CSR Ecological Strategies and Functional Traits of the Co-Existing Species along the Succession in the Tropical Lowland Rain Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Species
2.2. Functional Trait Collection
2.3. Measurements of Environmental Factors
2.4. Data and Statistical Analyses
3. Results
3.1. Patterns of Leaf Trait Distribution among Successional Stages
3.2. Spectrum of CSR Strategies Varied along the Succession
3.3. Relationship between CSR Strategy and Environmental Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keddy, P.A. Assembly and response rules: Two goals for predictive community ecology. J. Veg. Sci. 1992, 3, 157–164. [Google Scholar] [CrossRef]
- McGill, B.J.; Enquist, B.J.; Weiher, E.; Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 2006, 21, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Grime, J.P.; Thompson, K.; Hunt, R.; Hodgson, J.G.; Cornelissen, J.H.C.; Rorison, I.H.; Hendry, G.A.F.; Ashenden, T.W.; Askew, A.P.; Band, S.R.; et al. Integrated screening validates primary axes of specialisation in plants. Oikos 1997, 79, 259–281. [Google Scholar] [CrossRef]
- Westoby, M.; Falster, D.S.; Moles, A.T.; Vesk, P.A.; Wright, I.J. Plant Ecological Strategies: Some Leading Dimensions of Variation Between Species. Annu. Rev. Entomol. 2002, 33, 125–159. [Google Scholar] [CrossRef]
- Díaz, S.; Kattge, J.; Cornelissen, J.H.C.; Wright, I.J.; Lavorel, S.; Dray, S.; Reu, B.; Kleyer, M.; Wirth, C.; Colin Prentice, I.; et al. The global spectrum of plant form and function. Nature 2015, 529, 167–171. [Google Scholar] [CrossRef]
- Pierce, S.; Negreiros, D.; Cerabolini, B.E.L.; Kattge, J.; Diaz, S.; Kleyer, M.; Shipley, B.; Wright, S.J.; Soudzilovskaia, N.A.; Onipchenko, V.G.; et al. A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Funct. Ecol. 2017, 31, 444–457. [Google Scholar] [CrossRef]
- Golodets, C.; Sternberg, M.; Kigel, J. A community-level test of the leaf-height-seed ecology strategy scheme in relation to grazing conditions. J. Veg. Sci. 2009, 20, 392–402. [Google Scholar] [CrossRef]
- Grime, J.P. Vegetation classification by reference to strategies. Nature 1974, 250, 26–31. [Google Scholar] [CrossRef]
- Simon, J.; Adamczyk, B. Editorial: Plant Secondary Compounds in Forest Ecosystems Under Global Change: From Defense to Carbon Sequestration. Front. Plant Sci. 2019, 10, 831. [Google Scholar] [CrossRef]
- Pizano, C.; Mangan, S.A.; Herre, E.A.; Eom, A.H.; Dalling, J.W. Above- and belowground interactions drive habitat segregation between two cryptic species of tropical trees. Ecology 2011, 92, 47–56. [Google Scholar] [CrossRef]
- Ewel, J.J. Tropical succession: Manifold routes to maturity. Biotropica 1980, 12, 2. [Google Scholar] [CrossRef]
- Arroyo-Rodríguez, V.; Melo, F.P.L.; Martínez-Ramos, M.; Bongers, F.; Chazdon, R.L.; Meave, J.A.; Norden, N.; Santos, B.A.; Leal, I.R.; Tabarelli, M. Multiple successional pathways in human-modified tropical landscapes: New insights from forest succession, forest fragmentation and landscape ecology research. Biol. Rev. 2017, 92, 326–340. [Google Scholar] [CrossRef]
- Cerabolini, B.E.L.; Pierce, S.; Verginella, A.; Brusa, G.; Armiraglio, S. Why are many anthropogenic agroecosystems particularly species-rich? Plant Biosyst. 2016, 150, 550–557. [Google Scholar] [CrossRef]
- Norden, N.; Chazdon, R.L.; Chao, A.; Jiang, Y.-H.; Vílchez-Alvarado, B. Resilience of tropical rain forests: Tree community reassembly in secondary forests. Ecol. Lett. 2009, 12, 385–394. [Google Scholar] [CrossRef]
