Economic and Environmental Analysis of Woody Biomass Power Generation Using Forest Residues and Demolition Debris in Japan without Assuming Carbon Neutrality
Abstract
:1. Introduction
1.1. Background
1.2. Current Status of Woody Biomass Power Generation in Japan
1.3. Previous Research
2. Methods
2.1. Input–Output Analysis
2.2. Environmental Effects
3. Materials
3.1. Gifu Prefecture
3.2. Gifu Biomass Power Co., Ltd.
4. Results
4.1. Economic Impact of GBP
4.2. Environmental Effects
5. Discussion
5.1. Verification of Economic and Environmental Impacts of GBP
5.2. Implications for the Promotion of Woody Biomass Generation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NewClimate Institute; Oxford Net Zero; Energy & Climate Intelligence Unit; Data-Driven EnviroLab. Net Zero Stocktake 2022: Assessing the Status and Trends of Net Zero Target Setting. Available online: https://zerotracker.net/analysis/net-zero-stocktake-2022 (accessed on 4 November 2022).
- Camia, A.; Giuntoli, J.; Jonsson, K.; Robert, N.; Cazzaniga, N.; Jasinevičius, G.; Valerio, A.; Grassi, G.; Barredo Cano, J.I.; Mubareka, S. The Use of Woody Biomass for Energy Production in the EU; EUR 30548 EN; Publications Office of the European Union: Luxembourg, 2020; p. 182. [Google Scholar] [CrossRef]
- García-Alvarez, M.T.; Mariz-Pérez, R.M. Analysis of the success of feed-in tariff for renewable energy promotion mechanism in the EU: Lessons from Germany and Spain. Procedia-Soc. Behav. Sci. 2012, 65, 52–57. [Google Scholar] [CrossRef] [Green Version]
- ERIA Study team. Biomass power generation and wood pellets in Japan. In Forecast of Biomass Demand Potential in Indonesia: Seeking a Business Model for Wood Pellets; ERIA Research Project Report FY2022; ERIA, Ed.; Economic Research Institute for ASEAN and East Asia: Jakarta, Indonesia, 2022; pp. 29–45. [Google Scholar]
- Levinson, R. The Growing Importance of PKS in the Japanese Biomass Market. Available online: https://biomassmagazine.com/articles/16690/the-growing-importance-of-pks-in-the-japanese-biomass-market (accessed on 4 November 2022).
- Crawford, R.H. Life cycle energy and greenhouse emissions analysis of wind turbines and the effect of size on energy yield. Renew. Sust. Energ. Rev. 2009, 13, 2653–2660. [Google Scholar] [CrossRef]
- Guo, J.; Zou, L.-L.; Wei, Y.-M. Impact of inter-sectoral trade on national and global CO2 emissions: An empirical analysis of China and US. Energy Policy 2010, 38, 1389–1397. [Google Scholar] [CrossRef]
- Lindner, S.; Legault, J.; Guan, D. Disaggregating the electricity sector of China’s input–output table for improved environmental life-cycle assessment. Econ. Syst Res. 2013, 25, 300–320. [Google Scholar] [CrossRef]
- Nakano, S.; Arai, S.; Washizu, A. Economic impacts of Japan’s renewable energy sector and the feed-in tariff system: Using an input–output table to analyze a next-generation energy system. Environ. Econ. Policy. Stud. 2017, 19, 555–580. [Google Scholar] [CrossRef] [Green Version]
- Coffman, M.; Bernstein, P.; Wee, S.; Schafer, C. Economic and GHG impacts of natural gas for Hawaii. Environ. Econ. Policy Stud. 2017, 19, 519–536. [Google Scholar] [CrossRef]
- Yamazaki, M.; Takeda, S. A computable general equilibrium assessment of Japan’s nuclear energy policy and implications for renewable energy. Environ. Econ. Policy. Stud. 2017, 19, 537–554. [Google Scholar] [CrossRef]
- Cristóbal, S.; Ramón, J. Effects on the economy of a decrease in forest resources: An international comparison. For. Policy Econ. 2007, 9, 647–652. [Google Scholar] [CrossRef]
- Nakamura, R.; Ishikawa, Y.; Matsumoto, A. Endogenous correction of regional economic disparities by making use of regional environmental resources (wooden biomass) extension of inter-regional input-output model. Input-Output Anal. 2012, 20, 228–242. [Google Scholar] [CrossRef]
