Response of Larix chinensis Radial Growth to Climatic Factors Using the Process-Based Vaganov–Shashkin-Lite Model at Mt. Taibai, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Developing the Chronology
2.3. Meteorological Data and Statistical Analysis
2.4. Description of the VSL Model
2.5. Model Parameterization Procedure
Parameter | Parameter Description | Value |
---|---|---|
T1 | Threshold temp. for gT >0 | Table 3 |
T2 | Threshold temp. for gT = 1 | Table 3 |
M1 | Threshold soil moist. for gM >0 | Table 3 |
M2 | Threshold soil moist. for gM = 1 | Table 3 |
α | Runoff parameter 1 | 0.093 month−1 |
μ | Runoff parameter 2 | 5.8 (dimensionless) |
m | Runoff parameter 3 | 4.886 (dimensionless) |
Wmax | Max moisture held by soil | 0.8 v/v |
Wmin | Min moisture held by soil | 0.01 v/v |
dr | Root (bucket) depth | 1000 mm |
I0 If | Integration start month Integration end month | −4 12 |
Calib. 1959–2013 | Calib. 1959–1985 | Calib. 1986–2013 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | SD | Mean | Min | Max | SD | Mean | Min | Max | SD | ||
N3065 | T1 (°C) | 8.52 | 8.33 | 8.76 | 0.08 | 6.59 | 6.06 | 7.33 | 0.13 | 7.91 | 3.85 | 8.64 | 0.62 |
T2 (°C) | 17.06 | 11.87 | 22.81 | 2.25 | 17.02 | 12.31 | 22.62 | 2.28 | 14.10 | 10.36 | 22.87 | 3.12 | |
M1 (v/v) | 0.036 | 0.001 | 0.094 | 0.021 | 0.035 | 0.001 | 0.091 | 0.021 | 0.036 | 0.001 | 0.098 | 0.021 | |
M2 (v/v) | 0.25 | 0.11 | 0.49 | 0.09 | 0.25 | 0.11 | 0.46 | 0.09 | 0.26 | 0.10 | 0.48 | 0.09 | |
N3210 | T1 (°C) | 7.71 | 7.68 | 7.74 | 0.01 | 7.64 | 4.91 | 8.88 | 1.24 | 7.16 | 3.85 | 7.22 | 0.40 |
T2 (°C) | 16.86 | 12.02 | 22.75 | 2.38 | 17.01 | 11.18 | 22.61 | 2.38 | 16.92 | 10.48 | 23.13 | 2.67 | |
M1 (v/v) | 0.037 | 0.002 | 0.090 | 0.021 | 0.033 | 0.001 | 0.090 | 0.021 | 0.033 | 0.001 | 0.091 | 0.020 | |
M2 (v/v) | 0.26 | 0.11 | 0.46 | 0.09 | 0.25 | 0.10 | 0.45 | 0.09 | 0.26 | 0.10 | 0.48 | 0.09 | |
N3404 | T1 (°C) | 8.58 | 8.30 | 8.90 | 0.10 | 8.41 | 7.66 | 8.90 | 0.39 | 7.89 | 7.85 | 7.92 | 0.01 |
T2 (°C) | 17.26 | 11.28 | 22.76 | 2.45 | 16.89 | 11.80 | 22.48 | 2.46 | 16.95 | 11.60 | 22.71 | 2.53 | |
M1 (v/v) | 0.033 | 0.001 | 0.091 | 0.021 | 0.034 | 0.002 | 0.092 | 0.020 | 0.035 | 0.001 | 0.086 | 0.021 | |
M2 (v/v) | 0.24 | 0.10 | 0.47 | 0.08 | 0.25 | 0.11 | 0.49 | 0.09 | 0.24 | 0.10 | 0.47 | 0.09 | |
S3100 | T1 (°C) | 6.83 | 6.79 | 6.84 | 0.01 | 6.40 | 6.37 | 6.44 | 0.01 | 6.83 | 6.81 | 6.86 | 0.01 |
T2 (°C) | 18.24 | 15.30 | 23.38 | 1.93 | 17.57 | 13.77 | 23.18 | 2.00 | 17.97 | 15.30 | 21.64 | 1.67 | |
M1 (v/v) | 0.037 | 0.001 | 0.097 | 0.021 | 0.034 | 0.001 | 0.086 | 0.021 | 0.034 | 0.002 | 0.092 | 0.020 | |
M2 (v/v) | 0.26 | 0.11 | 0.45 | 0.09 | 0.24 | 0.10 | 0.44 | 0.08 | 0.25 | 0.11 | 0.45 | 0.08 | |
S3210 | T1(°C) | 4.41 | 4.16 | 4.54 | 0.04 | 4.20 | 2.84 | 5.26 | 0.21 | 4.67 | 4.63 | 4.70 | 0.01 |
T2 (°C) | 17.63 | 14.67 | 22.79 | 1.97 | 17.31 | 11.86 | 22.75 | 2.29 | 17.93 | 14.90 | 22.44 | 1.72 | |
M1 (v/v) | 0.035 | 0.002 | 0.092 | 0.022 | 0.036 | 0.001 | 0.095 | 0.021 | 0.036 | 0.001 | 0.090 | 0.022 | |
M2 (v/v) | 0.27 | 0.10 | 0.48 | 0.10 | 0.24 | 0.10 | 0.47 | 0.09 | 0.26 | 0.11 | 0.48 | 0.09 |
3. Results
3.1. Chronological Characteristics Analysis
