Model Assessment of the Complex Workload of Harvester Operator
Abstract
:1. Introduction
2. Materials and Methods
- αj are the coefficients of the significance of risk factors,
- x1 is the equivalent noise pressure level LAeq,T (dB),
- x2 is the peak noise pressure level LCPk (dB),
- x3 is the operative temperature to (°C),
- And x4 is mental loading ML (-).
3. Results
- -
- from the view of mean absolute heart rate, the share of risky work was 23.09%,
- -
- from the view of marginal absolute heart rate, the share of risky work was 19.32%,
- -
- from the view of mean heart rate difference, the share of risky work was 19.32%,
- -
- from the view of marginal heart rate difference, the share of risky work was 18.61%.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Compliance with Ethical Standards
References
- Häggström, C.; Lindroos, O. Human, technology, organization and environment—a human factors perspective on performance in forest harvesting. Int. J. For. Eng. 2016, 27, 67–78. [Google Scholar] [CrossRef]
- Camargo, D.A.; Munis, R.A.; Simões, D. Investigation of Exposure to Occupational Noise among Forestry Machine Operators: A Case Study in Brazil. Forests 2021, 12, 299. [Google Scholar] [CrossRef]
- Poje, A.; Grigolato, S.; Potočnik, I. Operator exposure to noise and whole-body vibration in a fully mechanized CTL forest harvesting system in karst terrain. Croat. J. For. Eng. 2019, 40, 139–150. [Google Scholar]
- Schettino, S.; Minette, L.J.; Caçador, S.S.; Reboleto, I.D. Assessment of occupational vibration on tire × track harvesters in forest harvesting. In Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018); Bagnara, S., Tartaglia, R., Albolino, S., Alexander, T., Fujita, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 31–40. [Google Scholar] [CrossRef]
- Marcu, M.V.; Husau-Roman, B.F.; Borz, S.A. Characterizing the working environment of skidder operators: Evaluation of temperature and relative humidity conditions. Bull. Transilv. Univ. Bras. 2021, 14, 3. [Google Scholar] [CrossRef]
- Nicholls, A.; Bren, L.; Humphreys, N. Harvester productivity and operator fatigue: Working extended hours. Int. J. For. Eng. 2004, 15, 57–65. [Google Scholar] [CrossRef]
- Dvořák, J.; Natov, P.; Natovová, L.; Krilek, J.; Kováč, J. Operator’s physical workload in simulated logging and timber bucking by harvester. J. For. Sci. 2016, 62, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Landekić, M.; Katuša, S.; Mijoč, D.; Šporčić, M. Assessment and comparison of machine operators’ working posture in forest thinning. South-East Eur. For. 2019, 10, 29–37. [Google Scholar] [CrossRef]
- Paini, A.C.; Lopes, E.S.; Souza, A.P.; Oliveira, F.M.; Rodrigues, C.K. Repetitive motion and postural analysis of machine operators in mechanized wood harvesting operations. Cerne 2019, 25, 214–220. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N.; Labelle, E.R. The effect of new silvicultural trends on mental workload of harvester operators. Croat. J. For. Eng. 2020, 41, 177–190. [Google Scholar] [CrossRef] [Green Version]
- Szewczyk, G.; Spinelli, R.; Magagnotti, N.; Tylek, P.; Sowa, J.M.; Rudy, P.; Gaj-Gielarowiec, D. The mental workload of harvester operators working in step terrain conditions. Silva Fenn. 2020, 54, 18. [Google Scholar] [CrossRef]
- Szewczyk, G.; Spinelli, R.; Magagnotti, N.; Mitka, B.; Tylek, P.; Kulak, D.; Adamski, K. Perception of the harvester operator’s working environment in windthrow stands. Forests 2021, 12, 168. [Google Scholar] [CrossRef]
- Gerasimov, Y.; Sokolov, A. Ergonomic evaluation and comparison of wood harvesting systems in Northwest Russia. Appl. Ergon. 2014, 45, 313–338. [Google Scholar] [CrossRef]