- Hendricks, A.M.; Wagner, J.E.; Volk, T.A.; Newman, D.H. Regional economic impacts of biomass district heating in rural New York. Biomass Bioenergy 2016, 88, 1–9. [Google Scholar] [CrossRef]
- De, S.; Assadi, M. Impact of cofiring biomass with coal in power plants–A techno-economic assessment. Biomass Bioenergy 2009, 33, 283–293. [Google Scholar] [CrossRef]
- Banerjee, S.; Bit, J. Economic growth versus climate balancing: Some reflections on the sustainable management of forest resource in India. Decision 2015, 42, 127–145. [Google Scholar] [CrossRef]
- Madlener, R.; Koller, M. Economic and CO2 mitigation impacts of promoting biomass heating systems: An input–output study for Vorarlberg, Austria. Energy Policy 2007, 35, 6021–6035. [Google Scholar] [CrossRef]
- Haddad, S.; Britz, W.; Börner, J. Economic impacts and land use change from increasing demand for forest products in the European bioeconomy: A general equilibrium based sensitivity analysis. Forests 2019, 10, 52. [Google Scholar] [CrossRef] [Green Version]
- National Institute for Environmental Studies. Embodied Energy and Emission Intensity Data for Japan Using Input-Output Tables. Available online: https://www.cger.nies.go.jp/publications/report/d031/eng/index_e.htm (accessed on 4 November 2022).
- Washizu, A.; Nakano, S.; Asakura, K.; Takase, K.; Furukawa, T.; Arai, S.; Hayashi, K.; Okuwada, K. Economic and Environmental Impact Analysis for Construction of Renewable Energy Power Plants by Extended Input-Output Table; National Institute of Science and Technology Policy: Tokyo, Japan, 2013; p. 56.
- Moriizumi, Y.; Hondo, H.; Nakano, S. Development and application of renewable energy-focused input-output table. J. Jpn. Inst. Energy 2015, 94, 1397–1413. [Google Scholar] [CrossRef] [Green Version]
- Nishiguchi, S.; Tabata, T. Assessment of social, economic, and environmental aspects of woody biomass energy utilization: Direct burning and wood pellets. Renew. Sust. Energ. Rev. 2016, 57, 1279–1286. [Google Scholar] [CrossRef]
- Hayashi, T.; Sawauchi, D.; Kunii, D. Forest maintenance practices and wood energy alternatives to increase uses of forest resources in a local initiative in Nishiwaga, Iwate, Japan. Sustainability 2017, 9, 1949. [Google Scholar] [CrossRef] [Green Version]
- Nakano, S.; Murano, A.; Washizu, A. Economic and environmental effects of utilizing unused woody biomass. J. Jpn. Inst. Energy 2015, 94, 522–531. [Google Scholar] [CrossRef] [Green Version]
- Tabata, T.; Okuda, T. Life cycle assessment of woody biomass energy utilization: Case study in Gifu Prefecture, Japan. Energy 2012, 45, 944–951. [Google Scholar] [CrossRef]
- Matsuoka, Y.; Shirasawa, H.; Hayashi, U.; Aruga, K. Annual availability of forest biomass resources for woody biomass power generation plants from subcompartments and aggregated forests in Tohoku Region of Japan. Forests 2021, 12, 71. [Google Scholar] [CrossRef]
- Leontief, W.W. Quantitative input and output relations in the economic systems of the United States. Rev. Econ. Stat. 1936, 18, 105–125. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.E.; Blair, P.D. Input-Output Analysis: Foundations and Extensions, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Penman, J.; Gytarsky, M.; Hiraishi, T.; Krug, T.; Kruger, D.; Pipatti, R.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. Good Practice Guidance for Land Use, Land-use Change and Forestry; Institute for Global Environmental Strategies (IGES) for IPCC: Kanagawa, Japan, 2003. [Google Scholar]
- Intergovernmental Panel on Climate Change. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Vol. 4. Agriculture, Forestry and Other Land Use. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (accessed on 4 November 2022).