- Grime, J.P.; Pierce, S. The Evolutionary Strategies That Shape Ecosystems; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- de Paula, L.F.A.; Negreiros, D.; Azevedo, L.O.; Fernandes, R.L.; Stehmann, J.R.; Silveira, F.A.O. Functional ecology as a missing link for conservation of a resource-limited flora in the Atlantic forest. Biodivers. Conserv. 2015, 24, 2239–2253. [Google Scholar] [CrossRef]
- Grime, J.P. Plant Strategies, Vegetation Processes, and Ecosystem Properties; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- Zanzottera, M.; Fratte, M.D.; Caccianiga, M.; Pierce, S.; Cerabolini, B.E.L. Community-level variation in plant functional traits and ecological strategies shapes habitat structure along succession gradients in alpine environment. Community Ecol. 2020, 21, 55–65. [Google Scholar] [CrossRef]
- Chai, Y.; Yue, M.; Wang, M.; Xu, J.; Liu, X.; Zhang, R.; Wan, P. Plant functional traits suggest a change in novel ecological strategies for dominant species in the stages of forest succession. Oecologia 2016, 180, 771–783. [Google Scholar] [CrossRef]
- Rosado, B.H.P.; Mattos, E.A.; Baltzer, J. On the relative importance of CSR ecological strategies and integrative traits to explain species dominance at local scales. Funct. Ecol. 2017, 31, 1969–1974. [Google Scholar] [CrossRef]
- Dayrell, R.L.C.; Arruda, A.J.; Pierce, S.; Negreiros, D.; Meyer, P.B.; Lambers, H.; Silveira, F.A.O.; Godoy, O. Ontogenetic shifts in plant ecological strategies. Funct. Ecol. 2018, 32, 2730–2741. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S. Joint control of plant ecological strategy by climate, regeneration mode, and ontogeny in Northeastern Chinese forests. Ecol. Evol. 2021, 11, 6703–6715. [Google Scholar] [CrossRef]
- Avalos, G. Shade tolerance within the context of the successional process in tropical rain forests. Rev. Biol. Trop. 2019, 67, S53–S77. [Google Scholar] [CrossRef]
- Chelli, S.; Ottaviani, G.; Tsakalos, J.L.; Campetella, G.; Simonetti, E.; Wellstein, C.; Bartha, S.; Cervellini, M.; Canullo, R. Intra- and inter-specific leaf trait responses of understorey species to changes in forest maturity. For. Ecol. Manag. 2022, 506, 119977. [Google Scholar] [CrossRef]
- Zang, D.R. Effects of Logging on the Diversity of Lianas in a Lowland Tropical Rain Forest in Hainan Island, South China. Biotropica 2009, 41, 618–624. [Google Scholar]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2013, 61, 167–234. [Google Scholar] [CrossRef]
- Long, W.; Zang, R.; Ding, Y. Air temperature and soil phosphorus availability correlate with trait differences between two types of tropical cloud forests. Flora 2011, 206, 896–903. [Google Scholar] [CrossRef]
- Coste, S.; Roggy, J.C.; Garraud, L.; Heuret, P.; Nicolini, E.; Dreyer, E. Does ontogeny modulate irradiance-elicited plasticity of leaf traits in saplings of rain-forest tree species? A test with Dicorynia guianensis and Tachigali melinonii (Fabaceae, Caesalpinioideae). Ann. For. Sci. 2009, 66, 709. [Google Scholar] [CrossRef]
- Zuur, A.F.; Ieno, E.N. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 2016, 7, 636–645. [Google Scholar] [CrossRef]
- Bartoń, K. MuMIn: Multi-Model Inference, R Package Version 1.10.5. 2014. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 28 June 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015; Volume 1, pp. 12–21. [Google Scholar]
- Han, X.; Huang, J.; Zang, R. Shifts in ecological strategy spectra of typical forest vegetation types across four climatic zones. Sci. Rep. 2021, 11, 14127. [Google Scholar] [CrossRef]
- Shipley, B.; Li, Y. An experimental test of CSR theory using a globally calibrated ordination method. PLoS ONE 2017, 12, e0175404. [Google Scholar]
