Assessment of Small-Extent Forest Fires in Semi-Arid Environment in Jordan Using Sentinel-2 and Landsat Sensors Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Landsat and Sentinel-2 Sensors Data (Acquisition and Pre-Processing)
2.3. Ground Reference Data and Accuracy Assessment of Remote Sensing Data
3. Results and Discussion
3.1. Forest Fire Burned Area (Fire Perimeter Delimitation)
3.2. Assessment of Burn Severity Levels
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Dhief, F.; Sabri, N.; Fouad, S.; Abdul Latiff, N.; Albader, M. A review of forest fire surveillance technologies: Mobile ad-hoc network routing protocols perspective. J. King Saud Univ. Comput. Inf. Sci. 2019, 31, 135–146. [Google Scholar] [CrossRef]
- Bielski, C.; O’Brien, V.; Whitmore, C.; Ylinen, K.; Juga, I.; Nurmi, P.; Kilpinen, J.; Porras, I.; Sole, J.; Gamez, P.; et al. Coupling early warning services, crowdsourcing, and modelling for improved decision support and wildfire emergency management. In Proceedings of the IEEE International Conference on Big Data (BIGDATA), Osaka, Japan, 11–14 December 2017; pp. 3705–3712. [Google Scholar] [CrossRef] [Green Version]
- De Groot, W.J.; Goldammer, J.G.; Keenan, T.; Brady, M.; Lynham, T.J.; Justice, C.O.; Csiszar, I.A.; O’Loughlin, K. Developing a global early warning system for wildland fire. In Proceedings of the 5th International Conference on Forest Fire Research, Figueira da Foz, Portugal, Amsterdam, The Netherlands, 27–30 November 2006. [Google Scholar]
- Majid, S.; Alenezi, F.; Masood, S.; Ahmad, M.; Gündüz, E.; Polat, K. Attention based CNN model for fire detection and localization in real-world images. Expert Syst. Appl. 2022, 189, 116114. [Google Scholar] [CrossRef]
- Huebner, K.; Lindo, Z.; Lechowicz, M. Post-fire succession of collembolan communities in a northern hardwood forest. Eur. J. Soil Biol. 2012, 48, 59–65. [Google Scholar] [CrossRef]
- Qarallah, B.; Al-Ajlouni, M.; Al-Awasi, A.; Alkarmy, M.; Al-Qudah, E.; Bani Naser, A.; Al-Assaf, A.; Gevaert, C.; Al Asmar, Y.; Belgiu, M.; et al. Evaluating post-fire recovery of Latroon dry forest using Landsat ETM+, unmanned aerial vehicle and field survey data. J. Arid Environ. 2021, 193, 104587. [Google Scholar] [CrossRef]
- Zeng, H.; Wu, B.; Zhang, M.; Zhang, M.; Elnashar, A.; Zhu, L.; Zhu, W.; Wu, F.; Yan, N.; Liu, W. Dryland ecosystem dynamic change and its drivers in Mediterranean region. Curr. Opin. Environ. Sustain. 2021, 48, 59–67. [Google Scholar] [CrossRef]
- Middleton, N.; Sternberg, T. Climate hazards in drylands: A review. Earth Sci. Rev. 2013, 126, 48–57. [Google Scholar] [CrossRef]
- De Groot, W.J.; Flannigan, M.D.B. Climate change and early warning systems for wildland fire. In Reducing Disaster: Early Warning Systems For Climate Change, 2014th ed.; Singh, A., Zommers, Z., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 7, pp. 127–151. [Google Scholar] [CrossRef]
- Nasiri, V.; Sadeghi, S.; Bagherabadi, R.; Moradi, F.; Deljouei, A.; Borz, S. Modeling wildfire risk in western Iran based on the integration of AHP and GIS. Environ. Monit. Assess. 2022, 194, 644. [Google Scholar] [CrossRef]
- Llorens, R.; Sobrino, J.; Ferńandez, C.; Ferńandez-Alonso, J.; Vega, J. A methodology to estimate forest fires burned areas and burn severity degrees using Sentinel-2 data. Application to the October 2017 fires in the Iberian Peninsula. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102243. [Google Scholar] [CrossRef]
- Singh, R.; Khand, K.; Kagone, S.; Schauer, M.; Senay, G.; Wu, Z. A novel approach for next generation water-use mapping using Landsat and Sentinel-2 satellite data. Hydrol. Sci. J. 2020, 65, 2508–2519. [Google Scholar] [CrossRef]
- Cho, A.; Park, S.; Kim, D.; Kim, J.; Li, C.; Song, J. Burned area mapping using Unitemporal Planetscope imagery with a deep learning based approach. IEEE J. Sel. Top. Appl. Earth Obs. Remte Sens. 2022, 16, 242–253. [Google Scholar] [CrossRef]
- Pickell, P.D.; Coops, N.C.; Ferster, C.J.; Bater, C.; Blouin, K.; Flannigan, M.; Zang, J. An early warning system to forecast the close of the spring burning window from satellite-observed greenness. Sci. Rep. 2017, 7, 14190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahin, Y. Animals as mobile biological sensors for forest fire detection. Sensors 2007, 7, 3084–3099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawalhah, M.; Othman, Y.; Abu Yahya, A.; Al-Kofahi, S.; Al-Lataifeh, F.; Cibils, A. Evaluating the influence of COVID-19 pandemic lockdown on Jordan Badia rangelands. Arid. Land Res. Manag. 2021, 35, 483–495. [Google Scholar] [CrossRef]
- Tadros, M.; Al-Assaf, A.; Othman, Y.; Makhamreh, Z.; Taifour, H. Evaluating the effect of Prosopis juliflora, an alien invasive species, on land cover change using remote sensing approach. Sustainability 2020, 12, 5887. [Google Scholar] [CrossRef]
- Sivakumar, M.V.K.; Roy, P.S.; Harmsen, K.; Saha, S.K. Satellite remote sensing and GIS applications in agricultural meteorology. In Proceedings of the Training Workshop, Dehra Dun, India, 7–11 July 2003; World Meteorological Organisation: Geneva, Switzerland, 2004. Available online: https://library.wmo.int/doc_num.php?explnum_id=5030 (accessed on 12 December 2022).
