Comparison of Different Methods to Estimate Canopy Water Storage Capacity of Two Shrubs in the Semi-Arid Loess Plateau of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.2.1. Throughfall, Stemflow, and Canopy Interception
2.2.2. Scale-Up Method
- (1)
- Water storage capacity of the stem, branch, and leaf
- (2)
- Scale-up
2.2.3. Pereira Regression Analysis Method
2.2.4. Simulated Rainfall Method
2.3. Data Analysis
3. Results
3.1. Rainfall
3.2. Canopy Water Storage Based on Pereira Regression Analysis Method
3.2.1. Throughfall, Stemflow, and Canopy Interception
3.2.2. Average Rainfall Intensity and Evaporation Intensity
3.3. Canopy Water Storage Based on Scale-Up Method
3.4. Canopy Water Storage Based on Simulated Rainfall Method
3.5. Relationships between Water Storage Capacities and Community Characteristics
4. Discussion
4.1. Influential Factors of Shrub Canopy Water Storage Capacity
4.2. Effects of Different Methods on Canopy Water Storage Capacity
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ginebra-Solanellas, R.M.; Holder, C.D.; Lauderbaugh, L.K.; Webb, R. The influence of changes in leaf inclination angle and leaf traits during the rainfall interception process. Agric. For. Meteorol. 2020, 285, 107924. [Google Scholar] [CrossRef]
- Grunicke, S.; Queck, R.; Bernhofer, C. Long-term investigation of forest canopy rainfall interception for a spruce stand. Agric. For. Meteorol. 2020, 292, 108125. [Google Scholar] [CrossRef]
- Campellone, S.V.; Levia, D.F.; Montalto, F.A. Differences in submillimetre surface morphology and canopy interception storage capacities of Gleditsia triacanthos L. (honeylocust) in relation to canopy phenophase and position. Ecohydrology 2020, 13, e2192. [Google Scholar] [CrossRef]
- Horton, R.E. Rainfall interception. Mon. Weather Rev. 1919, 47, 603–623. [Google Scholar] [CrossRef]
- Rutter, A.J.; Kershaw, K.A.; Robins, P.C.; Morton, A.J. A predictive model of rainfall interception in forests. I. Derivation of the model from observations in a plantation of Corsican pine. Agric. Meteorol. 1972, 9, 367–384. [Google Scholar] [CrossRef]
- Baptista, M.D.; Livesley, S.J.; Parmehr, E.G.; Neave, M.; Amati, M. Terrestrial laser scanning to predict canopy area metrics, water storage capacity, and throughfall redistribution in small trees. Remote Sens. 2018, 10, 1958. [Google Scholar] [CrossRef] [Green Version]
- Klamerus-Iwan, A.; Lagan, S.; Zarek, M.; Slowik-Opoka, E.; Wojtan, B. Variability of Leaf Wetting and Water Storage Capacity of Branches of 12 Deciduous Tree Species. Forests 2020, 11, 1158. [Google Scholar]
- Xiong, P.; Chen, Z.; Zhou, J.; Lai, S.; Jian, C.; Wang, Z.; Xu, B. Aboveground biomass production and dominant species type determined canopy storage capacity of abandoned grassland communities on semiarid Loess Plateau. Ecohydrology 2021, 14, e2265. [Google Scholar] [CrossRef]
- Chen, Y.; Li, M. Quantifying Rainfall Interception Loss of a Subtropical Broadleaved Forest in Central Taiwan. Water 2016, 8, 14. [Google Scholar] [CrossRef]
- Jiao, J.; Su, D.; Han, L.; Wang, Y. A Rainfall Interception Model for Alfalfa Canopy under Simulated Sprinkler Irrigation. Water 2016, 8, 585. [Google Scholar] [CrossRef] [Green Version]
- Klamerus-Iwan, A.; Blonska, E. Canopy storage capacity and wettability of leaves and needles: The effect of water temperature changes. J. Hydrol. 2018, 559, 534–540. [Google Scholar] [CrossRef]
- Klamerus-Iwan, A.; Emanuel, G.; Anna, S.; Blonska, E.; Lasota, J.; Lagan, S. Linking the contents of hydrophobic PAHs with the canopy water storage capacity of coniferous trees. Environ. Pollut. 2018, 242, 1176–1184. [Google Scholar]
