Do Emotional Perceptions of Visible Greeneries Rely on the Largeness of Green Space? A Verification in Nanchang, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.2.1. Landscape Metric Collection
2.2.2. Street-View Photos Acquisition
2.2.3. Emotional Photos
2.3. Data Processing
2.3.1. Landscape Metric Analysis
2.3.2. Extraction of the Panoramic Green View Index
2.3.3. Facial Expression Analysis
2.4. Statistical Analysis
3. Results
3.1. Landscape Elements among Different Green Spaces
3.2. Facial Expressions Analysis among Different Categories of Landscape Metrics
3.3. Correlation Analysis of Different Landscape Metrics
3.4. Multivariate Linear Regression of Green Space Metrics to Facial Expression Scores
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ventimiglia, I.; Seedat, S. Current evidence on urbanicity and the impact of neighbourhoods on anxiety and stress-related disorders. Curr. Opin. Psychiatry 2019, 32, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, M.; DeVille, N.; Elliott, E.; Schiff, J.; Wilt, G.; Hart, J.; James, P. Associations between Nature Exposure and Health: A Review of the Evidence. Int. J. Environ. Res. Public Health 2021, 18, 4790. [Google Scholar] [CrossRef] [PubMed]
- Callaghan, A.; McCombe, G.; Harrold, A.; McMeel, C.; Mills, G.; Moore-Cherry, N.; Cullen, W. The impact of green spaces on mental health in urban settings: A scoping review. J. Ment. Health 2021, 30, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Liu, M.; Xia, T.; Wang, Y.; Guo, P. The Relationship between Landscape Metrics and Facial Expressions in 18 Urban Forest Parks of Northern China. Forests 2021, 12, 1619. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Z.; Chen, Z.; Guo, M.; Guo, P. Optimizing Urban Forest Landscape for Better Perceptions of Positive Emotions. Forests 2021, 12, 1691. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, X.; Liu, J.; An, C.; Liu, Y.; Fan, X.; Hu, Y. Physiological and Psychological Effects of Nature Experiences in Different Forests on Young People. Forests 2021, 12, 1391. [Google Scholar] [CrossRef]
- Janeczko, E.; Bielinis, E.; Wójcik, R.; Woźnicka, M.; Kędziora, W.; Łukowski, A.; Elsadek, M.; Szyc, K.; Janeczko, K. When Urban Environment Is Restorative: The Effect of Walking in Suburbs and Forests on Psychological and Physiological Relaxation of Young Polish Adults. Forests 2020, 11, 591. [Google Scholar] [CrossRef]
- An, B.; Wang, D.; Liu, X.; Haoming, G.; Wei, H.; Ren, Z. The effect of environmental factors in urban forests on blood pressure and heart rate in university students. J. For. Res. 2018, 24, 27–34. [Google Scholar] [CrossRef]
- Ulrich, R.S.; Simons, R.F.; Losito, B.D.; Fiorito, E.; Miles, M.A.; Zelson, M. Stress Recovery During Exposure to Natural and Urban Environments. Journal of Environmental Psychology. J. Environ. Psychol. 1991, 11, 201–230. [Google Scholar] [CrossRef]
- Wei, H.; Hauer, R.J.; He, X. A forest experience does not always evoke positive emotion: A pilot study on unconscious facial expressions using the face reading technology. For. Policy Econ. 2020, 123, 102365. [Google Scholar] [CrossRef]
- Gupta, K.; Kumar, P.; Pathan, S.K.; Sharma, K.P. Urban Neighborhood Green Index—A measure of green spaces in urban areas. Landsc. Urban Plan. 2012, 105, 325–335. [Google Scholar] [CrossRef]
- Almeer, M.H. Vegetation extraction from free google earth images of deserts using a robust BPNN approach in HSV Space. Int. J. Adv. Res. Comput. Commun. Eng. 2012, 1, 134–1408. [Google Scholar]
- Zhu, X.; Gao, M.; Zhang, R.; Zhang, B. Quantifying emotional differences in urban green spaces extracted from photos on social networking sites: A study of 34 parks in three cities in northern China. Urban For. Urban Green. 2021, 62, 127133. [Google Scholar] [CrossRef]
- Xiao, Y.; Miao, S.; Zhang, Y.; Xie, B.; Wu, W. Exploring the associations between neighborhood greenness and level of physical activity of older adults in shanghai. J. Transp. Health 2022, 24, 101312. [Google Scholar] [CrossRef]
- Huang, Y.; Li, J.; Wu, G.; Fei, T. Quantifying the bias in place emotion extracted from photos on social networking sites: A case study on a university campus. Cities 2020, 102, 102719. [Google Scholar] [CrossRef]
- Li, H.; Peng, J.; Jiao, Y.; Ai, S. Experiencing Urban Green and Blue Spaces in Urban Wetlands as a Nature-Based Solution to Promote Positive Emotions. Forests 2022, 13, 473. [Google Scholar] [CrossRef]
- Ye, Y.; Richards, D.; Lu, Y.; Song, X.; Zhuang, Y.; Zeng, W.; Zhong, T. Measuring daily accessed street greenery: A human-scale approach for informing better urban planning practices. Landsc. Urban Plan. 2019, 191, 103434. [Google Scholar] [CrossRef]
- Ki, D.; Lee, S. Analyzing the effects of Green View Index of neighborhood streets on walking time using Google Street View and deep learning. Landsc. Urban Plan. 2021, 205, 103920. [Google Scholar] [CrossRef]
- Hu, A.; Zhang, J.; Kaga, H. Green View Index Analysis and Optimal Green View Index Path Based on Street View and Deep Learning. arXiv 2021, arXiv:2104.12627. Available online: https://arxiv.org/abs/2104.12627v3 (accessed on 5 May 2022).
