Growth Models for Even-Aged Stands of Hesperocyparis macrocarpa and Hesperocyparis lusitanica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Analysis Methods
2.2.1. Calculation of Stand Metrics
2.2.2. MTH/Age Model
2.2.3. DBH/Age Model
2.2.4. Incorporating Thinning Effects into the DBH Model
2.2.5. Mortality Model
2.2.6. Stand-Level Volume Function
2.2.7. Estimation of the 300 Index from a Plot Measurement
2.2.8. Model for Predicting MTH from Mean Height
2.2.9. Model Testing
3. Results
3.1. MTH/Age Model
3.2. DBH/Age Model
3.3. Thinning Coefficient
3.4. Mortality Function
3.5. Stand-Level Volume Function and Model for Predicting MTH from Mean Height
3.6. Comparison of H. lusitanica and H. macrocarpa Models
3.7. Model Testing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Korzukhin, M.D.; Ter-Mikaelian, M.T.; Wagner, R.G. Process versus empirical models: Which approach for forest ecosystem management? Can. J. For. Res. 1996, 26, 879–887. [Google Scholar] [CrossRef]
- Weiskittel, A.R.; Hann, D.W.; Kershaw, J.A., Jr.; Vanclay, J.K. Forest Growth and Yield Modeling; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Landsberg, J.J.; Johnsen, K.H.; Albaugh, T.J.; Allen, H.L.; McKeand, S.E. Applying 3-PG, a simple process-based model designed to produce practical results, to data from loblolly pine experiments. For. Sci. 2001, 47, 43–51. [Google Scholar]
- Larocque, G.R. Forest Models. In Sven Erik Jørgensen and Brian D. Fath (Editor-in-Chief), Ecological Models; Vol. [2] of Encyclopedia of Ecology; Elsevier: Oxford, UK, 2008; Volume 5, pp. 1663–1673. [Google Scholar]
- Godfrey, K. Compartmental Models and Their Application; Academic Press Inc.: London, UK; New York, NY, USA, 1983. [Google Scholar]
- Makela, A.; Landsberg, J.; Ek, A.R.; Burk, T.E.; Ter-Mikaelian, M.; Agren, G.I.; Oliver, C.D.; Puttonen, P. Process-based models for forest ecosystem management: Current state of the art and challenges for practical implementation. Tree Physiol. 2000, 20, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Bossel, H. Modeling and Simulation; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Goude, M.; Nilsson, U.; Mason, E.; Vico, G. Using hybrid modelling to predict basal area and evaluate effects of climate change on growth of Norway spruce and Scots pine stands. Scand. J. For. Res. 2022, 37, 59–73. [Google Scholar] [CrossRef]
- Baldwin, V.C., Jr.; Burkhart, H.E.; Westfall, J.A.; Peterson, K.D. Linking growth and yield and process models to estimate impact of environmental changes on growth of loblolly pine. For. Sci. 2001, 47, 77–82. [Google Scholar]
- Henning, J.G.; Burk, T.E. Improving growth and yield estimates with a process model derived growth index. Can. J. For. Res. 2004, 34, 1274–1282. [Google Scholar] [CrossRef]
- Mason, E.G.; Rose, R.W.; Rosner, L.S. Time vs light: A potentially useable light sum hybrid model to represent the juvenile growth of Douglas-fir subject to varying levels of competition. Can. J. For. Res. 2007, 37, 795–805. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, M.; Sands, P.J.; Candy, S.G. Hybrid growth model to predict height and volume growth in young Eucalyptus globulus plantations. For. Ecol. Manag. 1999, 120, 193–201. [Google Scholar] [CrossRef]
- Snowdon, P. Short-term predictions of growth of Pinus radiata with models incorporating indices of annual climatic variation. For. Ecol. Manag. 2001, 152, 1–11. [Google Scholar] [CrossRef]
- Dzierzon, H.; Mason, E.G. Towards a nationwide growth and yield model for radiata pine plantations in New Zealand. Can. J. For. Res. 2006, 36, 2533–2543. [Google Scholar] [CrossRef]