- Jankovský, M.; Messingerová, V.; Ferenčík, M.; Allman, M. Objective and subjective assessment of selected factors of the work environment of forest harvesters and forwarders. J. For. Sci. 2016, 62, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Marzano, F.L.C.; Souza, A.P.; Minette, L.J. Proposal for an ergonomic conformity index for evaluation of harvesters and forwarders. Rev. Árvore 2017, 41, e410401. [Google Scholar] [CrossRef]
- Hnilica, R.; Jankovský, M.; Dado, M.; Messingerová, V.; Schwarz, M.; Veverková, D. Use of the analytic hierarchy process for complex assessment of the working environment. Qual. Quant. 2017, 51, 93–101. [Google Scholar] [CrossRef]
- Jankovský, M.; Merganič, J.; Allman, M.; Ferenčík, M.; Messingerová, V. The cumulative effects of work-related factors increase the heart rate of cabin field machine operator. Int. J. Ind. Ergon. 2018, 65, 173–178. [Google Scholar] [CrossRef]
- Iftime, M.D.; Dumitrascu, A.E.; Dumitrascu, D.I.; Ciobanu, V.D. An investigation on major physical hazard exposures and health effects of forestry vehicle operators performing wood logging process. Int. J. Ind. Ergon. 2020, 80, 103041. [Google Scholar] [CrossRef]
- Oliveira, F.M.; Lopes, E.S.; Koehler, H.S.; Behling, A. Application of an integrated ergonomic indicator (IEI) in evaluating forest machines. Int. J. For. Eng. 2021, 32, 256–265. [Google Scholar] [CrossRef]
- ISO 9612:2010; Acoustics—Guidelines for the Measurement and Assessment of Exposure to Noise in a Working Environment. Technical Method; Slovak Institute of Technical Standardization: Bratislava, Slovakia, 2010.
- Zbierka, Z. Regulation of the Government of Slovak Republic No. 115/2006 Coll., on the Minimum Health and Safety Requirements to Protect Workers from the Risks Related to Exposure to Noise; The Government of Slovak Republic: Bratislava, Slovakia, 2006.
- Government Regulation of the Government of Slovak Republic No. 555/2006 Coll. Amending and Supplementing Regulation of the Government of the Slovak Republic No. 115/2006 Coll., on the Minimum Health and Safety Requirements to Protect Workers from the Risks Related to Exposure to Noise; Government of Slovak Republic: Bratislava, Slovakia, 2006.
- Bulletin of the Ministry of Health of Slovak Republic 2001. Professional Regulation of the Ministry of Health of Slovak Republic No. 67, Which Describes the Approach of Government Bodies Regarding Limiting Mental Loading at Work; Ministry of Health of Slovak Republic: Bratislava, Slovakia, 2001.
- Ministry of Health of Slovak Republic. Order of the Ministry of Health of Slovak Republic No. 99/2016 Coll., on Details of Health Protection against Heat and Cold Load at Work; Ministry of Health of Slovak Republic: Bratislava, Slovakia, 2016.
- Jankovský, M.; Hnilica, R.; Dvořák, J.; Dado, M.; Natov, P. Utilization of biofeedback devices in determination of learning curves of harvester operators. In Proceedings of the ICERI 2013 6th International Conference of Education, Research and Innovation 2013, Seville, Spain, 18–20 November 2013; pp. 3703–3711. [Google Scholar]
- Golmohammadi, R.; Darvishi, E.; Shafiee, M.; Faradmal, M.J.; Aliabadi, M.; Rodrigues, M.A. Prediction of occupational exposure limits for noise-induced non-auditory effects. Appl. Ergon. 2022, 99, 103641. [Google Scholar] [CrossRef]
- Abbasi, A.M.; Darvishi, E.; Rodrigues, M.A.; Sayehmirl, K. Gender differences in cognitive performance and psychophysiological responses during noise exposure and different workloads. Appl. Acoust. 2022, 189, 108602. [Google Scholar] [CrossRef]
- Lee, E.; Baek, K.; Lee, S.; Cho, M.-J.; Choi, Y.-S.; Cho, K.-H. The impact of season on heart rate variability and workload of workers in young tree tending operations of a Larix kaempferi (Lamb.) Carr. stand: A preliminary study. Int. J. For. Eng. 2022, 33, 139–145. [Google Scholar] [CrossRef]