- Kross, K.; McNairn, H.; Lapen, D.; Sunohara, M.; Champagne, C. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 235–248. [Google Scholar] [CrossRef] [Green Version]
- ESA. Landsat Series. European Space Agency. Available online: https://earth.esa.int/eogateway/missions/landsat (accessed on 12 December 2022).
- Othman, Y.; Steele, C.; St. Hilaire, R. Surface Reflectance Climate Data Records (CDRs) is a reliable Landsat ETM+ source to study chlorophyll content in pecan orchards. J. Indian Soc. Remote Sens. 2018, 46, 211–218. [Google Scholar] [CrossRef]
- Othman, Y.; St. Hilaire, R. Using multispectral data from Landsat ETM+ to estimate leaf area index of pecan orchards. Fresenius Environ. Bull. 2021, 30, 2613–2618. [Google Scholar]
- Nasiri, V.; Deljouei, A.; Moradi, F.; Sadeghi, S.M.M.; Borz, S.A. Land Use and Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Comparison of Two Composition Methods. Remote Sens. 2022, 14, 1977. [Google Scholar] [CrossRef]
- Tongway, D.; Hindley, N. Landscape Function Analysis: Procedures for Monitoring and Assessing Landscapes with Special Reference to Mine Sites and Rangelands; CSIRO Sustainable Ecosystems Press: Brisbane, Australia, 2004. [Google Scholar]
- Jönsson, P.; Cai, Z.; Melaas, E.; Friedl, M.A.; Eklundh, L. A Method for Robust Estimation of Vegetation Seasonality from Landsat and Sentinel-2 Time Series Data. Remote Sens. 2018, 10, 635. [Google Scholar] [CrossRef]
- Teodoro, A.; Amaral, A. A Statistical and spatial analysis of Portuguese forest fires in summer 2016 Considering Landsat 8 and Sentinel 2A Data. Environments 2019, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Taifour, H.; Dexter, K.G.; Al-Bakri, J.; Miller, A.; Neale, S. A State-of-the-Art Vegetation Map for Jordan: A New Tool for Conservation in a Biodiverse Country. Conservation 2022, 2, 174–194. [Google Scholar] [CrossRef]
- Al-Eisawi, A. Conservation of natural ecosystems in Jordan. Pak. J. Bot. 2012, 44, 95–99. [Google Scholar]
- Sawalhah, M.; Al-Kofahi, S.; Othman, Y.; Cibils, A. Assessing rangeland cover conversion in Jordan after the Arab spring using a remote sensing approach. J. Arid Environ. 2018, 157, 97–102. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- UNOOSA. Normalized Burn Ratio (NBR). The United Nations Office for Outer Space Affairs. Available online: https://un-spider.org/advisory-support/recommended-practices/recommended-practice-burn-severity/in-detail/normalized-burn-ratio (accessed on 12 December 2022).