- Chen, X.; Meng, Q.; Hu, D.; Zhang, L.; Yang, J. Evaluating Greenery around Streets Using Baidu Panoramic Street View Images and the Panoramic Green View Index. Forests 2019, 10, 1109. [Google Scholar] [CrossRef] [Green Version]
- Falfán, I.; Muñoz-Robles, C.A.; Bonilla-Moheno, M.; MacGregor-Fors, I. Can you really see ‘green’? Assessing physical and self-reported measurements of urban greenery. Urban For. Urban Green. 2018, 36, 13–21. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, Y.; Yang, H.; Yang, L.; Gou, Z. Impact of the quality and quantity of eye-level greenery on park usage. Urban For. Urban Green. 2021, 60, 127061. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, G.; Chang, C.; Yuan, X.; Heng, F. BGVI: A New Index to Estimate Street-Side Greenery Using Baidu Street View Image. Forests 2019, 10, 3. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ratti, C.; Seiferling, I. Quantifying the shade provision of street trees in urban landscape: A case study in Boston, USA, using Google Street View. Landsc. Urban Plan. 2018, 169, 81–91. [Google Scholar] [CrossRef]
- Rowcliffe, J.M.; Field, J.; Turvey, S.T.; Carbone, C. Estimating animal density using camera traps without the need for individual recognition. J. Appl. Ecol. 2008, 45, 1228–1236. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Li, W. Building block level urban land-use information retrieval based on Google Street View images. GIScience Remote Sens. 2017, 54, 819–835. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, B.; Liu, L.; Liu, Y.; Fung, H.H.; Lin, H.; Ratti, C. Measuring human perceptions of a large-scale urban regionusing machine learning. Landsc. Urban Plan. 2018, 180, 148–160. [Google Scholar] [CrossRef]
- Cheng, L.; Chu, S.; Zong, W.; Li, S.; Wu, J.; Li, M. Use of Tencent Street View Imagery for Visual Perception of Streets. ISPRS Int. J. Geo-Inf. 2017, 6, 265. [Google Scholar] [CrossRef]
- Akpinar, A.; Barbosa-Leiker, C.; Brooks, K.R. Does green space matter? Exploring relationships between green space type and health indicators. Urban For. Urban Green. 2016, 20, 407–418. [Google Scholar] [CrossRef]
- Hashim, H.; Latif, Z.A.; Adnan, N.A. Urban Vegetation Classification with NDVI Threshold Value Method with Very High Resolution (VHR) Pleiades Imagery. ISPRS—International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2019, 42, 237–240. [Google Scholar]
- Chen, J.; Yang, S.; Li, H.; Zhang, B.; Lv, J. Research on Geographical Environment Unit Division Based on the Method of Natural Breaks (Jenks). ISPRS—International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2013, 3, 47–50. [Google Scholar]
- Creley, C.M.; Shilling, F.M.; Muchlinski, A.E. An Ecological Niche Model to Predict Range Expansion of the Eastern Gray Squirrel in California. Bull. South. Calif. Acad. Sci. 2019, 118, 58–70. [Google Scholar] [CrossRef] [Green Version]
- Tong, M.; She, J.; Tan, J.; Li, M.; Ge, R.; Gao, Y. Evaluating Street Greenery by Multiple Indicators Using Street-Level Imagery and Satellite Images: A Case Study in Nanjing, China. Forests 2020, 11, 1347. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Wei, H.; Xia, T.; Liu, M.; Ai, S. Geographical Distribution and Driving Meteorological Forces of Facial Expressions of Visitors in Urban Wetland Parks in Eastern China. Front. Earth Sci. 2022, 10, 781204. [Google Scholar] [CrossRef]
