Responses of Soil Organic Carbon Decomposition and Temperature Sensitivity to N and P Fertilization in Different Soil Aggregates in a Subtropical Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Field Experimental Design and Soil Sampling
2.3. Soil Aggregate Fractionation and Incubation
2.4. Soil Chemical and Enzyme Activity Analysis
2.5. Data Calculation and Statistic Analysis
3. Results
3.1. Effects of N and P Fertilization on SOC Decomposition
3.2. Effects of N and P Fertilization on Q10 of SOC Decomposition
3.3. Effects of N and P Fertilization on Soil Enzyme Activities
3.4. Factors Regulating SOC Decomposition and Q10
4. Discussion
4.1. Soil Organic Carbon Decomposition and Its Responses to N and P Fertilization in Different Aggregates
4.2. Temperature Sensitivity of Soil Organic Carbon Decomposition in Different Aggregates and its Responses to N and P Fertilization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bond-Lamberty, B.; Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 2010, 464, 579–582. [Google Scholar] [CrossRef]
- Domeignoz-Horta, L.A.; Pold, G.; Liu, X.J.A.; Frey, S.D.; Melillo, J.M.; DeAngelis, K.M. Microbial diversity drives carbon use efficiency in a model soil. Nat. Commun. 2020, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Hagerty, S.B.; Allison, S.D.; Schimel, J.P. Evaluating soil microbial carbon use efficiency explicitly as a function of cellular processes: Implications for measurements and models. Biogeochemistry 2018, 140, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Six, J.; Paustian, K.; Elliott, E.T.; Combrink, C. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci. Soc. Am. J. 2000, 64, 681–689. [Google Scholar] [CrossRef]
- Arevalo, C.B.M.; Chang, S.X.; Bhatti, J.S.; Sidders, D. Mineralization Potential and Temperature Sensitivity of Soil Organic Carbon under Different Land Uses in the Parkland Region of Alberta, Canada. Soil Sci. Soc. Am. J. 2012, 76, 241–251. [Google Scholar] [CrossRef]
- Conant, R.T.; Ryan, M.G.; Agren, G.I.; Birge, H.E.; Davidson, E.A.; Eliasson, P.E.; Evans, S.E.; Frey, S.D.; Giardina, C.P.; Hopkins, F.M.; et al. Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Glob. Change Biol. 2011, 17, 3392–3404. [Google Scholar] [CrossRef]
- Wei, X.R.; Ma, T.N.; Wang, Y.H.; Wei, Y.C.; Hao, M.D.; Shao, M.G.; Zhang, X.C. Long-term fertilization increases the temperature sensitivity of OC mineralization in soil aggregates of a highland agroecosystem. Geoderma 2016, 272, 1–9. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Jin, C.; Sun, B. Soil aggregate stratification of nematodes and ammonia oxidizers affects nitrification in an acid soil. Environ. Microbiol. 2014, 16, 3083–3094. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Ghosh, A.; Zhang, Y.; Dalal, R.C.; Kopittke, P.M.; Jones, A.; Menzies, N.W. Land use affects temperature sensitivity of soil organic carbon decomposition in macroaggregates but not in bulk soils in subtropical Oxisols of Queensland, Australia. Soil Tillage Res. 2020, 198, 104566. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Nadal-Romero, E.; Cammeraat, E.; Perez-Cardiel, E.; Lasanta, T. Effects of secondary succession and afforestation practices on soil properties after cropland abandonment in humid Mediterranean mountain areas. Agric. Ecosyst. Environ. 2016, 228, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Kan, Z.R.; Ma, S.T.; Liu, Q.Y.; Liu, B.Y.; Virk, A.L.; Qi, J.Y.; Zhao, X.; Lal, R.; Zhang, H.L. Carbon sequestration and mineralization in soil aggregates under long-term conservation tillage in the North China Plain. Catena 2020, 188, 12. [Google Scholar] [CrossRef]