- Watt, M.S.; Kimberley, M.O.; Rapley, S.; Webster, R. Comparing volume productivity of redwood and radiata pine plantations in New Zealand. For. Ecol. Manag. 2021, 500, 119628. [Google Scholar] [CrossRef]
- Baur, F. Die Rothbuche in Bezug auf Ertrag, Zuwachs und Form: Unter Zugrundlegung der an der Kgl. Württemberg’schen Forstlichen Versuchsanstalt angestellten Untersuchungen bearbeitet; Parey: Elbe-Parey, Germany, 1881. [Google Scholar]
- Gyldenfeldt, W. En Tilvæxtoversigt for Bøg paa 2det Kjøbenhavn Distrikt. In Tidsskrift for Skovbrug; 1883; Volume 6, pp. 1–46. [Google Scholar]
- Eichhorn, F. Beziehungen zwischen bestandshöhe und bestandsmasse. Allg. Forst-Und Jagdztg. 1904, 80, 45–49. [Google Scholar]
- Assmann, E. Die Bedeutung des „erweiterten Eichhorn’schen Gesetzes“ für die Konstruktion von Fichten-Ertragstafeln. Forstwiss. Cent. 1955, 74, 321–330. [Google Scholar] [CrossRef]
- Henriksen, H.A. Sitkagranens Vækst og Sundhedstilstand i Danmark; Kandrup & Wunsch’s bogtr: Copenhagen, Denmark, 1958. [Google Scholar]
- Assmann, E. Höhenbonität und wirkliche Ertragsleistung. Forstwiss. Cent. 1959, 78, 1–20. [Google Scholar] [CrossRef]
- Kennel, R. Die Bestimmung des Ertragsniveaus bei der Buche. Forstwiss. Cent. 1973, 92, 226–234. [Google Scholar] [CrossRef]
- Schmidt, A. Ertragsniveau und Standort dargestellt am Beispiel der Kiefer. Forstwiss. Cent. 1973, 92, 268–274. [Google Scholar] [CrossRef]
- Hasenauer, H.; Burkhart, H.E.; Sterba, H. Variation in potential volume yield of loblolly pine plantations. For. Sci. 1994, 40, 162–176. [Google Scholar]
- Vanclay, J.K.; Skovsgaard, J.P.; Hansen, C.P. Assessing the quality of permanent sample plot databases for growth modelling in forest plantations. For. Ecol. Manag. 1995, 71, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Skovsgaard, J.P. Management of Sitka spruce without thinnings: An analysis of stand structure and volume production of unthinned stands of Sitka spruce (Picea sitchensis (Bong.) Carr.) in Denmark. In Forskningsserien; Forskningscentret for Skov og Landskab: Copenhagen, Denmark, 1997. [Google Scholar]
- Kimberley, M.O.; West, G.; Dean, M.; Knowles, L. Site Productivity: The 300 Index-A volume productivity index for radiata pine. N. Z. J. For. 2005, 50, 13–18. [Google Scholar]
- Kimberley, M.O.; Watt, M.S. A Novel Approach to Modelling Stand-Level Growth of an Even-Aged Forest Using a Volume Productivity Index with Application to New Zealand-Grown Coast Redwood. Forests 2021, 12, 1155. [Google Scholar] [CrossRef]
- Skovsgaard, J.P.; Vanclay, J.K. Forest site productivity: A review of the evolution of dendrometric concepts for even-aged stands. For. Int. J. For. Res. 2008, 81, 13–31. [Google Scholar] [CrossRef] [Green Version]
- Watt, M.S.; Palmer, D.J.; Leonardo, E.M.C.; Bombrun, M. Use of advanced modelling methods to estimate radiata pine productivity indices. For. Ecol. Manag. 2021, 479, 118557. [Google Scholar] [CrossRef]
- Watt, M.S.; Kimberley, M.O. Spatial comparisons of carbon sequestration for redwood and radiata pine within New Zealand. For. Ecol. Manag. 2022, 513, 120190. [Google Scholar] [CrossRef]
- Berrill, J. Preliminary growth and yield models for even-aged Cupressus lusitanica and C. macrocarpa in New Zealand. N. Z. J. For. Sci. 2004, 34, 272–292. [Google Scholar]
- NZFOA, 2020. 2019/2020 Facts and Figures. New Zealand Plantation Forest Industry. New Zealand Forest Owners Association, Wellington, New Zealand. Available online: https://www.nzfoa.org.nz/images/Facts_Figures_2019_20_Web_FA3-updated.pdf (accessed on 2 January 2023).