- Amos, C.; Petropoulos, G.P.; Ferentinos, K.P. Determining the use of Sentinel-2AMSI for wildfire burning and severitydetection. Int. J. Remote Sens. 2019, 40, 905–930. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2009; pp. 1–200. [Google Scholar]
- Astola, H.; Häme, T.; Sirro, L.; Molinier, M.; Kilpi, J. Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region. Remote Sens. Environ. 2019, 223, 257–273. [Google Scholar] [CrossRef]
- Howe, A.A.; Parks, S.A.; Harvey, B.J.; Saberi, S.J.; Lutz, J.A.; Yocom, L.L. Comparing Sentinel-2 and Landsat 8 for Burn Severity Mapping in Western North America. Remote Sens. 2022, 14, 5249. [Google Scholar] [CrossRef]
- Mashhadi, N.; Alganci, U. Evaluating BFAST monitor algorithm in monitoring deforestation dynamics in coniferous and deciduous forests with Landsat time series: A case study on Marmara region, Turkey. ISPRS Int. J. Geo-Inf. 2022, 11, 573. [Google Scholar] [CrossRef]
- Quintano, C.; Fernández-Manso, A.; Fernández-Manso, O. Combination of Landsat and Sentinel-2 MSI data for initial assessing of burn severity. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 221–225. [Google Scholar] [CrossRef]
- Saulino, L.; Rita, A.; Migliozzi, A.; Maffei, C.; Allevato, E.; Garonna, A.P.; Saracino, A. Detecting Burn Severity across Mediterranean Forest Types by Coupling Medium-Spatial Resolution Satellite Imagery and Field Data. Remote Sens. 2020, 12, 741. [Google Scholar] [CrossRef]
- Fisher, P. The pixel: A snare and a delusion. Int. J. Remote Sens. 1997, 19, 679–685. [Google Scholar] [CrossRef]
- Gao, Z.; Huang, L. A forest fire monitoring and early warning system based on the technology of multi-sensor and multilevel data fusion. In Proceedings of the 2015 International Conference on Electrical, Computer Engineering and Electronics, Jinan, China, 29–31 May 2015. [Google Scholar]
- Negri, R.G.; Luz, A.E.O.; Frery, A.C.; Casaca, W. Mapping burned areas with multitemporal– multispectral data and probabilistic unsupervised learning. Remote Sens. 2022, 14, 5413. [Google Scholar] [CrossRef]
Index | Index Range | Fire Severity Level |
---|---|---|
dNBR | −0.5–0.1 | Un-burned |
0.1–0.25 | Low | |
0.25–0.45 | Moderate | |
dNBR > 0.45 | High | |
dNDVI | −1.0–0.1 | Un-burned vegetation/Bare soil |
0.1–0.2 | Low | |
0.2–0.3 | Moderately-burned | |
0.3–0.4 | Moderate-severely burned | |
dNDVI > 0.4 | Severely-Burned | |
dTST | 0.0 °C ≤ dTST ≤ mean temperature of the thermal image within the study area | Un-burned |
mean temperature of the thermal image for the study area < dTST | Burned |
Satellite | Vegetation Index | ||||
---|---|---|---|---|---|
dNBR | dNDVI | dTST | |||
Ajloun | Area of coincidence (%) | Sentinel-2 | 81.3 | 78.5 | na * |
Landsat-8 | 64.4 | 62.0 | 78.7 | ||
Area of omission (%) | Sentinel-2 | 21.5 | 11.9 | ||
Landsat-8 | 38.0 | 37.0 | 21.3 | ||
Area of commission (%) | Sentinel-2 | 9.0 | 19.2 | na | |
Landsat-8 | 14.5 | 18.5 | 9.2 | ||
Dibbeen | Area of coincidence (%) | Sentinel-2 | 84.1 | 82.5 | na |
Landsat-8 | 78.3 | 78.2 | 55.2 | ||
Area of omission (%) | Sentinel-2 | 15.9 | 17.5 | na | |
Landsat-8 | 21.7 | 21.8 | 44.8 | ||
Area of commission (%) | Sentinel-2 | 1.7 | 11.9 | na | |
Landsat-8 | 1.8 | 25.9 | 7.5 | ||
Sakeb | Area of coincidence (%) | Sentinel-2 | - ** | - | - |
Landsat-7 | 87.7 | 82.1 | 85.7 | ||
Area of omission (%) | Sentinel-2 | - | - | - | |
Landsat-7 | 12.3 | 17.9 | 14.3 | ||
Area of commission (%) | Sentinel-2 | - | - | - | |
Landsat-7 | 9.0 | 27.6 | 26.0 |
Sensor | Site | |||