- Rabl, A.; Benoist, A.; Dron, D.; Peuportier, B.; Spadaro, J.V.; Zoughaib, A. How to account for CO2 emissions from biomass in an LCA. Int. J. Life Cycle Assess 2007, 12, 281. [Google Scholar] [CrossRef]
- Johnson, E. Goodbye to carbon neutral: Getting biomass footprints right. Environ. Impact Assess. Rev. 2009, 29, 165–168. [Google Scholar] [CrossRef]
- Bright, R.M.; Strømman, A.H. Fuel-mix, fuel efficiency, and transport demand affect prospects for biofuels in Northern Europe. Environ. Sci. Technol. 2010, 44, 2261–2269. [Google Scholar] [CrossRef]
- Mäkipää, R.; Linkosalo, T.; Komarov, A.; Mäkelä, A. Mitigation of climate change with biomass harvesting in Norway spruce stands: Are harvesting practices carbon neutral? Can. J. For. Res. 2015, 45, 217–225. [Google Scholar] [CrossRef]
- Helin, T.; Sokka, L.; Soimakallio, S.; Pingoud, K.; Pajula, T. Approaches for inclusion of forest carbon cycle in life cycle assessment—A review. GCB Bioenergy 2013, 5, 475–486. [Google Scholar] [CrossRef]
- Hashimoto, S.; Moriguchi, Y. Data Book: Material and Carbon Flow of Harvested Wood in Japan; CGER-D034-2004; Center for Global Environmental Research: Tsukuba, Japan, 2004; p. 119.
- Gifu Prefecture. Total Greenhouse Gas Emissions in Gifu Prefecture. Available online: https://www.pref.gifu.lg.jp/page/3643.html (accessed on 4 November 2022).
- Gifu Prefecture. Gifu Prefecture Forest and Forestry Statistics 2017. Available online: https://www.pref.gifu.lg.jp/uploaded/attachment/4934.pdf (accessed on 4 November 2022).
Wood Chips | Purchases (t) | Average Purchase Price Excluding Transfer Fee (JPY/t) | Fuel Purchase Amounts from Gifu (Million JPY) | Fuel Purchase Amounts from Outside of Gifu (Million JPY) |
---|---|---|---|---|
Materials from forestry | 51,600 | 11,300 | 583.08 | 0.00 |
to BET | 10,320 | - | 116.62 | 0.00 |
to other chipping companies within Gifu | 41,280 | - | 466.46 | 0.00 |
Materials from construction | 34,400 | 6000 | 165.12 | 41.28 |
to other chipping companies within Gifu | 27,520 | - | 165.12 | 0 |
to other chipping companies outside Gifu | 6880 | - | 0 | 41.28 |
Amount | 86,000 | - | 748.20 | 41.28 |
Sector | Original | BET | Other Chipping Company | |
---|---|---|---|---|
Unused Wood | Unused Wood | General Wood | ||
Forestry | 0.020256 | 0.128984 | 0.128984 | 0 |
Pulp, paper, and wood products | 1.100155 | 1 | 1 | 1 |
Construction | 0.008573 | 0 | 0 | 0.128984 |
Place | Phase | CO2 Emissions |
---|---|---|
Within | Construction | 1230.37 |
Operations | −14,740.61 | |
—from GBP 1 | 1874.39 | |
—from CEP 2 | −16,614.99 | |
Outside | Construction | 320.69 |
Operations | −487.29 | |
—from GBP 1 | 315.15 | |
—from CEP 2 | −802.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujino, M.; Hashimoto, M. Economic and Environmental Analysis of Woody Biomass Power Generation Using Forest Residues and Demolition Debris in Japan without Assuming Carbon Neutrality. Forests 2023, 14, 148. https://doi.org/10.3390/f14010148
Fujino M, Hashimoto M. Economic and Environmental Analysis of Woody Biomass Power Generation Using Forest Residues and Demolition Debris in Japan without Assuming Carbon Neutrality. Forests. 2023; 14(1):148. https://doi.org/10.3390/f14010148
Chicago/Turabian StyleFujino, Masaya, and Masaya Hashimoto. 2023. "Economic and Environmental Analysis of Woody Biomass Power Generation Using Forest Residues and Demolition Debris in Japan without Assuming Carbon Neutrality" Forests 14, no. 1: 148. https://doi.org/10.3390/f14010148
APA StyleFujino, M., & Hashimoto, M. (2023). Economic and Environmental Analysis of Woody Biomass Power Generation Using Forest Residues and Demolition Debris in Japan without Assuming Carbon Neutrality. Forests, 14(1), 148. https://doi.org/10.3390/f14010148