How Weed Control Affects Eucalyptus globulus Labill. Productivity: Results from Two Long-Term Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Selection and Characterization
2.2. Experimental Design
2.3. Weed Control Treatments
2.4. Vegetation Cover
2.5. E. globulus Productivity
2.6. Statistical Analysis
3. Results
3.1. The Effect of Weed Control Treatment on Plant Cover
3.2. E. globulus Productivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment 2010, Main Report. FAO Forestry Paper No. 163; Food and Agriculture Organization of the United Nations: Rome, Italy, 2009. [Google Scholar]
- Barreiro, S.; Tomé, M. Analysis of the Impact of the Use of Eucalyptus Biomass for Energy on Wood Availability for Eucalyptus Forest in Portugal: A Simulation Study. Ecol. Soc. 2012, 17, 14. [Google Scholar] [CrossRef]
- McEwan, A.; Marchi, E.; Spinelli, R.; Brink, M. Past, Present and Future of Industrial Plantation Forestry and Implication on Future Timber Harvesting Technology. J. For. Res. 2020, 31, 339–351. [Google Scholar] [CrossRef]
- Deng, Y.; Yang, G.; Xie, Z.; Yu, J.; Jiang, D.; Huang, Z. Effects of Different Weeding Methods on the Biomass of Vegetation and Soil Evaporation in Eucalyptus Plantations. Sustainability 2020, 12, 3669. [Google Scholar] [CrossRef]
- Wirabuana, P.Y.A.P.; Sadono, R.; Juniarso, S.; Idris, F. Interaction of Fertilization and Weed Control Influences on Growth, Biomass, and Carbon in Eucalyptus Hybrid (E. pellita × E. brassiana). J. Manaj. Hutan Trop. 2020, 26, 144. [Google Scholar] [CrossRef]
- Tomé, M.; Almeida, M.H.; Barreiro, S.; Branco, M.R.; Deus, E.; Pinto, G.; Silva, J.S.; Soares, P.; Rodríguez-Soalleiro, R. Opportunities and Challenges of Eucalyptus Plantations in Europe: The Iberian Peninsula Experience. Eur. J. For. Res. 2021, 140, 489–510. [Google Scholar] [CrossRef]
- ICNF. 6.o Inventário Florestal Nacional; Instituto da Conservação da Natureza e das Florestas: Lisbon, Portugal, 2019. [Google Scholar]
- Bontemps, J.D.; Bouriaud, O. Predictive Approaches to Forest Site Productivity: Recent Trends, Challenges and Future Perspectives. Forestry 2014, 87, 109–128. [Google Scholar] [CrossRef]
- Shakesby, R.A. Post-Wildfire Soil Erosion in the Mediterranean: Review and Future Research Directions. Earth-Sci. Rev. 2011, 105, 71–100. [Google Scholar] [CrossRef]
- Valente, S.; Coelho, C.; Ribeiro, C.; Marsh, G. Sustainable Forest Management in Portugal: Transition from Global Policies to Local Participatory Strategies. Int. For. Rev. 2015, 17, 368. [Google Scholar] [CrossRef]
- De Moraes Goncalves, J.L.; Alvares, C.A.; Higa, A.R.; Silva, L.D.; Alfenas, A.C.; Stahl, J.; Ferraz, S.F.d.B.; Lima, W.d.P.; Brancalion, P.H.S.; Hubner, A.; et al. Integrating Genetic and Silvicultural Strategies to Minimize Abiotic and Biotic Constraints in Brazilian Eucalypt Plantations. For. Ecol. Manag. 2013, 301, 6–27. [Google Scholar] [CrossRef]
- Vasić, V.; Konstantinovic, B.; Orlović, S. Weeds in Forestry and Possibilities of Their Control; IntechOpen Limited: London, UK, 2012; ISBN 978-953-51-0159-8. [Google Scholar]
- Carrero, O.; Stape, J.L.; Allen, L.; Arrevillaga, M.C.; Ladeira, M. Productivity Gains from Weed Control and Fertilization of Short-Rotation Eucalyptus Plantations in the Venezuelan Western Llanos. For. Ecol. Manag. 2018, 430, 566–575. [Google Scholar] [CrossRef]
- Adams, P.; Beadle, C.L.; Mendham, N.J.; Smethurst, P.J. The Impact of Timing and Duration of Grass Control on Growth of a Young Eucalyptus Globulus Labill. Plantation. New For. 2003, 26, 147–165. [Google Scholar] [CrossRef]
- Vargas, F.; Rubilar, R.; Gonzalez-Benecke, C.A.; Sanchez-Olate, M.; Aracena, P. Long-Term Response to Area of Competition Control in Eucalyptus Globulus Plantations. New For. 2018, 49, 383–398. [Google Scholar] [CrossRef]
- Mirra, I.M.; Oliveira, T.M.; Barros, A.M.G.; Fernandes, P.M. Fuel Dynamics Following Fire Hazard Reduction Treatments in Blue Gum (Eucalyptus globulus) Plantations in Portugal. For. Ecol. Manag. 2017, 398, 185–195. [Google Scholar] [CrossRef]