- Miller, J.T.; Knowles, F.B. Introduced Forest Trees in New Zealand: Recognition, Role, and Seed Source. 9. The Cypresses Cupressus spp., Chamaecyparis spp.; FRI Bulletin No. 124; New Zealand Forest Research Institute: Rotorua, New Zealand, 1996; 33p. [Google Scholar]
- Haslett, A.N. Properties and Utilisation of Exotic Speciality Timbers Grown in New Zealand Part III: Cypresses Chamaecyparts lawsontana (A. Murr.) Pari., x Cupressocyparts leylandii (Jacks. et Dall.) Dall., Cupressus lusitantca Mill., Cupressus macrocarpa Hartw. FRI Bulletin No. 119; New Zealand Forest Service: Whangarei, New Zealand, 1986; 12p. [Google Scholar]
- Van der Werff, H.S. Cypress canker in New Zealand plantations. N. Z. J. For. Sci. 1988, 18, 101–108. [Google Scholar]
- Danti, R.; Della Rocca, G. Epidemiological history of Cypress Canker Disease in source and invasion sites. Forests 2017, 8, 121. [Google Scholar] [CrossRef] [Green Version]
- Ismael, A.; Klápště, J.; Stovold, G.T.; Fleet, K.; Dungey, H. Genetic Variation for Economically Important Traits in Cupressus lusitanica in New Zealand. Front. Plant Sci. 2021, 12, 651729. [Google Scholar] [CrossRef] [PubMed]
- Hood, I.A.; Gardener, J.F.; Kimberley, M.O.; Gatenby, S.J.; Cox, J.C. A survey of cypress canker disease. Ne. Z. Tree Grow. 2001, 22, 38–41. [Google Scholar]
- Bulman, L.; Hood, I. Risk Analysis for Cypress Species Relevant to Forestry to Inform Biosecurity Response; Scion: Rotorua, New Zealand, 2018. [Google Scholar]
- Hughell, D.; Chaves, E. Preliminary Growth and Yield Model for Cupressus lusitanica in Central America; Silvoenergia No.38; Proyecto Cultivo de Árboles de Uso Múltiple: Turrialba, Costa Rica, 1990; 4p. [Google Scholar]
- Jansen, J.J.; Groenendijk, J.J. A Growth and Yield Model for Mexican cypress (Cupressus lusitanica Miller) for the Central Valley of Costa Rica; Hinkeloord-Reports No. 11; Department of Forestry, Agricultural University Wageningen: Wageningen, The Netherlands, 1994; 42p. [Google Scholar]
- Pukala, T.; Pohjonen, V. Yield of Cupressus lusitanica in Ethiopia. Silva-Fennica 1993, 27, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Ngugi, M.R.; Mason, E.G.; Whyte, A.G.D. New growth models for Cupressus lusitanica and Pinus patula in Kenya. J. Trop. For. Sci. 2000, 12, 524–541. [Google Scholar]
- Teshome, T.; Petty, J.A. Site index equation for Cupressus lusitanica stands in Munessaforest, Ethiopia. For. Ecol. Manag. 2000, 126, 339–347. [Google Scholar] [CrossRef]
- Mamoa, N.; Sterbab, H. Site index functions for Cupressus lusitanica at Munesa Shashemene, Ethiopia. For. Ecol. Manag. 2006, 237, 429–435. [Google Scholar] [CrossRef]
- Dobner, M. Growth and yield of even-aged Cupressus lusitanica plantations in southern Brazil. Floresta 2021, 51, 980–989. [Google Scholar] [CrossRef]
- Burkhart, H.E.; Tennent, R.B. Site Index equations for radiata pine in New Zealand. N. Z. J. For. Sci. 1977, 7, 408–416. [Google Scholar]
- R Development Core Team. R: A language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2011. [Google Scholar]
- Richards, F.J. A flexible growth function for empirical use. J. Exp. Bot. 1959, 10, 290–300. [Google Scholar] [CrossRef]