- Arman, Z.; Nikooy, M.; Tsioras, P.A.; Heidari, M.; Majnounian, B. Physiological workload evaluation by means of heart rate monitoring during motor-manual clearcutting operations. Int. J. For. Eng. 2021, 32, 91–102. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, B.; Xia, Q.; Ji, X.; Pan, L.; Bao, Y.; Lin, Y.; Zhang, R. The effects of occupational noise exposure on the cardiovascular system: A review. J. Public. Health. Emerg. 2020, 4, 12. [Google Scholar] [CrossRef]
- Järvelin-Pasanen, S.; Sinikallio, S.; Tarvainen, M.P. Heart rate variability and occupational stress—Dynamic review. Ind. Health 2018, 56, 500–511. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Wang, H.; Liu, Z.; Li, D.; Kou, G.; Li, C. Experimental study on the human thermal comfort based on the heart rate variability (HRV) analysis under different environments. Sci. Total Environ. 2018, 616, 1124–1133. [Google Scholar] [CrossRef]
- Heidari, H.; Soltanzadeh, A.; Mahdinia, M.; Mohammadbeigi, A.; Jafari, Z.; Roshan, M. Evaluation of the human cognitive performance and physiological responses in different thermal situations: A simulated study in controlled climatic room. Int. J. Hum. Factors Ergon. 2022, 9, 32–46. [Google Scholar] [CrossRef]
- Yang, B.; Yao, H.; Yang, P.; Guo, Y.; Wang, F.; Yang, C.; Li, A.; Che, L. Effects of thermal and acoustic environments on workers’ psychological and physiological stress in deep underground spaces. Build. Environ. 2022, 212, 108830. [Google Scholar] [CrossRef]
- Shakouri, M.; Ikuma, L.H.; Aghazadeh, F.; Nahmens, I. Analysis of the sensitivity of heart rate variability and subjective workload measures in a driving simulator: The case of highway zones. Int. J. Ind. Ergon. 2018, 66, 136–145. [Google Scholar] [CrossRef]
- Bowen, J.; Hinze, A.; Griffiths, C. Investigating real-time monitoring of fatigue indicators of New Zealand forestry workers. Accid. Anal. Prev. 2019, 126, 122–141. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health of Slovak Republic. Order of the Ministry of Health of Slovak Republic No. 542/2007 Coll., on the Health Protection Against Physical Exertion, Mental, and Sensorial Loading at Work; Ministry of Health of Slovak Republic: Bratislava, Slovakia, 2007. [Google Scholar]
- Belojevic, G.; Jakovljevic, B.; Slepcevic, V. Noise and mental performance: Personality attributes and noise sensitivity. Noise Health 2003, 21, 77–89. Available online: http://www.noiseandhealth.org/text.asp?2003/6/21/77/31680 (accessed on 5 March 2022).
- Hathaway, A.H. Effects of Time Varying Background Noise Conditions on Human Perception and Performance. Master’s Thesis, University of Nebraska, Lincoln, NE, USA, 2013; p. 28. Available online: https://digitalcommons.unl.edu/archengdiss/28 (accessed on 5 March 2022).
- Mohammadi, G. Hearing conservation programs in selected metal fabrication industries. Appl. Acoust. 2008, 69, 287–292. [Google Scholar] [CrossRef]
- Olsen, B.W. International standards and the ergonomics of the thermal environment. Appl Ergon. 1995, 26, 293–302. [Google Scholar] [CrossRef]
- Schwarz, M.; Dado, M.; Hnilica, R. Risk Factors of the Working Environment; Technical University in Zvolen: Zvolen, Slovakia, 2013; p. 439. [Google Scholar]
- Sablik, J. Ergonómia; SVŠT Bratislava: Bratislava, Slovakia, 1990; p. 212. [Google Scholar]
- Lumnitzer, E.; Románová, M. Trendy v oblasti ochrany zdravia v pracovnom prostredí priemyselných prevádzok. Stro-járstvo 2004, 4, 55. [Google Scholar]
- Kapustová, M. The mathematical model for comfort at work determination in engineering production. Acta Metall. Slovaca 2005, 11, 126–133. Available online: http://www.ams.tuke.sk/data/ams_online/2005/number1/mag14/mag14.pdf (accessed on 5 March 2022).