---|---|---|---|---|
Ajloun | Dibbeen | Sakeb | ||
Total burned area (ha) | Ground reference | 23 | 10.5 | 15 |
Total number of pixels inside the burned area | Landsat OLI/ETM+ | 255 | 115 | 167 |
Sentinel-2 | 2321 | 1018 | - * | |
Total number of pixels across the perimeter of burned area | Landsat OLI/ETM+ | 133 | 36 | 57 |
Sentinel-2 | 314 | 87 | - | |
Percentage of pixels located within the perimeter of burned area (%) | Landsat OLI/ETM+ | 52.2 | 31.3 | 34.1 |
Sentinel-2 | 13.5 | 8.5 | - |
Reference Data | Total | ||||
---|---|---|---|---|---|
Unburned | Low | Moderate | High | ||
Ajloun site | |||||
Unburned | 30 | 7 | 4 | 0 | 41 |
Low | 5 | 3 | 1 | 0 | 9 |
Moderate | 0 | 1 | 8 | 1 | 10 |
High | 0 | 0 | 4 | 12 | 16 |
Total | 35 | 11 | 17 | 13 | 76 |
Producer Accuracy (%) | 85.7 | 27.3 | 47.1 | 92.3 | |
User Accuracy (%) | 73.2 | 33.3 | 80.0 | 75.0 | |
Overall Accuracy (%) | 64.2 | ||||
Kappa coefficient (%) | 54.8 | ||||
Dibbeen site | |||||
Unburned | 56 | 8 | 0 | 0 | 64 |
Low | 1 | 4 | 1 | 0 | 6 |
Moderate | 0 | 1 | 4 | 0 | 5 |
High | 0 | 0 | 2 | 14 | 16 |
Total | 57 | 13 | 7 | 14 | 91 |
Producer Accuracy (%) | 98.2 | 30.8 | 57.1 | 100 | |
User Accuracy (%) | 87.5 | 66.7 | 80.0 | 87.5 | |
Overall Accuracy (%) | 76.0 | ||||
Kappa coefficient (%) | 72.5 |
Reference Data | Total | ||||
---|---|---|---|---|---|
Unburned | Low | Moderate | High | ||
Ajloun site | |||||
Unburned | 20 | 19 | 4 | 0 | 43 |
Low | 4 | 3 | 1 | 0 | 8 |
Moderate | 0 | 1 | 9 | 1 | 11 |
High | 0 | 0 | 14 | 2 | 16 |
Total | 24 | 23 | 28 | 3 | 78 |
Producer Accuracy (%) | 83.3 | 13.0 | 32.1 | 66.7 | |
User Accuracy (%) | 46.5 | 37.5 | 81.8 | 12.5 | |
Overall Accuracy (%) | 46.7 | ||||
Kappa coefficient (%) | 23.9 | ||||
Dibbeen site | |||||
Unburned | 50 | 14 | 0 | 0 | 64 |
Low | 2 | 2 | 0 | 0 | 4 |
Moderate | 0 | 2 | 3 | 0 | 5 |
High | 0 | 1 | 4 | 12 | 17 |
Total | 52 | 19 | 7 | 12 | 90 |
Producer Accuracy (%) | 96.2 | 10.5 | 42.9 | 100 | |
User Accuracy (%) | 78.1 | 50.0 | 60.0 | 70.6 | |
Overall Accuracy (%) | 63.5 | ||||
Kappa coefficient (%) | 53.6 | ||||
Sakeb site | |||||
Unburned | 54 | 6 | 0 | 0 | 60 |
Low | 5 | 1 | 0 | 0 | 6 |
Moderate | 0 | 2 | 3 | 0 | 5 |
High | 0 | 0 | 5 | 14 | 19 |
Total | 59 | 9 | 8 | 14 | 90 |
Producer Accuracy (%) | 91.5 | 11.1 | 37.5 | 100 | |
User Accuracy (%) | 90.0 | 16.7 | 60.0 | 73.7 | |
Overall Accuracy (%) | 60.1 | ||||
Kappa coefficient (%) | 61.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qarallah, B.; Othman, Y.A.; Al-Ajlouni, M.; Alheyari, H.A.; Qoqazeh, B.A. Assessment of Small-Extent Forest Fires in Semi-Arid Environment in Jordan Using Sentinel-2 and Landsat Sensors Data. Forests 2023, 14, 41. https://doi.org/10.3390/f14010041
Qarallah B, Othman YA, Al-Ajlouni M, Alheyari HA, Qoqazeh BA. Assessment of Small-Extent Forest Fires in Semi-Arid Environment in Jordan Using Sentinel-2 and Landsat Sensors Data. Forests. 2023; 14(1):41. https://doi.org/10.3390/f14010041
Chicago/Turabian StyleQarallah, Bassam, Yahia A. Othman, Malik Al-Ajlouni, Hadeel A. Alheyari, and Bara’ah A. Qoqazeh. 2023. "Assessment of Small-Extent Forest Fires in Semi-Arid Environment in Jordan Using Sentinel-2 and Landsat Sensors Data" Forests 14, no. 1: 41. https://doi.org/10.3390/f14010041
APA StyleQarallah, B., Othman, Y. A., Al-Ajlouni, M., Alheyari, H. A., & Qoqazeh, B. A. (2023). Assessment of Small-Extent Forest Fires in Semi-Arid Environment in Jordan Using Sentinel-2 and Landsat Sensors Data. Forests, 14(1), 41. https://doi.org/10.3390/f14010041