3.2. Process-Based Modeling of Tree Ring Growth
3.3. Relationships between Actual and Simulated Tree-Ring Chronologies
3.4. Validation in the Tree-Ring Width Index Simulated by the VSL Model
4. Discussion
4.1. Climatic Responses
4.2. Effects of Topographical Factors on the Behavior of the VSL Model
4.3. Perspectives of the VSL Model
5. Conclusions
- (1)
- In general, the simulated chronologies were consistent with the observed values except for the series of sample N3404 above the treeline. The VSL model simulated a dominant temperature control on tree growth during the entire growing period. The unsuccessful simulation in N3404 may be due to neglecting the negative effects of moisture and not including modeled snowmelt.
- (2)
- The overall skill of the VSL model was slightly higher at two sites on the southern slope than at those on the northern slope. Correlations between the actual and simulated tree-ring chronologies decreased with increasing altitude. The differences may be attributable to the decreasing sensitivity of climate signals with the altitudes contained in the chronologies.
- (3)
- Through the study of L. chinensis by the VSL model in this paper, it can be seen that L. chinensis was limited by a single climate factor, and the advantages of the VSL model were not obvious. Despite the limitations of the VSL model, it has many potential applications, such as data assimilation and forward modeling.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Briffa, K.R. Annual climate variability in the Holocene: Interpreting the message of ancient trees. Quatern. Sci. Rev. 2000, 19, 87–105. [Google Scholar] [CrossRef]
- Cook, E.R.; Woodhouse, C.A.; Eakin, C.M.; Meko, D.M.; Stahle, D.W. Long term aridity changes in the western United States. Science 2004, 306, 1015–1018. [Google Scholar] [CrossRef] [Green Version]
- Esper, J.; Cook, E.R.; Schweingruber, F.H. Low-frequency signals in long tree ring chronologies for reconstructing past temperature variability. Science 2002, 295, 2250–2253. [Google Scholar] [CrossRef] [Green Version]
- Fritts, H.C. Tree Rings and Climate; Academic Press: London, UK, 1976. [Google Scholar]
- D’Arrigo, R.; Wilson, R.; Liepert, B.; Cherubini, P. On the ‘Divergence Problem’ in Northern Forests: A review of the tree-ring evidence and possible causes. Glob. Planet. Chang. 2008, 60, 289–305. [Google Scholar] [CrossRef]
- Coppola, A.; Leonelli, G.; Salvatore, M.C.; Pelfini, M.; Baroni, C. Weakening climatic signal since mid-20th century in European larch tree-ring chronologies at different altitudes from the Adamello-Presanella Massif (Italian Alps). Quatern. Res. 2012, 77, 344–354. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Y.; Song, H.M.; Yang, Y.K.; Zhao, B.Y. Divergence of tree-ring-based drought reconstruction between the individual sampling site and the Monsoon Asia Drought Atlas: An example from Guancen Moutain. Sci. Bull. 2015, 60, 1688–1697. [Google Scholar] [CrossRef] [Green Version]
- Schwab, N.; Kaczka, R.J.; Janecka, K.; Bohner, J.; Chaudhary, R.P.; Scholten, T.; Schickhoff, U. Climate change induced shift of tree growth sensitivity at a central Himalayan treeline ecoto. Forests 2018, 9, 267. [Google Scholar] [CrossRef] [Green Version]
