Fibre Reinforced Polymer (GFRP). Bachelor’s Thesis, Universiti Malaysia Pahang, Gambang, Malaysia, 2014. [Google Scholar]
- Taragon, J.K. Determination of Stuctural Properties of Naturally Dried Kabete Blue-Gum Timber. Master’s Thesis, Department of Agricultural Engineering, University of Nairobi, Nairobi, Kenya, 2000. [Google Scholar]
- Hanhijärvi, A.; Ranta-Maunus, A. Development of Strength Grading of Timber Using Combined Measurement Techniques. Report of the Combigrade-Project, Phase 2; VTT Publications: Espoo, Finland, 2008; p. 55. [Google Scholar]
- Zziwa, A.; Ziraba, Y.N.; Mwakali, J.A. Inferring Strength of Structural Timbers from Small Clear Specimen Strength Test Data. Int. J. Res. Eng. Technol. Sci. 2016, 2, 142–152. [Google Scholar]
- Gruznova, A. Comparison of Timber Strength Classification Systems in Finland and in Russia. Bachelor’s Thesis, Saimaa University of Applied Sciences, Lappeenranta, Finland, 2012. [Google Scholar]
- Divos, F.; Tanaka, T. Relation Between Static and Dynamic Modulus of Elasticity of Wood. Acta Silv. Lignaria Hung. 2005, 1, 105–110. [Google Scholar]
- Gerhards, C.C. Effect of Moisture Content and Temperature on Mechanical Properties of Wood: An Analysis of Immediate Effect. Wood Fiber Sci. 1982, 14, 4–36. [Google Scholar]
- Fryer, B.K.; Foster, R.M.; Ramage, M.H. Size Effect of Large Scale Timber Columns. In Proceedings of the World Conference on Timber Engineering 2018, Seoul, Korea, 20–23 August 2018; pp. 20–23. [Google Scholar]
- Weibull, W. A Statistical Theory of the Strength of Material; Proceedings No. 151; The Royal Swedish Institute for Engineering Research: Stockholm, Sweden, 1939; pp. 1–45.
- Schlotzhauer, P.; Nelis, P.A.; Bollmus, S.; Gellerich, A.; Militz, H.; Seim, W. Effect of Size and Geometry on Strength Values and MOE of Selected Hardwood Species. Wood Mater. Sci. Eng. 2015, 12, 149–157. [Google Scholar] [CrossRef]
- Astrup, T.; Clorius, C.O.; Damkilde, L.; Hoffmeyer, P. Size Effect of Glulam Beams in Tension Perpendicular to Grain. Wood Sci. Technol. 2007, 41, 361–372. [Google Scholar] [CrossRef]
- Pedersen, M.U.; Clorius, C.O.; Damkilde, L.; Hoffmeyer, P. A Simple Size Effect Model for Tension Perpendicular to The Grain. Wood Sci. Technol. 2003, 37, 125–140. [Google Scholar] [CrossRef]
- Ashaari, Z.; Lee, S.H.; Mustamel, M.N.; Salleh, N.F.M. Strength Improvement of Jelutong (Dyera costulata) Wood Via Phenolic Resin Treatments. J. Indian Acad. Wood Sci. 2015, 12, 132–136. [Google Scholar] [CrossRef]
- Ahmad, Z.; Lum, W.C.; Lee, S.H.; Razlan, M.A.; Mohamad, W.H.W. Mechanical Properties of Finger Jointed Beams Fabricated from Eight Malaysian Hardwood Species. Constr. Build. Mater. 2017, 145, 464–473. [Google Scholar] [CrossRef]
- Horáček, P.; Fajstavr, M.; Stojanović, M. The Variability of Wood Density and Compression Strength of Norway Spruce (Picea abies/L./Karst.) within The Stem. Beskydy 2018, 10, 17–26. [Google Scholar] [CrossRef] [Green Version]
- EN 1912: 2012; Structural Timber—Strength Classes—Assignment of Visual Grades and Species. European Committee for Standardization: Geneva, Switzerland, 2012.