- Mao, B.; Liang, F.; Li, Z.; Zheng, W. Microclimates Potentially Shape Spatial Distribution of Facial Expressions for Urban Forest Visitors: A Regional Study of 30 Parks in North China. Sustainability 2022, 14, 1648. [Google Scholar] [CrossRef]
- Zhou, C.; Yan, L.; Yu, L.; Wei, H.; Guan, H.; Shang, C.; Chen, F.; Bao, J. The Effect of Short-term Forest Bathing in Urban Parks on Perceived Anxiety of Young-adults: A Pilot Study in Guiyang, Southwest China. Chin. Geogr. Sci. 2018, 29, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Tyrväinen, L.; Ojala, A.; Korpela, K.; Lanki, T.; Tsunetsugu, Y.; Kagawa, T. The influence of urban green environments on stress relief measures: A field experiment. J. Environ. Psychol. 2013, 38, 1–9. [Google Scholar] [CrossRef]
- Wei, H.; Hauer, R.J.; Meng, L.; He, X.; Liu, P.; Liu, M.; Xia, T. Assessment on Emotional Perception of Urban Forest Visitors on Rating Facial Expressions: The Spatial Difference and The Driving Force in a Case Study on Six Parks in China. Arboric. Res. Educ. Acad. 2021, 16. [Google Scholar]
- Wei, H.; Hauer, R.J.; Guo, S. Daytime dynamic of spontaneous expressions of pedestrians in an urban forest park. Urban For. Urban Green. 2021, 65, 127326. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, M.; Zhao, S.; Hu, S.; Shi, Z.; Cao, Y. ReliefF-based EEG sensor selection methods for emotion recognition. Sensors 2016, 16, 1558. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, Y.; Jiao, H. Exploring the Impact of Urban Built Environment on Public Emotions Based on Social Media Data: A Case Study of Wuhan. Land 2021, 10, 986. [Google Scholar] [CrossRef]
- Roberts, H.; Resch, B.; Sadler, J.; Chapman, L.; Petutschnig, A.; Zimmer, S. Investigating the Emotional Responses of Individuals to Urban Green Space Using Twitter Data: A Critical Comparison of Three Different Methods of Sentiment Analysis. Urban Plan. 2018, 3, 21–33. [Google Scholar] [CrossRef]
- Singh, V.K.; Atrey, A.; Hegde, S. Do Individuals Smile More in Diverse Social Company?: Studying Smiles and Diversity Via Social Media Photos. In Proceedings of the 25th ACM International Conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017; pp. 1818–1827. [Google Scholar]
- Kang, Y.; Zeng, X.; Zhang, Z.; Wang, Y.; Fei, T. Who are happier? Spatio-temporal Analysis of Worldwide Human Emotion Based on Geo-Crowdsourcing Faces. In Proceedings of the 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS), Wuhan, China, 22–23 March 2018; pp. 1–8. [Google Scholar]
- Zhu, J.; Xu, C. Sina microblog sentiment in Beijing city parks as measure of demand for urban green space during the COVID-19. Urban For. Urban Green. 2020, 58, 126913. [Google Scholar] [CrossRef]
- Niu, H.; Silva, E. Crowdsourced Data Mining for Urban Activity: Review of Data Sources, Applications, and Methods. J. Urban Plan. Dev. 2020, 146, 2. [Google Scholar] [CrossRef] [Green Version]
- The Seventh National Population Census in Nanchang City. Available online: http://www.nc.gov.cn/ncszf/tjgb/202106/b2518d385eda494aa1d8c9467c5ae11b.shtml/ (accessed on 2 June 2022).
- Chen, C.; Bagan, H.; Xie, X.; La, Y.; Yamagata, Y. Combination of Sentinel-2 and PALSAR-2 for Local Climate Zone Classification: A Case Study of Nanchang, China. Remote Sens. 2021, 13, 1902. [Google Scholar] [CrossRef]
- Statistics Bureau of Nanchang, Nanchang Investigation Team of National Bureau of Statistics. Nanchang Statistical Yearbook of 2020; China Statistics Press: Beijing, China, 2020.