- Manna, M.C.; Bhattacharyya, P.; Adhya, T.K.; Singh, M.; Wanjari, R.H.; Ramana, S.; Tripathi, A.K.; Singh, K.N.; Reddy, K.S.; Rao, A.S.; et al. Carbon fractions and productivity under changed climate scenario in soybean-wheat system. Field Crop. Res. 2013, 145, 10–20. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, N.N.; Liao, X.L.; Wang, Z.; Wei, X.R.; Jia, X.X. Long-term afforestation accelerated soil organic carbon accumulation but decreased its mineralization loss and temperature sensitivity in the bulk soils and aggregates. Catena 2021, 204, 10. [Google Scholar] [CrossRef]
- Kan, Z.R.; Liu, W.X.; Liu, W.S.; He, C.; Bohoussou, N.Y.; Dang, Y.P.; Zhao, X.; Zhang, H.L. Sieving soil before incubation experiments overestimates carbon mineralization but underestimates temperature sensitivity. Sci. Total Environ. 2022, 806, 10. [Google Scholar] [CrossRef]
- Sey, B.K.; Manceur, A.M.; Whalen, J.K.; Gregorich, E.G.; Rochette, P. Small-scale heterogeneity in carbon dioxide, nitrous oxide and methane production from aggregates of a cultivated sandy-loam soil. Soil Biol. Biochem. 2008, 40, 2468–2473. [Google Scholar] [CrossRef]
- Noellemeyer, E.; Frank, F.; Alvarez, C.; Morazzo, G.; Quiroga, A. Carbon contents and aggregation related to soil physical and biological properties under a land-use sequence in the semiarid region of central Argentina. Soil Tillage Res. 2008, 99, 179–190. [Google Scholar] [CrossRef]
- Yang, C.; Liu, N.; Zhang, Y.J. Effects of aggregates size and glucose addition on soil organic carbon mineralization and Q(10) values under wide temperature change conditions. Eur. J. Soil Biol. 2017, 80, 77–84. [Google Scholar] [CrossRef]
- Wang, J.; Chen, F.; Liu, Y. Respiration Characteristics of Different Sized Soil Aggregates and Their Contribution to Carbon Emissions. Plant Sci. J. 2014, 32, 586–593. [Google Scholar]
- Ghosh, A.; Bhattacharyya, R.; Dey, A.; Dwivedi, B.S.; Meena, M.C.; Manna, M.C.; Agnihortri, R. Long-term fertilization impact on temperature sensitivity of aggregate associated soil organic carbon in a sub-tropical inceptisol. Soil Tillage Res. 2019, 195, 12. [Google Scholar] [CrossRef]
- Karhu, K.; Auffret, M.D.; Dungait, J.A.J.; Hopkins, D.W.; Prosser, J.I.; Singh, B.K.; Subke, J.A.; Wookey, P.A.; Agren, G.I.; Sebastia, M.T.; et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 2014, 513, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.K.; Zhang, W.D.; Sun, T.; Chen, L.C.; Pang, X.Y.; Wang, Y.P.; Xiao, F.M. N and P fertilization reduced soil autotrophic and heterotrophic respiration in a young Cunninghamia lanceolata forest. Agric. For. Meteorol. 2017, 232, 66–73. [Google Scholar] [CrossRef]
- Zhang, J.F.; Sayer, E.J.; Zhou, J.G.; Li, Y.W.; Li, Y.X.; Li, Z.A.; Wang, F.M. Long-term fertilization modifies the mineralization of soil organic matter in response to added substrate. Sci. Total Environ. 2021, 798, 13. [Google Scholar] [CrossRef] [PubMed]
- Contosta, A.R.; Frey, S.D.; Cooper, A.B. Soil microbial communities vary as much over time as with chronic warming and nitrogen additions. Soil Biol. Biochem. 2015, 88, 19–24. [Google Scholar] [CrossRef]
- Du, Y.H.; Guo, P.; Liu, J.Q.; Wang, C.Y.; Yang, N.; Jiao, Z.X. Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests. Glob. Change Biol. 2014, 20, 3222–3228. [Google Scholar] [CrossRef]