- Hannouz, S.; Collet, R.; Butaud, J.; Bléron, L.; Candelier, K. Mechanical Characterization of Heat-Treated Ash Wood in Relation with Structural Timber Standards. Sci. J. Field Wood Eng. 2015, 11, 3–10. [Google Scholar]
- ObinnaOsuji, S.; Inerhunwa, I. Characterization and Strength Classification of Timber Species in Akwa Ibom State, Nigeria for Structural Engineering Applications. Int. J. Eng. Res. Appl. 2017, 7, 1–9. [Google Scholar]
- Ravenshorst, G.; Gamper, N.; Vries, P.D.; Van de Kuilen, J.W.G. Determination of the shear strength of tropical hardwood timber. In Proceedings of the 14th World Conference on Timber Engineering (WCTE 2016), Vienna, Austria, 22–25 August 2016; pp. 23–25. [Google Scholar]
- Baharin, A. Development of Characteristic Value for Bending Strength Properties of Selected Malaysian Tropical Hardwood Timber in Accordance with Eurocode 5. Ph.D. Thesis, Universiti Teknologi MARA, Selangor, Malaysia, 2020. [Google Scholar]
Species | Air-Dry Density (kg/m3) 1 | Strength Group (SG) 2 | Grain Direction | Dimension (mm) | Number of Specimens | Loading Rate (mm/s) |
---|---|---|---|---|---|---|
Balau | 850–1155 | SG 1 | Parallel | 100 × 150 × 600 | 100 | 0.023 |
75 × 150 × 450 | 100 | 0.02 | ||||
Perpendicular | 45 × 70 × 90 | 200 | 0.009 | |||
Kempas | 770–1120 | SG 2 | Parallel | 100 × 150 × 600 | 100 | 0.023 |
75 × 150 × 450 | 100 | 0.02 | ||||
Perpendicular | 45 × 70 × 90 | 200 | 0.009 | |||
Kelat | 495–1010 | SG 3 | Parallel | 100 × 150 × 600 | 100 | 0.022 |
75 × 150 × 450 | 100 | 0.023 | ||||
Perpendicular | 45 × 70 × 90 | 200 | 0.008 | |||
Resak | 655–1155 | SG 4 | Parallel | 100 × 150 × 600 | 100 | 0.023 |
75 × 150 × 450 | 100 | 0.02 | ||||
Perpendicular | 45 × 70 × 90 | 200 | 0.008 | |||
Kapur | 575–815 | SG 4 | Parallel | 100 × 150 × 600 | 100 | 0.023 |
75 × 150 × 450 | 100 | 0.019 | ||||
Perpendicular | 45 × 70 × 90 | 200 | 0.008 | |||
Keruing | 690–945 | SG 5 | Parallel | 100 × 150 × 600 | 100 | 0.022 |
75 × 150 × 450 | 100 | 0.018 | ||||
Perpendicular | 45 × 70 × 90 | 200 | 0.009 | |||
Mengkulang | 625–895 | SG 5 | Parallel | 100 × 150 × 600 | 100 | 0.022 |
75 × 150 × 450 | 100 | 0.018 | ||||
Perpendicular | 45 × 70 × 90 | 200 | 0.009 | |||
Light Red Meranti | 385–755 | SG 6 | Parallel | 100 × 150 × 600 | 100 | 0.02 |
75 × 150 × 450 | 100 | 0.016 | ||||
Perpendicular | 45 × 70 × 90 | 200 | 0.01 | |||
Geronggang | 350–610 | SG 7 | Parallel | 75 × 125 × 450 | 100 | 0.02 |