- Briffa, K.R.; Schweingruber, F.H.; Jones, P.D.; Osborn, T.J.; Shiyatov, S.G.; Vaganov, E.A. Reduced sensitivity of recent tree-growth to temperature at high norther latitudes. Nature 1998, 391, 678–682. [Google Scholar] [CrossRef]
- Barber, V.A.; Juday, G.P.; Finney, B.P. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 2000, 405, 668–673. [Google Scholar] [CrossRef]
- Wilmking, M.; Myers-Smith, I. Changing climate sensitivity of black spruce (Picea mariana Mill) in a peatland-forest landscape in Interior Alaska. Dendrochronologia 2008, 25, 167–175. [Google Scholar] [CrossRef]
- Wu, G.J.; Xu, G.B.; Chen, T.; Liu, X.H.; Zhang, Y.F.; An, W.L.; Wang, W.Z.; Fang, Z.A.; Yu, S.L. Age-dependent tree-ring growth responses of Schrenk spruce (Picea schrenkiana) to climate—A case study in the Tianshan Mountain, China. Dendrochronologia 2013, 31, 318–326. [Google Scholar] [CrossRef]
- Vaganov, E.A.; Hughes, M.K.; Shashkin, A.V. Growth Dynamics of Conifer Tree Rings: Images of Past and Future Environments; Springer Science & Business Media: New York, NY, USA, 2006. [Google Scholar]
- Tolwinski-Ward, S.E.; Evans, M.N.; Hughes, M.K.; Anchukaitis, K.J. An efficient forward model of the climate controls on interannual variation in tree-ring width. Clim. Dyn. 2011, 36, 2419–2439. [Google Scholar] [CrossRef]
- Matskovsky, V.; Fidel, A.R.; Guillermo, M.P. Removal of a non-climatically induced seven-year cycle from Nothofagus pumilio tree-ring width chronologies from Tierra del Fuego, Argentina for their use in climate reconstructions. Dendrochronologia 2019, 57, 125610. [Google Scholar] [CrossRef]
- Sanchez-Salguero, R.; Camarero, J.J.; Gutiérrez, E.; Gazol, A.; Sangüesa-Barreda, G.; Moiseev, P.; Linares, J.C. Climate Warming Alters Age-Dependent Growth Sensitivity to Temperature in Eurasian Alpine Treelines. Forests 2018, 9, 688. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.M.; Evans, M.N.; Liu, X.H.; Wang, W.Z.; Xu, G.B.; Wu, G.J.; Zhang, L.N. Spatial patterns of precipitation-induced moisture availability and their effects on the divergence of conifer stem growth in the western and eastern parts of China’s semi-arid region. For. Ecol. Manag. 2019, 451, 117524. [Google Scholar] [CrossRef]
- Breitenmoser, P.; Brönnimann, S.; Frank, D. Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies. Clim. Past 2014, 10, 437–449. [Google Scholar] [CrossRef] [Green Version]
- Lavergne, A.; Dauxa, V.; Villalb, R.; Barichivich, J. Temporal changes in climatic limitation of tree-growth at upper treeline forests: Contrasted responses along the west-to-east humidity gradient in Northern Patagonia. Dendrochronologia 2015, 36, 49–59. [Google Scholar] [CrossRef]
- Mina, M.; Martin-Benito, D.; Bugmann, H.; Cailleret, M. Forward modeling of tree-ring width improves simulation of forest growth responses to drought. Agric. For. Meteorol. 2016, 221, 13–33. [Google Scholar] [CrossRef] [Green Version]