- Syahida, N.A.M.; Azida, A.A.B. The effect of vegetation canopy on canopy storage capacity with different rainfall intensity. In Proceedings of the 12th International Civil Engineering Post Graduate Conference (SEPKA)/3rd International Symposium on Expertise of Engineering Design (ISEED), Johor, Malaysia, 27–28 August 2018. [Google Scholar]
- Zhang, S.; Li, X.; Jiang, Z.; Li, D.; Lin, H. Modelling of rainfall partitioning by a deciduous shrub using a variable parameters Gash model. Ecohydrology 2018, 11, e2011. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Hu, R.; Pan, Y.; Paradeloc, M. Rainfall partitioning into throughfall, stemflow and interception loss by two xerophytic shrubs within a rain-fed re-vegetated desert ecosystem, northwestern China. J. Hydrol. 2015, 527, 1084–1095. [Google Scholar] [CrossRef]
- Hamilton, E.L.; Rowe, P.B. Rainfall Interception by Chaparral in California; State of California; Department of Natural Resources, Division of Forestry: Sacramento, CA, USA, 1949. [Google Scholar]
- Peng, H.H.; Zhao, C.Y.; Xu, Z.L.; Peng, S.Z.; Wang, Y. Water storage capacity of Qinghai spruce (Picea crassifolia) forest canopy in Qilian Mountains. Chin. J. Appl. Ecol. 2011, 22, 2233–2239, (in Chinese with English abstract). [Google Scholar]
- Bram, H.; Pierre-Erik, I.; Daniel, F.N.; Steeve, P. Observations of canopy storage capacity and wet canopy evaporation in a humid boreal forest. Hydrol. Process. 2021, 35, e14021. [Google Scholar]
- Pereira, F.L.; Gash, J.H.C.; David, J.S.; David, T.S.; Monteiro, P.R.; Valente, F. Modelling interception loss from evergreen oak Mediterranean savannas: Application of a tree-based modelling approach. Agric. For. Meteorol. 2009, 149, 680–688. [Google Scholar] [CrossRef] [Green Version]
- Gash, J.H.C. An analytical model of rainfall interception by forests. Q. J. Roy. Meteor. Soc. 1979, 105, 43–55. [Google Scholar] [CrossRef]
- Gash, J.; Lloyd, C.; Lachaud, G. Estimating sparse forest rainfall interception with an analytical model. J. Hydrol. 1995, 170, 79–86. [Google Scholar] [CrossRef]
- Li, X.R.; Ma, F.Y.; Xiao, H.L.; Wang, X.P.; Kim, K.C. Long-term effects of revegetation on soil water content of sand dunes in arid region of Northern China. J. Arid Environ. 2004, 57, 1–16. [Google Scholar] [CrossRef]
- Guo, Y.; Hou, L.; Zhang, Z.; Zhang, J.; Cheng, J.; Wei, G.; Lin, Y. Soil microbial diversity during 30 years of grassland restoration on the Loess Plateau, China: Tight linkages with plant diversity. Land Degrad. Dev. 2019, 30, 1172–1182. [Google Scholar] [CrossRef]
- Xiong, P.; Chen, Z.; Yang, Q.; Zhou, J.; Zhang, H.; Wang, Z.; Xu, B. Surface water storage characteristics of main herbaceous species in semiarid Loess Plateau of China. Ecohydrology 2019, 12, e2145. [Google Scholar] [CrossRef]
- Wang, X.P.; Zhang, Y.F.; Hu, H.; Pan, Y.X.; Berndtsson, R. Canopy storage capacity of xerophytic shrubs in Northwestern China. J. Hydrol. 2012, 454, 152–159. [Google Scholar] [CrossRef]
- Garcia-Estringana, P.; Alonso-Blázquez, N.; Alegre, J. Water storage capacity, stemflow and water funneling in Mediterranean shrubs. J. Hydrol. 2010, 389, 363–372. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, Y.; Li, X.; Huang, L.; Tan, H. Gross rainfall amount and maximum rainfall intensity in 60-minute influence on interception loss of shrubs: A 10-year observation in the Tengger Desert. Sci. Rep. 2016, 6, 26030. [Google Scholar] [CrossRef] [Green Version]
- Dykes, A.P. Rainfall interception from a lowland tropical rainforest in Brunei. J. Hydrol. 1997, 200, 260–279. [Google Scholar] [CrossRef]
- Wei, S.P.; Wang, L.; Wu, F.Q. Hydrological properties of canopy of acacia in loess hilly and gully region. J. Nanjing For. Uni. Nat. Sci. 2008, 32, 43–48. [Google Scholar]