- Geng, J.; Fang, H.J.; Cheng, S.L.; Pei, J. Effects of N deposition on the quality and quantity of soil organic matter in a boreal forest: Contrasting roles of ammonium and nitrate. Catena 2021, 198, 9. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, M.Y.; Bai, S.H.; Xu, Z.H.; Liu, Y.Q.; Chen, F.S.; Guo, X.M.; Zhang, L.; Luo, H.D.; Zhang, Q. Mineral fertilization and soil depth slightly affected aggregate structures despite significantly altered microbial properties in surface forest soils. J. Soils Sediments 2020, 20, 3615–3626. [Google Scholar] [CrossRef]
- Yu, H.Y.; Ding, W.X.; Luo, J.F.; Geng, R.L.; Ghani, A.; Cai, Z.C. Effects of long-term compost and fertilizer application on stability of aggregate-associated organic carbon in an intensively cultivated sandy loam soil. Biol. Fertil. Soils 2012, 48, 325–336. [Google Scholar] [CrossRef]
- Wankhede, M.; Ghosh, A.; Manna, M.C.; Misra, S.; Sirothia, P.; Rahman, M.M.; Bhattacharyya, P.; Singh, M.; Bhattacharyya, R.; Patra, A.K. Does soil organic carbon quality or quantity govern relative temperature sensitivity in soil aggregates? Biogeochemistry 2020, 148, 191–206. [Google Scholar] [CrossRef]
- Chen, X.; Liu, M.; Jiang, C.; Wu, M.; Li, Z. Organic Carbon Mineralization in Aggregate Fractions of Red Paddy Soil Under Different Fertilization Treatments. Sci. Agric. Sin. 2018, 51, 3325–3334. [Google Scholar]
- Tang, Y.C.; Zhang, X.Y.; Li, D.D.; Wang, H.M.; Chen, F.S.; Fu, X.L.; Fang, X.M.; Sun, X.M.; Yu, G.R. Impacts of nitrogen and phosphorus additions on the abundance and community structure of ammonia oxidizers and denitrifying bacteria in Chinese fir plantations. Soil Biol. Biochem. 2016, 103, 284–293. [Google Scholar] [CrossRef]
- Chen, F.S.; Niklas, K.J.; Liu, Y.; Fang, X.M.; Wan, S.Z.; Wang, H. Nitrogen and phosphorus additions alter nutrient dynamics but not resorption efficiencies of Chinese fir leaves and twigs differing in age. Tree Physiol. 2015, 35, 1106–1117. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.K.; Liu, S.G.; Tian, P. Carbon quality and soil microbial property control the latitudinal pattern in temperature sensitivity of soil microbial respiration across Chinese forest ecosystems. Glob. Change Biol. 2018, 24, 2841–2849. [Google Scholar] [CrossRef]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2003. [Google Scholar]
- Blair, G.J.; Lefroy, R.D.B.; Lise, L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust. J. Agric. Res. 1995, 46, 1459–1466. [Google Scholar] [CrossRef]
- Razavi, B.S.; Blagodatskaya, E.; Kuzyakov, Y. Nonlinear temperature sensitivity of enzyme kinetics explains canceling effect—a case study on loamy haplic Luvisol. Front. Microbiol. 2015, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- German, D.P.; Chacon, S.S.; Allison, S.D. Substrate concentration and enzyme allocation can affect rates of microbial decomposition. Ecology 2011, 92, 1471–1480. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Baquerizo, M.; Maestre, F.T.; Reich, P.B.; Trivedi, P.; Osanai, Y.; Liu, Y.R.; Hamonts, K.; Jeffries, T.C.; Singh, B.K. Carbon content and climate variability drive global soil bacterial diversity patterns. Ecol. Monogr. 2016, 86, 373–390. [Google Scholar] [CrossRef]
- Ghosh, A.; Bhattacharyya, R.; Meena, M.C.; Dwivedi, B.S.; Singh, G.; Agnihotri, R.; Sharma, C. Long-term fertilization effects on soil organic carbon sequestration in an Inceptisol. Soil Tillage Res. 2018, 177, 134–144. [Google Scholar] [CrossRef]