- Hossfeld, J.W. Mathematik für Forstmänner, Ökonomen und Cameralisten, Hennings. Gotha 1822, 4, 310. [Google Scholar]
- Korf, V. Příspevěk k matematické formulaci vzrůstového zákona lesních porostů [Contribution to mathematical definition of the law of stand volume growth]. Lesn. Práce 1939, 18, 339–379. [Google Scholar]
- Cieszewski, C.J.; Bailey, R.L. Generalized algebraic difference approach: Theory based derivation of dynamic site equations with polymorphism and variable asymptotes. For. Sci. 2000, 46, 116–126. [Google Scholar]
- Reineke, L.H. Perfecting a stand-density index for even-aged forests. J. Agric. Res. 1933, 46, 627–638. [Google Scholar]
- Kimberley, M.O.; Beets, P.N. National volume function for estimating total stem volume of Pinus radiata stands in New Zealand. N. Z. J. For. Sci. 2007, 37, 355–371. [Google Scholar]
- Clutter, J. Compatible growth and yield models for loblolly pine. For. Sci. 1963, 9, 354–371. [Google Scholar]
- Barrio, M.; Castedo, F.; Diéguez-Aranda, U.; Álvarez González, J.G.; Parresol, B.R.; Rodríguez, R. Development of a basal area growth system for maritime pine in northwestern Spain using the generalized algebraic difference approach. Can. J. For. Res. 2006, 36, 1461–1474. [Google Scholar]
- Castedo-Doradoa, F.; Di´eguez-Arandab, U.; Barrio-Antac, M. Modelling stand basal area growth for radiata pine plantations in Northwestern Spain using the GADA. Ann. For. Sci. 2007, 64, 609–619. [Google Scholar] [CrossRef] [Green Version]
- De Souza, H.J.; Miguel, E.P.; Nascimento, R.G.M.; Cabacinha, C.D.; Rezende, A.V.; dos Santos, M.L. Thinning-response modifier term in growth models: An application on clonal Tectona grandis Linn, F. stands at the amazonian region. For. Ecol. Manag. 2022, 511, 120109. [Google Scholar] [CrossRef]
- Bailey, R.L.; Ware, K.D. Compatible basal-area growth and yield model for thinned and unthinned stands. Can. J. For. Res. 1983, 13, 563–571. [Google Scholar] [CrossRef]
- Woollons, R.C.; Haywood, W.J. Revision of a growth and yield model for radiata pine in New Zealand. For. Ecol. Manag. 1985, 11, 191–202. [Google Scholar] [CrossRef]
- Watt, M.S.; Palmer, D.J.; Kimberley, M.O.; Höck, B.K.; Payn, T.W.; Lowe, D.J. Development of models to predict Pinus radiata productivity throughout New Zealand. Can. J. For. Res. 2010, 40, 488–499. [Google Scholar] [CrossRef]
- Watt, M.S.; Kimberly, M.O.; Rapley, S.; Webster, R. A spatial comparison of redwood and radiata pine productivity throughout New Zealand. N. Z. J. For. 2021, 66, 33–41. [Google Scholar]
- Watt, M.S.; Kimberly, M.O. Comparing regional variation in carbon sequestration for radiata pine and redwood throughout New Zealand. N. Ze. J. For. 2022, 67, 3–12. [Google Scholar]
- Palmer, D.J.; Hock, B.K.; Kimberley, M.O.; Watt, M.S.; Lowe, D.J.; Payn, T.W. Comparison of spatial prediction techniques for developing Pinus radiata productivity surfaces across New Zealand. For. Ecol. Manag. 2009, 258, 2046–2055. [Google Scholar] [CrossRef]
- Nicholas, I. Best Practice with Farm Forestry Timber Species. No. 1: Cypresses. NZFFA Electronic Handbook Series. 2007. Available online: https://www.nzffa.org.nz/system/assets/2079/Cypresses_Handbook.pdf (accessed on 2 January 2023).