- Bjorklund, J.; Rydval, M.; Schurman, J.S.; Seftigen, K.; Trotsiuk, V.; Jandaa, P.; Mikolas, M.; Dusatko, M.; Cada, V.; Bace, R.; et al. Dientangling the multi-faceted growth patterns of primary Picea abies forests in the Carpathian arc. Agric. For. Meteorol. 2019, 271, 214–224. [Google Scholar] [CrossRef]
- Shi, J.F.; Liu, Y.; Vaganov, E.; Cai, Q.F.; Shishov, V. A primary discussion on the climatic response of Pinus tabulaeformis in the Helan Mountain. Chin. J. Quat. Sci. 2005, 25, 245–251. (In Chinese) [Google Scholar]
- Zhang, Y.X.; Shao, X.M.; Xu, Y.; Wilmking, M. Process-based modeling analyses of Sabina prewalskii growth response to climate factors around the northeastern Qaidam Basin. Chin. Sci. Bull. 2011, 56, 1518–1525. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Shao, X.M.; Guo, J. Primary discussion of the climate mechanism response of Picea Grassifolia on east edge of Qaidem Basin. Chin. J. Plateau Meteorol. 2010, 29, 349–358. (In Chinese) [Google Scholar]
- He, M.H.; Yang, B.; Shishov, V.; Rossi, S.; Brauning, A.; Ljungqvist, F.C.; Griessinger, J. Relations between wood formation and cambium phenology on the Tibetan Plateau during 1960–2014. Forests 2018, 9, 86. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Yao, C.X.; Xu, D.L. Ecological compensation standards of national scenic spots in western China: A case study of Taibai Mountain. Tour. Manag. 2020, 76, 103950. [Google Scholar] [CrossRef]
- Kou, Z.X.; Yao, Y.H.; Hu, Y.F.; Zhang, B.P. Discussion on position of China’s north-south transitional zone by comparative analysis of mountain altitudinal belts. J. Mt. Sci. 2020, 17, 1901–1915. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, B.P.; Yao, Y.H. The Spatial Pattern of the Upper Limit of Montane Deciduous Broad-Leaved Forests and Its Geographical Interpretation in the East Monsoon Realm of China. Forests 2021, 12, 1225. [Google Scholar] [CrossRef]
- Wang, X.P.; Zhang, L.; Fang, J.Y. Geographical differences in alpine timberline and its climatic interpretation in China. Acta Geogr. Sin. 2004, 59, 871–879. (In Chinese) [Google Scholar]
- Tang, Z.Y.; Fang, J.Y. Temperature variation along the northern and southern slopes of Mt. Taibai, China. Agric. For. Meteorol. 2006, 139, 200–207. [Google Scholar] [CrossRef]
- Liu, H.B.; Shao, X.M. Reconstruction of early-spring temperature of Qinling Mountains using tree-ring chronologies. Chin. J. Acta Geogr. Sin. 2003, 58, 879–884. (In Chinese) [Google Scholar]
- Hu, Y.F.; Bao, G.; Liu, N.; Qu, Y. May-July mean minimum temperature variability in the mid-Qinling Moutains, central China, since 1814 CE. Quatern. Int. 2018, 476, 102–109. [Google Scholar] [CrossRef]
- Dai, J.H.; Shao, X.M.; Cui, H.T.; Ge, Q.S.; Liu, H.Y.; Tang, Z.Y. Reconstruction of past eco-climate by tree-ring width index of Larix Chinensis on Mt. Taibai. Chin. J. Quat. Sci. 2003, 23, 428–435. (In Chinese) [Google Scholar]
- Liu, Y.; Linderholm, H.W.; Song, H.M.; Cai, Q.F.; Tian, Q.H.; Sun, J.Y.; Chen, D.L.; Simelto, N.E.; Seftigen, K.; Tian, H.; et al. Temperature variations recorded in Pinus tabulaeformis tree rings from the southern and northern slopes of the central Qinling Mountains, central China. Boreas 2009, 38, 285–291. [Google Scholar] [CrossRef]
- Wu, Z.Y. China Vegetation; Science Press: Beijing, China, 1980. [Google Scholar]