- Lumnitzer, E.; Piňosová, M.; Andrejiová, M.; Hricová, B. Methodology of Complex Health Risk Assessment in Industry 2; MUSKA sp. Z.o.o. Poland: Warsaw, Poland, 2013; p. 326. [Google Scholar]
- Lumnitzer, E.; Goga Bodnárová, A. Physical factors in home environment. Fyzikálne Fakt. Prostr. 2014, 4, 58–65. [Google Scholar]
- Piňosová, M.; Hricová, B.; Lumnitzer, E.; Andrejiová, M. Evaluation of combined effects of risk factors in selected work en-vironment. Fyzikálne Fakt. Prostr. 2015, 5, 93–98. [Google Scholar]
- Hnilica, R.; Jankovský, M.; Dado, M.; Messingerová, V. Experimental evaluation of combined effects of risk factors in work environment. In Proceedings of the 12th Engineering for Rural Development, Jelgava, Latvia, 23–24 May 2013; pp. 577–583. [Google Scholar]
- Hnilica, R.; Dado, M. Complex assessment of working environment quality in woodprocessing industry. Acta Fac. Tech. 2008, 12, 119–130. [Google Scholar]
- Hnilica, R.; Dado, M. Complex assessment of working environment quality. In Proceedings of the 9th International Conference on Occupational Safety and Health at Work, Istanbul, Turkey, 6–9 May 2009; pp. 72–80. [Google Scholar]
- Hnilica, R. Trends in evaluating the quality of the working environment in industrial engineering operations for welding. In Proceedings of the 3rd International Conference ICTKI, Madrid, Spain, 10–12 April 2010. [Google Scholar]
- Hnilica, R. Development of framework for assessment of combined effects of risk factors. Acta Fac. Tech. 2011, 16, 31–37. Available online: https://fevt.tuzvo.sk/sites/default/files/aft_2_2011_journal_0.pdf (accessed on 5 April 2022).
- Hnilica, R. Synergy effect of risk factors in working environment and methods their assessment. Acta Fac. Tech. 2012, 17, 25–34. Available online: https://fevt.tuzvo.sk/sites/default/files/aft_2_2012_journal_0_0.pdf (accessed on 5 April 2022).
- Piňosová, M.; Badida, M.; Lumnitzer, E.; Kevická, K. Experimental proposal of the methodology for a comprehensive assessment of the working environment quality using applicable mathematical methods. In Proceedings of the 12th International Multidisciplinary Scientific GeoConference SGEM, Albena, Bulgaria, 17–23 June 2012; Volume 5, pp. 407–414. [Google Scholar] [CrossRef]
- Piňosová, M.; Andrejiová, M.; Lumnitzer, E. Synergistic effect of risk factors and work environmental quality. Access Success 2018, 19, 154–159. Available online: https://www.proquest.com/docview/2089255397/fulltext/20F0CC11AA50481EPQ/1?accountid=49283 (accessed on 5 March 2022).
Variable | Observed Parameters | |
---|---|---|
Response | y | Risk coefficient |
Independent | x1 | Equivalent noise pressure level LAeq,T (dB) |
x2 | Peak noise pressure level LCPk (dB) | |
x3 | Operative temperature to (°C) | |
x4 | Mental loading ML (-) |
Age Group | Values of Shift Heart Rate per Minute | |||
---|---|---|---|---|
Absolute Values | Increase Heart Rate above Baseline | |||
A Average Values | B Limit Values | C Average Values | D Limit Values | |
18 to 29 | 108 | 117 | 30 | 33 |
30 to 39 | 106 | 115 | 29 | 32 |
40 to 49 | 101 | 110 | 26 | 28 |
50 to 59 | 97 | 105 | 23 | 25 |
60 to 65 | 93 | 100 | 20 | 22 |
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate | Change Statistics | ||||
---|---|---|---|---|---|---|---|---|---|
R Square Change | F Change | df1 | df2 | Sig. F Change | |||||