- Llorens, P.; Gallart, F. A simplified method for forest water storage capacity measurement. J. Hydrol. 2000, 240, 131–144. [Google Scholar] [CrossRef]
- Jian, S.; Zhao, C.; Fang, S.; Yu, K.; Ma, W. Water storage capacity of the canopy dominated by Caragana korshinskii and Hippophae rhamnoides in hilly and gully region on the Loess Plateau of Northwest China. Acta Phytoecol. Sin. 2013, 37, 45–51. [Google Scholar] [CrossRef]
- Keim, R.F.; Skaugset, A.E.; Weiler, M. Storage of water on vegetation under simulated rainfall of varying intensity. Adv. Water Resour. 2006, 29, 974–986. [Google Scholar] [CrossRef]
Parameter | Sample Numbers | Mean ± SD | ||
---|---|---|---|---|
C. korshinskii | H. rhamnoides | |||
Geographical parameters | Slope position | -- | Middle | Upper |
Slope aspect | -- | SE | SE | |
Biological parameters | Plant height (mm) | 90 | 1700 ± 120 a | 1913 ± 170 b |
Basic diameter—twig (mm) Basic diameter—branch (mm) | 180 180 | 19.12 ± 0.21 a 15.93 ± 1.9 a | 19.55 ± 0.33 a 13.55 ± 0.41 b | |
Projected area (m2) | 60 | 3.01 ± 0.46 a | 3.56 ± 0.22 b | |
Vegetation cover (%) Stem number (per ha) Leaf area index (LAI) | 6 -- 350 | 87 ± 11 a 21,450 1.03 ± 0.08, 1.57 ± 0.23, 2.14 ± 0.17, 2.15 ± 0.16 a | 49 ± 7 b 10,210 0.92 ± 0.13, 1.16 ± 0.18 1.88 ± 0.19, 2.11 ± 0.21 a | |
Soil parameters | Clay (<0.002 mm; %) | 3 | 9.16 ± 1.21 | 11.05 ± 2.40 |
Sand (0.05–2 mm; %) | 3 | 15.26 ± 1.17 | 12.26 ± 2.79 | |
Silt (0.05–0.002 mm; %) | 3 | 75.61 ± 9.22 | 76.71 ± 11.36 | |
Organic matter (%) | 3 | 0.69 ± 0.07 | 0.72 ± 0.041 | |
pH | 3 | 8.0 ± 0.95 | 7.8 ± 0.76 |
Species | Number | Diameter (cm) | Length (cm) | Height (cm) | Angle (°) | Projected Area (m2) | Canopy Bulk (m3) |
---|---|---|---|---|---|---|---|
C. korshinskii | 21 ± 6 a | 1.67 ± 0.21 a | 199 ± 22 a | 181 ± 13 a | 51 ± 9 a | 4.94 ± 1.2 a | 2.56 ± 0.43 a |
H. rhamnoides | 13 ± 5 b | 1.78 ± 0.23 b | 210 ± 26 b | 201 ± 20 b | 56 ± 11 b | 4.13 ± 1.56 b | 2.83 ± 0.54 b |
Species | n | Diameter (cm) | Length (cm) | Leaf Area (cm2) |
---|---|---|---|---|
C. korshinskii | 100 | 1.72 ± 0.26 a | 195 ± 20 a | 61.2 ± 8.7 a |
H. rhamnoides | 100 | 1.88 ± 0.23 b | 212 ± 24 b | 85.6 ± 7.1 b |
Sources of Variation | df | Canopy Water Storage Capacity (mm) |
---|---|---|
Shrub species (SS) | 1 | 0.12 *** |
Biological parameters (BP) | 5 | 0.07 *** |
SS × BP | 5 | 0.0062 * |
Biological Parameters | Basic Diameter (mm) | Shrub Height (m) | Leaf Area (cm2) | LAI | Projected Area (m2) | Branch Angle (°) |
---|---|---|---|---|---|---|
S | 0.19 * | 0.17 * | 0.43 ** | 0.50 *** | 0.49 *** | −0.32 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.; Zhang, X.; Ding, X.; Yan, D.; Jian, S. Comparison of Different Methods to Estimate Canopy Water Storage Capacity of Two Shrubs in the Semi-Arid Loess Plateau of China. Forests 2022, 13, 1187. https://doi.org/10.3390/f13081187
Hu C, Zhang X, Ding X, Yan D, Jian S. Comparison of Different Methods to Estimate Canopy Water Storage Capacity of Two Shrubs in the Semi-Arid Loess Plateau of China. Forests. 2022; 13(8):1187. https://doi.org/10.3390/f13081187
Chicago/Turabian StyleHu, Caihong, Xueli Zhang, Xinming Ding, Denghua Yan, and Shengqi Jian. 2022. "Comparison of Different Methods to Estimate Canopy Water Storage Capacity of Two Shrubs in the Semi-Arid Loess Plateau of China" Forests 13, no. 8: 1187. https://doi.org/10.3390/f13081187
APA StyleHu, C., Zhang, X., Ding, X., Yan, D., & Jian, S. (2022). Comparison of Different Methods to Estimate Canopy Water Storage Capacity of Two Shrubs in the Semi-Arid Loess Plateau of China. Forests, 13(8), 1187. https://doi.org/10.3390/f13081187