50 × 125 × 300 | 100 | 0.016 | ||||
Perpendicular | 45 × 70 × 90 | 200 | 0.008 | |||
Total number specimens | 3600 |
Species | Grain Direction | Size (mm) | n | Compressive Strength (MPa) | MOE (MPa) |
---|---|---|---|---|---|
Balau (SG1) | ∥ | 100 × 150 × 600 | 100 | 55.3 (15.2) c | 16,809 (14.2) f,g |
∥ | 75 × 150 × 450 | 100 | 54.4 (13.7) d,e | 16,118 (15.7) h,i | |
⊥ | 45 × 70 × 90 | 200 | 14.7 (20.3) n | 1377 (31.6) l | |
Kempas (SG2) | ∥ | 100 × 150 × 600 | 100 | 62.6 (14.7) b | 21,985 (12.4) b |
∥ | 75 × 150 × 450 | 100 | 63.4 (14.0) a | 22,580 (17.8) a | |
⊥ | 45 × 70 × 90 | 200 | 12.1 (23.3) o | 1167 (30.8) l,m | |
Kelat (SG3) | ∥ | 100 × 150 × 600 | 100 | 46.4 (11.0) f | 18,388 (15.9) d |
∥ | 75 × 150 × 450 | 100 | 43.3 (14.8) g,h | 17,853 (24.0) e | |
⊥ | 45 × 70 × 90 | 200 | 10.1 (26.0) p | 1371 (45.1) l | |
Resak (SG4) | ∥ | 100 × 150 × 600 | 100 | 54.1 (15.2) e | 22,300 (17.2) a,b |
∥ | 75 × 150 × 450 | 100 | 55.8 (14.0) c,d | 20,422 (19.2) c | |
⊥ | 45 × 70 × 90 | 200 | 17.7 (26.7) m | 1638 (47.5) l | |
Kapur (SG4) | ∥ | 100 × 150 × 600 | 100 | 41.4 (8.8) i | 17,646 (22.1) e |
∥ | 75 × 150 × 450 | 100 | 43.9 (12.6) g | 16,953 (19.1) e,f | |
⊥ | 45 × 70 × 90 | 200 | 5.3 (24.3) r | 532 (40.4) m,n | |
Keruing (SG5) | ∥ | 100 × 150 × 600 | 100 | 42.5 (17.1) h.i | 16,401 (16.5) g,h |
∥ | 75 × 150 × 450 | 100 | 44.5 (16.9) g,h | 16,791 (19.7) f,g | |
⊥ | 45 × 70 × 90 | 200 | 6.3 (31.9) q,r | 615 (61.0) m.n | |
Mengkulang (SG5) | ∥ | 100 × 150 × 600 | 100 | 39.1 (11.1) i | 16,401 (21.3) i |
∥ | 75 × 150 × 450 | 100 | 37.4 (14.4) j | 16,791 (25.6) h,i | |
⊥ | 45 × 70 × 90 | 200 | 7.5 (22.5) q | 691 (43.3) m,n | |
Light Red Meranti (SG6) | ∥ | 100 × 150 × 600 | 100 | 31.3 (16.6) k | 11,057 (15.6) j |
∥ | 75 × 150 × 450 | 100 | 28.1 (12.4) l | 10,768 (13.5) j,k | |
⊥ | 45 × 70 × 90 | 200 | 3.3 (21.9) s | 251 (34.0) n | |
Geronggang (SG7) | ∥ | 75 × 125 × 450 | 100 | 28.1 (11.1) l | 10,180 (20.2) k |
∥ | 50 × 125 × 300 | 100 | 26.1 (14.1) l | 11,013 (15.6) j,k | |
⊥ | 45 × 70 × 90 | 200 | 3.4 (36.9) s | 377 (60.1) n |
Compressive Strength (MPa) | Modulus of Elasticity (MPa) | Density (kg/m3) | ||||
---|---|---|---|---|---|---|
Species | fc,0,12 | fc,0,k | Ec,0,mean | Ec,0,k | ρmean | ρk |
Balau | 54.7 | 38.2 | 16,439 | 16,786 | 912 | 805 |
Kempas | 62.9 | 43.9 | 22,180 | 22,647 | 879 | 716 |
Kelat | 44.9 | 32.2 | 18,109 | 18,491 | 887 | 731 |
Resak | 54.1 | 37.6 | 21,132 | 21,567 | 992 | 813 |