- Li, X.Q.; Dodson, J.; Zhou, J.; Wang, S.M.; Sun, Q.L. Vegetation and climate variations at Taibai, Qinling Mountains in central China for the last 3500 cal BP. J. Integr. Plant Biol. 2005, 47, 905–916. [Google Scholar] [CrossRef]
- Shi, Z.Y.; Wang, F.Y.; Zhang, K.; Chen, Y.L. Diversity and distribution of arbuscular mycorrhizal fungi along altitudinal gradients in Mount Taibai of the Qinling Mountains. Can. J. Microbiol. 2014, 60, 811–818. [Google Scholar] [CrossRef]
- Wang, H.Y.; Liu, H.Y.; Liu, Y.H.; Cui, H.T.; Abrahamsen, N. Mineral magnetism and other characteristics of sediments from an alpine lake (3410 m a.s.l.) in central China and implications for late Holocene climate and environment. J. Paleolimnol. 2010, 43, 345–367. [Google Scholar] [CrossRef]
- Stokes, M.A.; Smiley, T.L. An Introduction to Tree-Ring Dating; University of Chicago Press: Chicago, IL, USA, 1968. [Google Scholar]
- Pilcher, J.R. Sample preparation, cross-dating and measurement. In Methods of Dendrochronology: Applications in the Environmental Sciences; Cook, E.R., Kairiukstis, L., Eds.; Kluwer: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Holmes, R.L. Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 1983, 43, 69–78. [Google Scholar]
- Cook, E.R. A Time Series Analysis Approach to Tree Ring Standardization; University of Arizona: Tucson, AZ, USA, 1985. [Google Scholar]
- Zhai, D.P.; Bai, H.Y.; Qin, J.; Deng, C.H.; Liu, R.J.; He, H. Temporal and spatial variability of air temperature lapse rates in Mt. Taibai, Central Qinling Mountains. Chin. J. Acta Geogr. Sin. 2016, 71, 1587–1595. (In Chinese) [Google Scholar]
- Huang, J.; Van den Dool, H.M.; Georgakakos, K.P. Analysis of model-calculated soil moisture over the United States (1931–1993) and applications to long-range temperature forecasts. J. Clim. 1996, 9, 1350–1362. [Google Scholar] [CrossRef] [Green Version]
- Gates, D.M. Biophysical Ecology; Springer-Verlang: New York, NY, USA, 1980. [Google Scholar]
- Tolwinski-Ward, S.E.; Anchukaitis, K.J.; Evans, M.N. Bayesian parameter estimation and interpretation for an intermediate model of tree-ring width. Clim. Past 2013, 9, 1481–1493. [Google Scholar] [CrossRef] [Green Version]
- Evans, M.N.; Reichert, B.K.; Kaplan, A.; Anchukaitis, K.J.; Vaganov, E.A.; Hughes, M.K.; Cane, M.A. A forward modeling approach to paleoclimatic interpretation of tree-ring data. J. Geophys. Res. 2006, 111, G03008. [Google Scholar] [CrossRef]
- Touchan, R.; Shishov, V.V.; Meko, D.M.; Nouiri, I.; Grachev, A. Process based model sheds light on climate sensitivity of Mediterranean tree-ring width. Biogeosciences 2012, 9, 965–972. [Google Scholar] [CrossRef] [Green Version]
- Wigley, T.M.; Briffa, K.R.; Jones, P.D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Cook, E.R.; Kairiukstis, L.A. Methods of Dendrochronology: Applications in the Environmental Sciences; Springer: New York, NY, USA, 2013. [Google Scholar]
- Liu, Y.; Lei, Y.; Sun, B.; Song, H.M.; Li, Q. Annual precipitation variability inferred from tree-ring width chronologies in the Changling–Shoulu region, China, during AD 1853–2007. Dendrochronologia 2013, 31, 290–296. [Google Scholar] [CrossRef]