- Levensons, R. The Nature of Emotion: Fundamental Questions; Oxford University Press: Oxford, UK, 1994; pp. 123–126. [Google Scholar]
- Baidu Map. Nanchang. Available online: https://map.baidu.com/ (accessed on 1 May 2022).
- Sina Weibo. Weibo.com: Discovering Novelties Whenever and Wherever Possible. Available online: https://weibo.com/ (accessed on 28 April 2022).
- 2020 Weibo User Development Report. Available online: https://k.sina.cn/article_6519757211_1849b999b02001ju6q.html (accessed on 8 August 2018).
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239. [Google Scholar]
- Cityscapes Dataset. Available online: https://www.cityscapes-dataset.com/ (accessed on 1 June 2022).
- Jack, R.E.; Sun, W.; Delis, I.; Garrod, O.G.B.; Schyns, P.G. Four Not Six: Revealing Culturally Common Facial Expressions of Emotion. J. Exp. Psychology General 2016, 145, 708–730. [Google Scholar]
- Wei, H.; Hauer, R.J.; Zhai, X. The Relationship between the Facial Expression of People in University Campus and Host-City Variables. Appl. Sci. 2020, 10, 1474. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Liu, P. The Accuracy Validation of FireFACE Software in Analyzing Facial Expressions of Urban Forest Visitors. Preprints 2020. [Google Scholar] [CrossRef]
- Wei, H.; Hauer, R.J.; Chen, X.; He, X. Facial Expressions of Visitors in Forests along the Urbanization Gradient: What Can We Learn from Selfifies on Social Networking Services? Forests 2019, 10, 1049. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Liu, M.; Xia, T.; Wang, Y.; Wei, H. Can Urban Forest Settings Evoke Positive Emotion? Evidence on Facial Expressions and Detection of Driving Factors. Sustainability 2021, 13, 8687. [Google Scholar] [CrossRef]
- Li, T.; Zheng, X.; Wu, J.; Zhang, Y.; Fu, X.; Deng, H. Spatial relationship between green view index and normalized differential vegetation index within the Sixth Ring Road of Beijing. Urban For. Urban Green. 2021, 62, 127153. [Google Scholar] [CrossRef]
- Jiang, B.; Deal, B.; Pan, H.; Larsen, L.; Hsieh, C.; Chang, C.; Sullivan, W.C. Remotely-sensed imagery vs. eye-level photography: Evaluating associations among measurements of tree cover density. Landsc. Urban Plan. 2017, 157, 270–281. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Ma, B.; Hauer, R.J.; Liu, C.; Chen, X.; He, X. Relationship between environmental factors and facial expressions of visitors during the urban forest experience. Urban For. Urban Green. 2020, 53, 126699. [Google Scholar] [CrossRef]
- Yu, C.-P.; Lee, H.-Y.; Luo, X.-Y. The effect of virtual reality forest and urban environments on physiological and psychological responses. Urban For. Urban Green. 2018, 35, 106–114. [Google Scholar] [CrossRef]
- Du, S.; Tao, Y.; Martinez, A.M. Compound facial expressions of emotion. Proc. Natl. Acad. Sci. USA 2014, 111, E1454–E1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bij de Vaate, N.; Veldhuis, J.; Alleva, J.M.; Konijn, E.A.; van Hugten, C.H.M. Show Your Best Self(ie): An Exploratory Study on Selfie-Related Motivations and Behavior in Emerging Adulthood. Telemat. Inform. 2018, 35, 1392–1407. [Google Scholar] [CrossRef] [Green Version]
- Mehrabian, A. Communication without words. In Communication Theory; Mortensen, D.C., Ed.; Routledge: New York, NY, USA, 2008; pp. 193–200. [Google Scholar]
Variable | Min. | Max. | Mean | Std. dev. |