- Little, K.; Rolando, C.; Morris, C. An Integrated Analysis of 33 Eucalyptus Trials Linking the Onset of Competition-Induced Tree Growth Suppression with Management, Physiographic and Climatic Factors. Ann. For. Sci. 2007, 64, 585–591. [Google Scholar] [CrossRef]
- Garau, A.M.; Ghersa, C.M.; Lemcoff, J.H.; Barañao, J.J. Weeds in Eucalyptus globulus Subsp. Maidenii (F. Muell) Establishment: Effects of Competition on Sapling Growth and Survivorship. New For. 2009, 37, 251–264. [Google Scholar] [CrossRef]
- Zimdahl, R.L. The Concept and Application of the Critical Weed-Free Period; CRC Press: Boca Raton, FL, USA, 1988. [Google Scholar]
- Vargas, F.; Gonzalez-Benecke, C.A.; Rubilar, R.; Sanchez-Olate, M. Modelling the Effect of Weed Competition on Long-Term Volume Yield of Eucalyptus Globulus Labill. Plantations across an Environmental Gradient. Forests 2018, 9, 480. [Google Scholar] [CrossRef]
- Oettel, J.; Lapin, K. Linking Forest Management and Biodiversity Indicators to Strengthen Sustainable Forest Management in Europe. Ecol. Indic. 2021, 122, 107275. [Google Scholar] [CrossRef]
- IPMA. Área Geográfica Centro—Oeste. Available online: http://portaldoclima.pt/pt/ (accessed on 2 May 2023).
- IPMA. Área Geográfica Centro—Região de Coimbra. Available online: http://portaldoclima.pt/pt/ (accessed on 2 May 2023).
- Schad, P.; Van Huyssteen, C.; Micheli, E.; Anjos, L.; Gaistardo, C.; Deckers, J.; Dondeyne, S.; Eberhardt, E.; Gerasimova, M.; Harms, B.; et al. World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 3rd ed.; Peter Schad Cornie van Huyssteen, E.M., Ed.; FAO: Rome, Italy, 2015; Volume World Soil; ISBN 978-92-5-108369-7. [Google Scholar]
- Maia, P.; Keizer, J.; Vasques, A.; Abrantes, N.; Roxo, L.; Fernandes, P.; Ferreira, A.; Moreira, F. Post-Fire Plant Diversity and Abundance in Pine and Eucalypt Stands in Portugal: Effects of Biogeography, Topography, Forest Type and Post-Fire Management. For. Ecol. Manag. 2014, 334, 154–162. [Google Scholar] [CrossRef]
- Maia, P.; Vasques, A.; Pausas, J.G.; Viegas, D.X.; Keizer, J.J. Fire Effects on the Seed Bank of Three Mediterranean Shrubs: Implications for Fire Management. Plant Ecol. 2016, 217, 1235–1246. [Google Scholar] [CrossRef]
- Tomé, M.; Tomé, J.; Ribeiro, F.; Faias, S. Equações de Volume Total, Volume Percentual e de Perfil Do Tronco Para Eucalyptus Globulus Labill. Em Portugal. Silva Lusit. 2007, 15, 25–40. [Google Scholar]
- Guynn, D.C.J.; Guynn, S.; Wigley, T.; Miller, D. Herbicides and Forest Biodiversity—What Do We Know and Where Do We Go from Here? Wildl. Soc. Bull. 2004, 32, 1085–1092. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, H.; Wen, Y.; Goodale, U.M.; Li, X.; You, Y.; Ye, D.; Liang, H. Effects of Understory Management on Trade-Offs and Synergies between Biomass Carbon Stock, Plant Diversity and Timber Production in Eucalyptus Plantations. For. Ecol. Manag. 2018, 410, 164–173. [Google Scholar] [CrossRef]
- Little, K.M.; Rolando, C.A. Regional Vegetation Management Standards for Commercial Eucalyptus Plantations in South Africa. South. For. J. For. Sci. 2008, 70, 87–97. [Google Scholar] [CrossRef]
- Inail, M.A.; Hardiyanto, E.B.; Mendham, D.S.; Thaher, E. Growth Response to Weed Control and Fertilisation in Mid-Rotation Plantations of Eucalyptus Pellita in South Sumatra, Indonesia. Forests 2021, 12, 1653. [Google Scholar] [CrossRef]
- McInnis, L.M.; Oswald, B.P.; Williams, H.M.; Farrish, K.W.; Unger, D.R. Growth Response of Pinus taeda L. to Herbicide, Prescribed Fire, and Fertilizer. For. Ecol. Manag. 2004, 199, 231–242. [Google Scholar] [CrossRef]
- FSC-STD-PRT-01-2016 V1-1 Portuguese All Scope EN; The FSC National Forest Stewardship Standard of the Portuguese Republic. FSC (Forest Stewardship Council): Lisboa, Portugal, 2016.
- PEFC ST 1003:2018; Sustainable Forest Management—Requirements. PEFC: Lisboa, Portugal, 2018.