- Trouet, V.; Van Oldenborgh, G.J. KNMI Climate Explorer: A Web-Based Research Tool for High-Resolution Paleoclimatology. Tree-Ring Res. 2013, 69, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.D.; Shao, X.M. A preliminary analysis on response of tree-ring density to climate in the Qinling Mountains of China. Chin J. Appl. Meteorol. 1994, 5, 253–256. (In Chinese) [Google Scholar]
- Dang, H.S.; Jiang, M.X.; Zhang, Q.F.; Zhang, Y.J. Growth response of subalpine fir (Abies fargesii) to climate variability in the Qinling Mountain, China. For. Ecol. Manag. 2007, 240, 143–150. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Li, Q.; Song, H.M.; Linderholm, H.W.; Leavitt, S.W.; Wang, R.Y.; An, Z.S. Tree-ring stable carbon isotope-based May-July temperature reconstruction over Nanwutai, China, for the past century and its record of 20th century warming. Quatern. Sci. Rev. 2014, 93, 67–76. [Google Scholar] [CrossRef]
- Peterson, D.W.; Peterson, D.L.; Ettl, G.J. Growth response of subalpine fir to climatic variability in the Pacific Northwest. Can. J. For. Res. 2002, 32, 1503–1517. [Google Scholar] [CrossRef]
- Splechtna, B.E.; Dobry, J.; Klinka, K. Tree-ring characteristics of subalpine fir (Abies lasiocarpa (Hook) Nutt.) in relation to elevation and climatic fluctuations. Ann. For. Sci. 2000, 57, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Cai, Q.F.; Liu, Y. Climatic response of three tree species growing at different elevations in the Lüliang Mountains of Northern China. Dendrochronologia 2013, 31, 311–317. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Michael, N.E.; Yu, L.; Huang, L.; Wang, Y.F. What causes variable response in tree growth to climate change at a single site? A case study of Picea crassifolia at the upper treeline, Qilian Mountains, China. Trees 2020, 34, 615–622. [Google Scholar] [CrossRef]
- Wang, J.C.; Li, S.H.; Guo, Y.L.; Yang, Q.; Ren, R.; Han, Y.J. Responses of Larix principis-rupprechtii radial growth to climatic factors at different elevations on Guancen mountain, North-Central China. Forests 2022, 13, 99. [Google Scholar] [CrossRef]
- Leonelli, G.; Pelfini, M.; Battipaglia, G.; Cherubini, P. Site-aspect influence on climate sensitivity over time of a high-altitude Pinus cembra tree-ring network. Clim. Chang. 2009, 96, 185–201. [Google Scholar] [CrossRef]
- Gou, X.H.; Chen, F.H.; Yang, M.; Li, J.; Peng, J.; Jin, L. Climatic response of thickleaf spruce (Piceacrassifolia) tree-ring width at different elevation sover Qilian Mountains, northwestern China. J. Arid. Environ. 2005, 61, 513–524. [Google Scholar] [CrossRef]
- Qiang, W.Y.; Wang, X.L.; Chen, T.; Feng, H.Y.; An, L.Z.; He, Y.Q.; Wang, G. Variations of stomatal density and carbon isotope values of Picea crassif olia at different altitudes in the Qilian Mountains. Trees 2003, 17, 258–262. [Google Scholar] [CrossRef]
- Wang, B.; Chen, T.; Wu, G.J.; Xu, G.B.; Zhang, Y.F.; Gao, H.N.; Zhang, Y.; Feng, Q. Qinghai spruce (Picea crassifolia) growth–climate response between lower and upper elevation gradient limits: A case study along a consistent slope in the mid-Qilian Mountains region. Environ. Earth Sci. 2016, 75, 236. [Google Scholar] [CrossRef]