- May, R.L.; Warner, S.; Wingler, A. Classification of intra-specific variation in plant functional strategies reveals adaptation to climate. Ann. Bot. 2017, 119, 1343–1352. [Google Scholar] [CrossRef] [PubMed]
- Rosenfield, M.F.; Müller, S.C.; Overbeck, G.E. Short gradient, but distinct plant strategies: The CSR scheme applied to subtropical forests. J. Veg. Sci. 2019, 30, 984–993. [Google Scholar] [CrossRef]
- Wright, S.J.; Turner, B.L.; Yavitt, J.B.; Harms, K.E.; Kaspari, M.; Tanner, E.V.J.; Bujan, J.; Griffin, E.A.; Mayor, J.R.; Pasquini, S.C. Plant responses to fertilization experiments in lowland, species-rich, tropical forests. Ecology 2018, 99, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.L.; Brenes-Arguedas, T.; Condit, R. Publisher Correction: Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature 2018, 555, 367–370. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Porder, S.; Houlton, B.Z.; Chadwick, O.A. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 2010, 20, 5–15. [Google Scholar] [CrossRef]
- Lebrija-Trejos, E.; Perez-Garcia, E.A.; Meave, J.A.; Poorter, L.; Bongers, F. Environmental changes during secondary succession in a tropical dry forest in Mexico. J. Trop. Ecol. 2011, 27, 477–489. [Google Scholar] [CrossRef]
- Lu, X.; Zang, R.; Ding, Y.; Letcher, S.G.; Long, W.; Huang, Y. Variations and Trade-offs in Functional Traits of Tree Seedlings during Secondary Succession in a Tropical Lowland Rain Forest. Biotropica 2014, 46, 404–414. [Google Scholar] [CrossRef]
- Gallagher, R.V.; Leishman, M.R.; Moles, A.T. Traits and ecological strategies of Australian tropical and temperate climbing plants. J. Biogeogr. 2011, 38, 828–839. [Google Scholar] [CrossRef]
- Derroire, G.; Powers, J.S.; Hulshof, C.M.; Cárdenas Varela, L.E.; Healey, J.R. Contrasting patterns of leaf trait variation among and within species during tropical dry forest succession in Costa Rica. Sci. Rep. 2018, 8, 285. [Google Scholar] [CrossRef]
- Hofhansl, F.; Chacón-Madrigal, E.; Ke, B.; Dieckmann, U.; Franklin, O. Mechanisms driving plant functional trait variation in a tropical forest. Ecol. Evol. 2021, 11, 3856–3870. [Google Scholar] [CrossRef]
- Gao, L.; Cui, X.; Hill, P.W.; Guo, Y. Uptake of various nitrogen forms by co-existing plant species in temperate and cold-temperate forests in northeast China. Appl. Soil Ecol. 2019, 147, 103398. [Google Scholar] [CrossRef]
- Reich, P.B.; Cornelissen, H. The world-wide ‘fast–slow’ plant economics spectrum: A traits manifesto. J. Ecol. 2014, 102, 275–301. [Google Scholar] [CrossRef]
- Costa, H.; Gurgel, E.; Amaral, D.; Vasconcelos, L.V.; Teodoro, G.S. CSR ecological strategies, functional traits and trade-offs of woody species in Amazon sandplain forest. Flora 2020, 273, 151710. [Google Scholar] [CrossRef]
- Lebrija-Trejos, E.; Pérez-García, E.A.; Meave, J.A.; Bongers, F.; Poorter, L. Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 2010, 91, 386–398. [Google Scholar] [CrossRef]
- Faccion, G.; Alves, A.M.; Espírito-Santo, M.; Silva, J.O.; Ferreira, K.F. Intra- and interspecific variations on plant functional traits along a successional gradient in a Brazilian tropical dry forest. Flora 2021, 279, 151815. [Google Scholar] [CrossRef]
- Lu, X.H.; Zang, R.G.; Huang, J.H. Relationships between Community Level Functional Traits of Trees and Seedlings during Secondary Succession in a Tropical Lowland Rainforest. PLoS ONE 2015, 10, e0132849. [Google Scholar] [CrossRef]