- Meyer, N.; Welp, G.; Amelung, W. The Temperature Sensitivity (Q10) of Soil Respiration: Controlling Factors and Spatial Prediction at Regional Scale Based on Environmental Soil Classes. Glob. Biogeochem. Cycles 2018, 32, 306–323. [Google Scholar] [CrossRef]
- Camenzind, T.; Hattenschwiler, S.; Treseder, K.K.; Lehmann, A.; Rillig, M.C. Nutrient limitation of soil microbial processes in tropical forests. Ecol. Monogr. 2018, 88, 4–21. [Google Scholar] [CrossRef]
- Coucheney, E.; Stromgren, M.; Lerch, T.Z.; Herrmann, A.M. Long-term fertilization of a boreal Norway spruce forest increases the temperature sensitivity of soil organic carbon mineralization. Ecol. Evol. 2013, 3, 5177–5188. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.K.; Liu, S.G.; Wang, Y.P.; Tian, P.; Sun, T. Influences of N deposition on soil microbial respiration and its temperature sensitivity depend on N type in a temperate forest. Agric. For. Meteorol. 2018, 260, 240–246. [Google Scholar] [CrossRef]
- Pausch, J.; Kuzyakov, Y. Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale. Glob. Change Biol. 2018, 24, 1–12. [Google Scholar] [CrossRef] [PubMed]
MeA | MaA | MiA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CT | N | P | NP | CT | N | P | NP | CT | N | P | NP | |
SOC (g kg−1) | 19.84 a | 20.70 a | 17.61 ab | 15.27 b | 21.83 b | 28.60 a | 17.69 c | 18.11 c | 20.41 ab | 26.37 a | 17.67 b | 17.32 b |
Total N (g kg−1) | 1.29 a | 1.25 a | 1.13 ab | 0.93 b | 1.27 ab | 1.57 a | 1.12 b | 1.05 b | 1.28 ab | 1.57 a | 1.17 b | 1.07 b |
Total P (g kg−1) | 0.164 b | 0.155 b | 0.479 a | 0.464 a | 0.166 b | 0.187 b | 0.481 a | 0.453 a | 0.165 b | 0.173 b | 0.527 a | 0.477 a |
C:N | 15.49 a | 16.79 a | 15.56 a | 16.48 a | 17.23 ab | 18.31 a | 15.87 b | 17.15 ab | 16.07 ab | 16.94 a | 15.10 b | 16.12 ab |
LSOC (g kg−1) | 4.21 b | 5.92 a | 3.95 b | 4.35 b | 6.39 b | 8.40 a | 4.47 c | 5.46 bc | 5.18 b | 9.11 a | 4.87 b | 5.20 b |
K+ (mg kg−1) | 1.73 a | 1.64 a | 1.76 a | 1.66 a | 1.83 a | 1.80 a | 1.79 a | 1.62 a | 1.28 a | 1.28 a | 1.43 a | 1.23 a |
Na+ (mg kg−1) | 1.019 a | 1.055 a | 0.981 a | 1.024 a | 0.949 ab | 0.976 a | 0.875 b | 0.901 ab | 0.248 b | 0.264 b | 0.338 ab | 0.365 ab |
Ca2+ (mg kg−1) | 6.80 a | 6.53 a | 7.15 a | 6.71 a | 6.22 a | 6.05 a | 6.24 a | 6.07 a | 5.68 a | 5.69 a | 7.05 a | 5.94 a |
Mg2+ (mg kg−1) | 0.695 a | 0.706 a | 0.811 a | 0.727 a | 0.626 a | 0.650 a | 0.736 a | 0.651 a | 0.594 a | 0.627 a | 0.746 a | 0.653 a |
pH | 4.55 a | 4.36 b | 4.58 a | 4.44 ab | 4.43 ab | 4.29 b | 4.48 a | 4.27 b | 4.26 b | 4.25 b | 4.47 a | 4.19 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Liu, S.; Zhao, X.; Wang, Q. Responses of Soil Organic Carbon Decomposition and Temperature Sensitivity to N and P Fertilization in Different Soil Aggregates in a Subtropical Forest. Forests 2023, 14, 72. https://doi.org/10.3390/f14010072
Li J, Liu S, Zhao X, Wang Q. Responses of Soil Organic Carbon Decomposition and Temperature Sensitivity to N and P Fertilization in Different Soil Aggregates in a Subtropical Forest. Forests. 2023; 14(1):72. https://doi.org/10.3390/f14010072
Chicago/Turabian StyleLi, Jing, Shengen Liu, Xuechao Zhao, and Qingkui Wang. 2023. "Responses of Soil Organic Carbon Decomposition and Temperature Sensitivity to N and P Fertilization in Different Soil Aggregates in a Subtropical Forest" Forests 14, no. 1: 72. https://doi.org/10.3390/f14010072
APA StyleLi, J., Liu, S., Zhao, X., & Wang, Q. (2023). Responses of Soil Organic Carbon Decomposition and Temperature Sensitivity to N and P Fertilization in Different Soil Aggregates in a Subtropical Forest. Forests, 14(1), 72. https://doi.org/10.3390/f14010072