- Ponocná, T.; Spyt, B.; Kaczka, R.; Büntgen, U.; Treml, V. Growth trends and climate responses of Norway spruce along elevational gradients in East-Central Europe. Trees 2016, 30, 1633–1646. [Google Scholar] [CrossRef]
- Peng, J.F.; Gou, X.H.; Chen, F.H.; Liu, P.X.; Zhang, Y.Q.; Zhang, Y.; Tian, Q.H. The characteristics of tree-ring width of Sabina przewalskii Kom for different elevations in the A’nyemaqen Moutains. J. Glaci. Geocry 2006, 28, 713–721. [Google Scholar]
- Acevedo, W.; Reich, S.; Cubasch, U. Towards the assimilation of tree-ring-width records using ensemble Kalman filtering techniques. Clim. Dyn. 2016, 46, 1909–1920. [Google Scholar] [CrossRef] [Green Version]
- Evans, M.N.; Smerdon, J.E.; Kaplan, A.; Tolwinski-Ward, S.E.; González-Rouco, J.F. Climate field reconstruction uncertainty arising from multivariate and nonlinear properties of predictors. Geophys. Res. Lett. 2014, 41, 9127–9134. [Google Scholar] [CrossRef] [Green Version]
Site Code | Chronology Time Span (year) | Longitude (N) | Latitude (E) | Elevation (m) | Samples | Soil | Forest Density |
---|---|---|---|---|---|---|---|
SBS1(N3065) | 1835–2013(179) | 34°0′23″ | 107°48′34″ | 3065 | 30 | dark brown soil | 0.6–0.7 |
SBS2(N3210) | 1849–2013 (165) | 34°0′6″ | 107°48′31″ | 3210 | 30 | brown soil | 0.5–0.6 |
SBS3(N3404) | 1822–2013(192) | 33°59′49″ | 107°48′15″ | 3404 | 30 | meadow soil, podzolic soil | 0.4–0.5 |
YWDZ(S3100) | 1897–2012(116) | 33°55′08″ | 107°46′43″ | 3100 | 20 | brown soil | 0.5–0.6 |
YWD(S3210) | 1727–2012(286) | 33°56′00″ | 107°46′7″ | 3210 | 30 | meadow soil | 0.4–0.5 |
Statistical item | N3065 | N3210 | N3404 | S3100 | S3210 |
---|---|---|---|---|---|
MS | 0.147 | 0.183 | 0.200 | 0.190 | 0.269 |
SD | 0.203 | 0.241 | 0.253 | 0.265 | 0.395 |
AC1 | 0.570 | 0.597 | 0.532 | 0.603 | 0.652 |
Rbar | 0.418 | 0.492 | 0.387 | 0.556 | 0.368 |
SNR | 12.941 | 24.184 | 9.458 | 11.283 | 6.995 |
EPS | 0.928 | 0.960 | 0.905 | 0.919 | 0.875 |
PC1 | 0.481 | 0.524 | 0.443 | 0.612 | 0.468 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Guo, W.; Wang, J.; Gao, N.; Yang, Q.; Bai, H. Response of Larix chinensis Radial Growth to Climatic Factors Using the Process-Based Vaganov–Shashkin-Lite Model at Mt. Taibai, China. Forests 2022, 13, 1252. https://doi.org/10.3390/f13081252
Li S, Guo W, Wang J, Gao N, Yang Q, Bai H. Response of Larix chinensis Radial Growth to Climatic Factors Using the Process-Based Vaganov–Shashkin-Lite Model at Mt. Taibai, China. Forests. 2022; 13(8):1252. https://doi.org/10.3390/f13081252
Chicago/Turabian StyleLi, Shuheng, Wei Guo, Jiachuan Wang, Na Gao, Qi Yang, and Hongying Bai. 2022. "Response of Larix chinensis Radial Growth to Climatic Factors Using the Process-Based Vaganov–Shashkin-Lite Model at Mt. Taibai, China" Forests 13, no. 8: 1252. https://doi.org/10.3390/f13081252
APA StyleLi, S., Guo, W., Wang, J., Gao, N., Yang, Q., & Bai, H. (2022). Response of Larix chinensis Radial Growth to Climatic Factors Using the Process-Based Vaganov–Shashkin-Lite Model at Mt. Taibai, China. Forests, 13(8), 1252. https://doi.org/10.3390/f13081252