- Gea, L.D.; Low, C.B. Genetic parameters for growth, form, and canker resistance of Cupressus macrocarpa in New Zealand. N. Z. J. For. Sci. 1998, 27, 245–254. [Google Scholar]
Variable | Hesperocyparis macrocarpa | Hesperocyparis lusitanica | ||||
---|---|---|---|---|---|---|
Mean | Std. dev. | Range | Mean | Std. dev. | Range | |
Age (t, years) | 18.1 | 12.9 | 2–77 | 13.8 | 7.7 | 2–61 |
Mean top height (MTH, m) | 14.8 | 7.3 | 1.6–41.2 | 14.4 | 6.0 | 2.3–35.9 |
Basal area (BA, m2 ha−1) | 32.3 | 24.0 | 0.0–178.1 | 27.5 | 16.9 | 0.0–117.3 |
Stem volume (V, m3 ha−1) | 229 | 269 | 0–2435 | 178 | 165 | 0–1282 |
Quadratic mean breast height diameter (Dq, cm) | 24.6 | 11.9 | 1.0–74.3 | 24.3 | 10.3 | 0.7–57.6 |
Stand density (N, stems ha−1) | 764 | 485 | 32–4950 | 650 | 371 | 104–2386 |
Base model | Form | Equation |
---|---|---|
Richards | Base form | |
Anamorphic | ||
Common-asymptote | ||
Hossfeld IV | Base form | |
Anamorphic | ||
Common-asymptote | ||
Korf | Base form | |
Anamorphic | ||
Common-asymptote | ||
Polymorphic GADA | where, |
Model | Form | AIC |
---|---|---|
Richards | Anamorphic | 8558.3 |
Common-asymptote | 8338.8 | |
Common-asymptote, separate parameters for each species | 8094.9 | |
Hossfeld IV | Anamorphic | 10,504.9 |
Common-asymptote | 8314.0 | |
Common-asymptote, separate parameters for each species | 8095.0 | |
Korf | Anamorphic | 8506.4 |
Common-asymptote GADA | 8344.9 8385.6 | |
Common-asymptote, separate parameters for each species | 8138.6 |
Parameter | H. lusitanica | H. macrocarpa | |||||||
---|---|---|---|---|---|---|---|---|---|
Estimate | Std. Error | t-Value | p-Value | Estimate | Std. Error | t-Value | p-Value | ||
Fixed effects | µSI | 24.52 | 0.56 | 43.8 | <0.0001 | 22.19 | 0.25 | 58.8 | <0.0001 |
a | 38.79 | 0.59 | 65.8 | <0.0001 | 47.37 | 1.53 | 31.0 | <0.0001 | |
c | 1.099 | 0.132 | 8.33 | <0.0001 | 1.062 | 0.165 | 6.44 | <0.0001 | |
Random effects (σ) | SI, Site | 4.66 | 1.05 | ||||||
SI, Plot (Site) | 1.16 | 1.48 | |||||||
Residual | 0.611 | 0.787 |
Model | Form | AIC |
---|---|---|
Richards | Anamorphic | 9925.4 |
Common-asymptote | 10,137.6 | |
Hossfeld IV | Anamorphic | 10,482.2 |
Common-asymptote | 10,173.6 | |
Korf | Anamorphic | 9771.3 |
Common-asymptote | 10,137.2 | |
GADA | 9799.4 | |
Anamorphic with stand density | 8930.3 | |
Common-asymptote with stand density | 8603.3 | |
GADA with stand density | 8727.7 | |
Anamorphic with stand density, separate parameters for each species | 8797.8 | |
Common-asymptote with stand density, separate parameters for each species | 8598.2 | |
GADA with stand density, separate parameters for each species | 8649.5 |
Parameter | H. lusitanica | H. macrocarpa | |||||||
---|---|---|---|---|---|---|---|---|---|
Estimate | Std. Error | t-Value | p-Value | Estimate | Std. Error | t-Value | p-Value | ||
Fixed effects | 42.64 | 0.94 | 45.4 | <0.0001 | 41.32 | 0.60 | 68.9 | <0.0001 | |
a | 83.28 | 2.42 | 34.4 | <0.0001 | 83.14 | 2.94 | 28.3 | <0.0001 | |
c | 0.6974 | 0.0211 | 33.1 | <0.0001 | 0.7100 | 0.0264 | 26.9 | <0.0001 | |
d | 0.3659 | 0.0124 | 29.5 | <0.0001 | 0.4213 | 0.0083 | 50.8 | <0.0001 | |
f | 0.4624 | 0.1431 | 3.23 | 0.0017 | 0.2645 | 0.0494 | 5.35 | <0.0001 | |
g1 | 32.02 | 5.65 | 5.67 | <0.0001 | 20.68 | 4.72 | 4.38 | <0.0001 | |
g2 | −2.39 | 0.78 | 3.06 | 0.0028 | −0.62 | 0.65 | 0.95 | 0.34 | |