---|---|---|---|---|
PGVI | 0.252 | 0.894 | 0.537 | 0.173 |
NDVI | 0.025 | 0.586 | 0.330 | 0.121 |
Green ratio | 0.020 | 0.767 | 0.247 | 0.191 |
Elevation | 17.151 | 52.790 | 27.924 | 9.520 |
Water ratio | 0.000 | 0.367 | 0.309 | 0.846 |
Park area | 17,572.547 | 4,443,868.546 | 671,740.655 | 782,571.453 |
Category | Variable | Min. | Max. | Mean | Std. dev. |
---|---|---|---|---|---|
Happy | 4.511 | 39.866 | 20.173 | 8.483 | |
Dependent | Sad | 40.816 | 62.522 | 51.873 | 5.216 |
variable | Neutral | 21.947 | 48.858 | 34.192 | 6.667 |
PRI | 8.203 | 19.155 | 13.290 | 2.512 |
Source | DF 1 | Happy | Sad | Neutral | PRI | ||||
---|---|---|---|---|---|---|---|---|---|
F Value | p Value | F Value | p Value | F Value | p Value | F Value | p Value | ||
Intercept | 1812.243 | <0.001 | 567.118 | <0.001 | 21631.924 | <0.001 | 280.195 | <0.001 | |
NDVI | 3 | 7.042 | 0.002 | 0.460 | 0.718 | 10.901 | <0.001 | 3.322 | 0.048 |
PGVI | 3 | 0.416 | 0.744 | 0.855 | 0.484 | 0.601 | 0.624 | 0.402 | 0.753 |
NDVI × PGVI | 6 | 0.925 | 0.503 | 2.856 | 0.044 | 0.518 | 0.786 | 1.428 | 0.264 |
Variable | Sum of Squares | Mean Square | F Value | p Value | |
---|---|---|---|---|---|
Happy | NDVI inter-group | 709.136 | 236.379 | 6.827 | 0.001 |
NDVI intra-group | 1177.242 | 34.625 | |||
Total | 1886.377 | ||||
NDVI inter-group | 31.605 | 10.535 | 1.397 | 0.261 | |
Sad | NDVI intra-group | 256.490 | 7.544 | ||
Total | 288.095 | ||||
NDVI inter-group | 522.508 | 174.169 | 8.102 | 0.000 | |
Neutral | NDVI intra-group | 730.884 | 21.497 | ||
Total | 1253.392 | ||||
PRI 1 | NDVI inter-group | 958.990 | 319.663 | 5.087 | 0.005 |
NDVI intra-group | 2136.629 | 62.842 | |||
Total | 3095.619 |
NDVI | PGVI | Green ratio | Elevation | |
---|---|---|---|---|
NDVI | 1 | |||
PGVI | 0.182 | 1 | ||
Green ratio | 0.814 ** | 0.469 ** | 1 | |
Elevation | 0.337 * | −0.245 | 0.269 | 1 |
NDVI | Variable | Parameter | SE | p Value |
---|---|---|---|---|
Intercept | 37.532 | 3.682 | <0.001 | |
Happy | NDVI | −3.186 | 9.224 | 0.732 |
PGVI | 16.384 | 6.707 | 0.017 | |
Intercept | 49.900 | 2.995 | <0.001 | |
Neutral | NDVI | 1.859 | 7.330 | 0.801 |
PGVI | −15.174 | 5.330 | 0.007 | |
Intercept | 24.964 | 4.769 | <0.001 | |
PRI | NDVI | −4.515 | 12.118 | 0.793 |
PGVI | 17.587 | 8.811 | 0.014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Zhu, J.; Zhai, K.; Wang, Y.; Wei, H.; Xu, Z.; Gu, X. Do Emotional Perceptions of Visible Greeneries Rely on the Largeness of Green Space? A Verification in Nanchang, China. Forests 2022, 13, 1192. https://doi.org/10.3390/f13081192
Huang S, Zhu J, Zhai K, Wang Y, Wei H, Xu Z, Gu X. Do Emotional Perceptions of Visible Greeneries Rely on the Largeness of Green Space? A Verification in Nanchang, China. Forests. 2022; 13(8):1192. https://doi.org/10.3390/f13081192
Chicago/Turabian StyleHuang, Siying, Jinjin Zhu, Kunbei Zhai, Yang Wang, Hongxu Wei, Zhihui Xu, and Xinren Gu. 2022. "Do Emotional Perceptions of Visible Greeneries Rely on the Largeness of Green Space? A Verification in Nanchang, China" Forests 13, no. 8: 1192. https://doi.org/10.3390/f13081192
APA StyleHuang, S., Zhu, J., Zhai, K., Wang, Y., Wei, H., Xu, Z., & Gu, X. (2022). Do Emotional Perceptions of Visible Greeneries Rely on the Largeness of Green Space? A Verification in Nanchang, China. Forests, 13(8), 1192. https://doi.org/10.3390/f13081192