Site | Plantation | Monitoring Period | Weed Control Operations (n) | Lithology | Soil Type (FAO) [24] |
---|---|---|---|---|---|
Torres Vedras | March 2008 | 2009–2017 (tree age 1.5–9 years) | 3 (1.5, 5.2, and 8.2 years) | Conglomerates, sandstones, and limestones | Epileptic and endoleptic arenic Regosols |
Soure | May 2014 | 2015–2019 (tree age 1.6–5.2 years) | 3 (1.6, 1.9, and 3.1 years) | Sandstones and pebble | Epileptic and endoleptic arenic Regosols |
Estimate | Std. Error | t Value | p (>|t|) | |
---|---|---|---|---|
Intercept | 5550.91 | 1861.4488 | 2.982 | 0.00337 |
A—Treatment (herbicide) | 6742.60 | 2235.4671 | 3.016 | 0.00303 |
B—Functional type (herbaceous) | 8.50 | 2.9490 | 2.881 | 0.00457 |
C—Years after treatment | 6.75 | 1.7255 | 3.912 | 0.00014 |
D—Cover assessment year | −1.67 | 0.8075 | −2.066 | 0.04059 |
Interaction between A and D | −3.36 | 1.1092 | −3.026 | 0.00293 |
Plantation Age (Years) | H (m) | DBH (cm) | VOL (dm3) |
---|---|---|---|
1.5 | 4.1 ± 0.7 | 3.5 ± 0.8 | 2.3 ± 1.3 |
2.3 | 5.4 ± 1.0 | 5.7 ± 1.1 | 7.6 ± 3.8 |
3.6 | 8.9 ± 1.4 | 8.5 ± 1.8 | 26.5 ± 13.3 |
4.6 | 10.6 ± 1.3 | 10.3 ± 1.9 | 44.5 ± 19.4 |
5.6 | 12.4 ± 1.5 | 11.5 ± 2.1 | 64.9 ± 28.4 |
6.1 | 13.1 ± 1.5 | 12.1 ± 2.2 | 75.6 ± 31.9 |
7.2 | 16.0 ± 1.7 | 13.7 ± 2.4 | 116.7 ± 46.2 |
8.0 | 16.4 ± 1.7 | 14.3 ± 2.6 | 129.6 ± 51.8 |
8.8 | 17.5 ± 1.9 | 14.9 ± 2.7 | 148.8 ± 58.6 |
Plantation Age (Years) | H (m) | DBH (cm) | VOL (dm3) |
---|---|---|---|
1.6 | 5.9 ± 1.1 | na | na |
2.5 | 9.8 ± 1.3 | na | na |
3.2 | 11.5 ± 1.3 | 9.0 ± 1.4 | 38.0 ± 14.0 |
3.8 | 13.0 ± 1.3 | 9.8 ± 1.5 | 50.4 ± 17.2 |
5.2 | 15.2 ± 1.4 | 12.5 ± 1.9 | 91.4 ± 30.8 |
Time Period | MAI (dm3 Year−1) | |
---|---|---|
Control | Herbicide | |
T0-T1 (1.5 to 5.2 years) | 13.6 ± 6.0 a | 16.7 ± 6.7 a |
T1-T2 (5.5 to 8.2 years) | 25.0 ± 10.1 cd | 30.2 ± 10.2 bc |
T2-T3 (8.2 to 8.8 years) | 24.0 ± 12.7 d | 33.9 ± 10.2 b |
Time Period | DBH Increment (cm) | VOL Increment (dm3) | MAI (dm3 Year−1) | |||
---|---|---|---|---|---|---|
Control | Herbicide | Control | Herbicide | Control | Herbicide | |
T2-T3 (3.1 to 5.2 years) | 3.5 ± 0.8 a | 3.8 ± 0.7 b | 53.4 ± 18.7 a | 63.8 ± 14.4 b | 26.7 ± 9.3 a | 31.9 ± 7.2 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corticeiro, S.; Maia, P.; Gonçalves, C.; Keizer, J.J.; Valente, C. How Weed Control Affects Eucalyptus globulus Labill. Productivity: Results from Two Long-Term Trials. Forests 2023, 14, 1958. https://doi.org/10.3390/f14101958
Corticeiro S, Maia P, Gonçalves C, Keizer JJ, Valente C. How Weed Control Affects Eucalyptus globulus Labill. Productivity: Results from Two Long-Term Trials. Forests. 2023; 14(10):1958. https://doi.org/10.3390/f14101958
Chicago/Turabian StyleCorticeiro, Sofia, Paula Maia, Catarina Gonçalves, Jan Jacob Keizer, and Carlos Valente. 2023. "How Weed Control Affects Eucalyptus globulus Labill. Productivity: Results from Two Long-Term Trials" Forests 14, no. 10: 1958. https://doi.org/10.3390/f14101958
APA StyleCorticeiro, S., Maia, P., Gonçalves, C., Keizer, J. J., & Valente, C. (2023). How Weed Control Affects Eucalyptus globulus Labill. Productivity: Results from Two Long-Term Trials. Forests, 14(10), 1958. https://doi.org/10.3390/f14101958