Random effects (σ) | D30, Site | 7.52 | 5.79 | ||||||
D30, Plot (Site) | 1.57 | 2.19 | |||||||
Residual | 0.94 | 1.01 |
Location | Age (years) | H. lusitanica | H. macrocarpa | ||||||
---|---|---|---|---|---|---|---|---|---|
Estimate | Std. Error | t-Value | p-Value | Estimate | Std. Error | t-Value | p-Value | ||
North Island | <10 | 0.0138 | 0.0013 | 10.6 | <0.0001 | 0.0476 | 0.0078 | 6.1 | <0.0001 |
≥10 | 0.0117 | 0.0007 | 16.7 | <0.0001 | 0.0177 | 0.0015 | 11.8 | <0.0001 | |
South Island | <10 | 0.0168 | 0.0046 | 3.65 | 0.0004 | 0.0088 | 0.0027 | 3.26 | 0.0015 |
≥10 | 0.0084 | 0.0023 | 3.65 | 0.0004 | 0.0052 | 0.0005 | 10.4 | <0.0001 |
Species | Percentile of SDI Distribution | ||
90th | 95th | 99th | |
H. lusitanica H. macrocarpa | 367 | 425 | 530 |
448 | 636 | 859 | |
Redwood | 763 | 937 | 1214 |
Douglas-fir | 538 | 616 | 761 |
Radiata pine | 332 | 388 | 495 |
Location | Age (years) | H. lusitanica | H. macrocarpa | ||||||
---|---|---|---|---|---|---|---|---|---|
Estimate | Std. Error | t-Value | p-Value | Estimate | Std. Error | t-Value | p-Value | ||
North Island | <10 | 0.0115 | 0.0013 | 8.85 | <0.0001 | 0.0453 | 0.0078 | 5.81 | <0.0001 |
≥10 | 0.0049 | 0.0007 | 7.00 | <0.0001 | 0.0103 | 0.0014 | 7.36 | <0.0001 | |
South Island | <10 | 0.0165 | 0.0048 | 3.44 | 0.0009 | 0.0077 | 0.0028 | 2.75 | 0.0071 |
≥10 | 0.0054 | 0.0022 | 2.45 | 0.016 | 0.0000 | 0.0000 | - | - |
Parameter | Estimate | Std. Error | t-Value | p-Value |
---|---|---|---|---|
u | 0.2944 | 0.0044 | 66.2 | <0.0001 |
v | 0.3973 | 0.0073 | 54.2 | <0.0001 |
w | 0.5866 | 0.0267 | 22.0 | <0.0001 |
Parameter | Estimate | Std. Error | t-Value | P-Value |
---|---|---|---|---|
r | 0.1921 | 0.0067 | 28.6 | <0.0001 |
s | −0.00114 | 0.00007 | −17.1 | <0.0001 |
Factor | Level | No. Obs. | Volume PAI (m3 ha−1 year−1) | ||
---|---|---|---|---|---|
Actual | Predicted | Difference | |||
Overall | 1406 | 11.1 | 10.8 | −0.3 | |
Species | H. lusitanica | 770 | 11.1 | 11.4 | 0.4 |
H. macrocarpa | 636 | 11.1 | 10.1 | −1.0 ** | |
Age (years) | <20 | 980 | 11.3 | 11.0 | −0.3 |
20–40 | 352 | 10.2 | 10.8 | 0.6 * | |
>40 | 74 | 13.3 | 8.9 | −4.4 ** | |
Stand density (stems ha−1) | <500 | 576 | 10.8 | 10.0 | −0.7 ** |
500–800 | 350 | 10.6 | 11.3 | 0.8 ** | |
>800 | 480 | 11.7 | 11.1 | −0.6 * | |
SI (m) | <22 | 367 | 8.8 | 8.5 | −0.3 |
22–28 | 662 | 11.1 | 10.6 | −0.5 | |
>28 | 320 | 13.7 | 14.0 | 0.2 | |
300 Index (m3 ha−1 year−1) | <10 | 350 | 8.6 | 8.8 | 0.2 |
10–20 | 741 | 11.4 | 11.2 | −0.2 | |
>20 | 258 | 13.6 | 12.6 | −1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimberley, M.O.; Watt, M.S. Growth Models for Even-Aged Stands of Hesperocyparis macrocarpa and Hesperocyparis lusitanica. Forests 2023, 14, 105. https://doi.org/10.3390/f14010105
Kimberley MO, Watt MS. Growth Models for Even-Aged Stands of Hesperocyparis macrocarpa and Hesperocyparis lusitanica. Forests. 2023; 14(1):105. https://doi.org/10.3390/f14010105
Chicago/Turabian StyleKimberley, Mark Owen, and Michael Stuart Watt. 2023. "Growth Models for Even-Aged Stands of Hesperocyparis macrocarpa and Hesperocyparis lusitanica" Forests 14, no. 1: 105. https://doi.org/10.3390/f14010105
APA StyleKimberley, M. O., & Watt, M. S. (2023). Growth Models for Even-Aged Stands of Hesperocyparis macrocarpa and Hesperocyparis lusitanica. Forests, 14(1), 105. https://doi.org/10.3390/f14010105