- Chaturvedi, R.K.; Raghubanshi, A.S.; Singh, J.S. Leaf attributes and tree growth in a tropical dry forest. J. Veg. Sci. 2011, 22, 917–931. [Google Scholar] [CrossRef]
- Fonseca, C.R.; Overton, J.M.; Collins, B.; Westoby, M. Shifts in trait-combinations along rainfall and phosphorus gradients. J. Ecol. 2000, 88, 964–977. [Google Scholar] [CrossRef]
- Loreau, M. Biodiversity and ecosystem functioning: Recent theoretical advances. Oikos 2000, 91, 3–17. [Google Scholar] [CrossRef]
- Loreau, M. Biodiversity and ecosystem functioning: A mechanistic model. Proc. Natl. Acad. Sci. USA 1998, 95, 5632–5636. [Google Scholar] [CrossRef]
- Diaz, S.; Cabido, M. Vive la difference: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 2001, 16, 646–655. [Google Scholar] [CrossRef]
Family | Species | Stages (Individual Numbers) | |||
---|---|---|---|---|---|
18-Year-Old | 30-Year-Old | 60-Year-Old | Old-Growth | ||
Rubiaceae | Lasianthus hainanensis Merr. | 70 | 38 | 383 | 497 |
Lauraceae | Machilus suaveolens S. Lee | 164 | 119 | 838 | 364 |
Myrsinaceae | Ardisia quinquegona Bl. | 249 | 912 | 1044 | 893 |
Fagaceae | Castanopsis hystrix J. D. | 890 | 429 | 110 | 16 |
Juglandaceae | Engelhardia roxburghiana Wall. | 1762 | 983 | 1148 | 65 |
Euphorbiaceae | Breynia rostrata Merr. | 123 | 402 | 73 | 17 |
Rubiaceae | Psychotria rubra (Lour.) Poir. | 1506 | 873 | 2529 | 235 |
Gnetaceae | Gnetum montanum Markgr. | 100 | 141 | 88 | 40 |
Melastomataceae | Melastoma sanguineum Sims. | 1919 | 2304 | 84 | 35 |
Elaeocarpaceae | Elaeocarpus sylvestris (Lour.) Poir. | 68 | 393 | 71 | 16 |
Ebenaceae | Diospyros cathayensis Steward. | 16 | 23 | 265 | 193 |
Dilleniaceae | Tetracera asiatica (Lour.) Hoogland | 74 | 102 | 247 | 24 |
Myrtaceae | Decaspermum gracilentum (Hance) Merr. et Perry | 37 | 138 | 678 | 17 |
Successional Stages Traits | Environmental Factors | Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
AK | AN | AP | TK | TP | CO | SWC | SOM | AICc | p< | |
18-year-old | ||||||||||
Component C | 1.19 | 1.00 | 677.73 | 0.00 | ||||||
Component S | 1.05 | −2.40 | −2.88 | 730.90 | 0.00 | |||||
Component R | 2.26 | 603.64 | 0.00 | |||||||
30-year-old | ||||||||||
Component C | 2.26 | −1.48 | 2.15 | 689.70 | 0.00 | |||||
Component S | −3.98 | −4.89 | 759.90 | 0.00 | ||||||
Component R | 1.96 | 3.27 | 680.90 | 0.00 | ||||||
60-year-old | ||||||||||
Component C | −1.95 | −1.80 | 1.95 | 652.70 | 0.00 | |||||
Component S | 2.12 | 756.10 | 0.00 | |||||||
Component R | 703.90 | 0.00 | ||||||||
Old-Growth | ||||||||||
Component C | −1.69 | 674.40 | 0.00 | |||||||
Component S | 2.55 | 778.80 | 0.00 | |||||||
Component R | 715.00 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Y.; Chen, C.; He, B.; Lu, X. CSR Ecological Strategies and Functional Traits of the Co-Existing Species along the Succession in the Tropical Lowland Rain Forest. Forests 2022, 13, 1272. https://doi.org/10.3390/f13081272
Wen Y, Chen C, He B, Lu X. CSR Ecological Strategies and Functional Traits of the Co-Existing Species along the Succession in the Tropical Lowland Rain Forest. Forests. 2022; 13(8):1272. https://doi.org/10.3390/f13081272
Chicago/Turabian StyleWen, Yabo, Chen Chen, Baohui He, and Xinghui Lu. 2022. "CSR Ecological Strategies and Functional Traits of the Co-Existing Species along the Succession in the Tropical Lowland Rain Forest" Forests 13, no. 8: 1272. https://doi.org/10.3390/f13081272
APA StyleWen, Y., Chen, C., He, B., & Lu, X. (2022). CSR Ecological Strategies and Functional Traits of the Co-Existing Species along the Succession in the Tropical Lowland Rain Forest. Forests, 13(8), 1272. https://doi.org/10.3390/f13081272