1 | 0.222 a | 0.049 | 0.044 | 0.41593 | 0.049 | 8.760 | 5 | 843 | 0.000 |
Model | Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|---|
1 | Regression | 7.578 | 5 | 1.516 | 8.760 | 0.000 b |
Residual | 145.836 | 843 | 0.173 | |||
Total | 153.413 | 848 |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | 95.0% Confidence Interval for B | |||
---|---|---|---|---|---|---|---|---|
B | Std. Error | Beta | Lower Bound | Upper Bound | ||||
1 | (Constant) | 13.640 | 2.540 | 5.370 | 0.000 | 8.654 | 18.626 | |
LAeq,T | −0.370 | 0.066 | −5.149 | −5.641 | 0.000 | −0.499 | −0.242 | |
L2Aeq,T | 0.003 | 0.000 | 5.051 | 5.537 | 0.000 | 0.002 | 0.003 | |
LCpk,T | −0.003 | 0.008 | −0.013 | −0.392 | 0.695 | −0.020 | 0.013 | |
to | 0.017 | 0.020 | 0.029 | 0.844 | 0.399 | −0.022 | 0.056 | |
ML | 0.086 | 0.031 | 0.096 | 2.812 | 0.005 | 0.026 | 0.146 |
Model | ML | to | LCPk,T | L2Aeq,T | LAeq | ||
---|---|---|---|---|---|---|---|
1 | Co-variances | ML | 0.0009354 | −0.0000171 | −0.0000165 | 0.0000005 | −0.0000786 |
to | −0.0000171 | 0.0003972 | 0.0000012 | 0.0000004 | −0.0000714 | ||
LCPk,T | −0.0000165 | 0.0000012 | 0.0000690 | −0.0000001 | 0.0000117 | ||
L2Aeq,T | 0.0000005 | 0.0000004 | −0.0000001 | 0.0000002 | −0.0000298 | ||
LAeq | −0.0000786 | −0.0000714 | 0.0000117 | −0.0000298 | 0.0043119 |
Model | R | RSquare | Adjusted R Square | Std. Error of the Estimate | Change Statistics | ||||
R Square Change | F Change | df1 | df2 | Sig. F Change | |||||
1 | 0.081 a | 0.007 | 0.005 | 0.42420 | 0.007 | 5.573 | 1 | 847 | 0.018 |
2 | 0.199 b | 0.039 | 0.037 | 0.41735 | 0.033 | 29.003 | 1 | 846 | 0.000 |
3 | 0.220 c | 0.048 | 0.045 | 0.41565 | 0.009 | 7.943 | 1 | 845 | 0.005 |
Model | Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|---|
3 | Regression | 7.427 | 3 | 2.476 | 14.330 | 0.000 d |
Residual | 145.986 | 845 | 0.173 | |||
Total | 153.413 | 848 |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | 95.0% Confidence Interval for B | |||
---|---|---|---|---|---|---|---|---|
B | Std. Error | Beta | Lower Bound | Upper Bound | ||||
3 | (Constant) | 13.564 | 2.348 | 5.776 | 0.000 | 8.955 | 18.173 | |
LAeq,T | −0.367 | 0.066 | −5.099 | −5.600 | 0.000 | −0.495 | −0.238 | |
L2Aeq,T | 0.002 | 0.000 | 5.008 | 5.501 | 0.000 | 0.002 | 0.003 | |
ML | 0.086 | 0.030 | 0.096 | 2.818 | 0.005 | 0.026 | 0.146 |
Model | LAeq,T | L2Aeq,T | ML | ||
---|---|---|---|---|---|
3 | Correlations | LAeq,T | 1.000 | −0.999 | −0.039 |
L2Aeq,T | −0.999 | 1.000 | 0.034 | ||
ML | −0.039 | 0.034 | 1.000 | ||
Covariances | LAeq,T | 0.0042913 | −0.0000297 | −0.0000788 | |
L2Aeq,T | −0.0000297 | 0.0000002 | 0.0000005 | ||
ML | −0.0000788 | 0.0000005 | 0.0009295 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hnilica, R.; Jankovský, M.; Dado, M. Model Assessment of the Complex Workload of Harvester Operator. Forests 2022, 13, 1196. https://doi.org/10.3390/f13081196
Hnilica R, Jankovský M, Dado M. Model Assessment of the Complex Workload of Harvester Operator. Forests. 2022; 13(8):1196. https://doi.org/10.3390/f13081196
Chicago/Turabian StyleHnilica, Richard, Martin Jankovský, and Miroslav Dado. 2022. "Model Assessment of the Complex Workload of Harvester Operator" Forests 13, no. 8: 1196. https://doi.org/10.3390/f13081196
APA StyleHnilica, R., Jankovský, M., & Dado, M. (2022). Model Assessment of the Complex Workload of Harvester Operator. Forests, 13(8), 1196. https://doi.org/10.3390/f13081196