Kapur | 43.0 | 32.3 | 17,383 | 17,749 | 782 | 655 |
Keruing | 43.5 | 28.1 | 16,588 | 16,937 | 868 | 674 |
Mengkulang | 37.5 | 26.9 | 15,698 | 15,563 | 663 | 541 |
Light Red Meranti | 29.5 | 19.7 | 10,913 | 11,143 | 488 | 361 |
Geronggang | 26.9 | 18.2 | 10,572 | 10,795 | 557 | 445 |
Strength Class | fc,0,k (MPa) | Ec,0,k (GPa) | ρk (kg/m3) | |
---|---|---|---|---|
EN 338 [11] | ||||
Balau | D50 | 30.0 | 14.0 | 620 |
Kempas | D60 | 33.0 | 17.0 | 700 |
Kapur | D60 | 33.0 | 17.0 | 700 |
Keruing | D50 | 30.0 | 14.0 | 620 |
MS 544: Part 3 [6] | ||||
Mengkulang | D40 | 27.0 | 13.0 | 550 |
Light Red Meranti | C22 | 20.0 | 10.0 | 340 |
Experimental Value | ||||
Balau | 38.2 | 16.4 | 805 | |
Kempas | 43.9 | 22.2 | 716 | |
Kapur | 32.3 | 17.4 | 655 | |
Keruing | 28.1 | 16.6 | 674 | |
Mengkulang | 26.9 | 15.7 | 541 | |
Light Red Meranti | 19.7 | 10.9 | 361 |
Species | Strength Class | fm,k (MPa) | EN 338: 2016 | fc,0,k (MPa) | ρmean (kg/m3) |
---|---|---|---|---|---|
Balau | D55 | 55.0 | 32 | 38.2 | 912 |
Kempas | D50 | 50.4 | 30 | 43.9 | 879 |
Kelat | D40 | 44.6 | 27 | 32.2 | 887 |
Resak | D45 | 46.8 | 29 | 37.6 | 992 |
Kapur | D45 | 46.8 | 29 | 32.3 | 782 |
Keruing | D45 | 45.4 | 29 | 28.1 | 868 |
Mengkulang | D35 | 44.6 | 25 | 26.9 | 663 |
Light Red Meranti | C20 | 23.9 | 19 | 19.7 | 488 |
Geronggang | C16 | 17.9 | 17 | 18.2 | 557 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azmi, A.; Ahmad, Z.; Lum, W.C.; Baharin, A.; Za’ba, N.I.L.; Bhkari, N.M.; Lee, S.H. Compressive Strength Characteristic Values of Nine Structural Sized Malaysian Tropical Hardwoods. Forests 2022, 13, 1172. https://doi.org/10.3390/f13081172
Azmi A, Ahmad Z, Lum WC, Baharin A, Za’ba NIL, Bhkari NM, Lee SH. Compressive Strength Characteristic Values of Nine Structural Sized Malaysian Tropical Hardwoods. Forests. 2022; 13(8):1172. https://doi.org/10.3390/f13081172
Chicago/Turabian StyleAzmi, Anis, Zakiah Ahmad, Wei Chen Lum, Adnie Baharin, Nurul Izzatul Lydia Za’ba, Norshariza Mohamad Bhkari, and Seng Hua Lee. 2022. "Compressive Strength Characteristic Values of Nine Structural Sized Malaysian Tropical Hardwoods" Forests 13, no. 8: 1172. https://doi.org/10.3390/f13081172
APA StyleAzmi, A., Ahmad, Z., Lum, W. C., Baharin, A., Za’ba, N. I. L., Bhkari, N. M., & Lee, S. H. (2022). Compressive Strength Characteristic Values of Nine Structural Sized Malaysian Tropical Hardwoods. Forests, 13(8), 1172. https://doi.org/10.3390/f13081172