The Effect of Age on the Evolution of the Stem Profile and Heartwood Proportion of Teak Clonal Trees in the Brazilian Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Silvicultural Practices
2.2. Stem Assessment
2.3. Modeling and Selection of Tapering Models
2.4. Volume Estimation and Increase
3. Results
3.1. Tapering of the Stem-Forming Structures
3.2. Diameter Estimation and Volume from Stem-Forming Structures
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Midgley, S.; Mounlamai, K.; Flanagan, A.; Phengsopha, K. Global Markets for Plantation Teak; Implications for Growers in Lao PDR; Australian Centre for International Agricultural Research: Canberra, ACT, Australia, 2015; p. 74. [Google Scholar]
- Chaiyasen, A.; Douds, D.D.; Gavinlertvatana, P.; Lumyong, S. Diversity of arbuscular mycorrhizal fungi in Tectona grandis Linn.f. plantations and their effects on growth of micropropagated plantlets. New For. 2017, 48, 547–562. [Google Scholar] [CrossRef]
- Embrapa Florestas. Teca (Tectona grandis L. F.) no Brasil; Reis, C.A.F., de Oliveira, E.B., Santos, A.M., Eds.; Hrsg.; 21. Aufl.; Embrapa Florestas: Brasília, Brazil, 2023; ISBN 9786589957904. [Google Scholar]
- Moya, R.; Bond, B.; Quesada, H. A review of heartwood properties of Tectona grandis trees from fast-growth plantations. Wood Sci. Technol. 2014, 48, 411–433. [Google Scholar] [CrossRef]
- Yang, B.; Jia, H.; Zhao, Z.; Pang, S.; Cai, D. Horizontal and vertical distributions of heartwood for teak plantation. Forests 2020, 11, 225. [Google Scholar] [CrossRef]
- Leite, H.G.; De Oliveira-Neto, R.R.; Monte, M.A.; Fardin, L.; De Alcantara, A.M.; Da Silva Binoti, M.L.M.; Castro, R.V.O. Taper models of heartwood of Tectona grandis L.f. Sci. For. Sci. 2011, 39, 53–59. [Google Scholar]
- Pérez, D.; Kanninen, M. Stand growth scenarios for Tectona grandis plantations in Costa Rica. For. Ecol. Manag. 2005, 210, 425–441. [Google Scholar] [CrossRef]
- Figueiredo, E.O.; Scolforo, J.R.S.; De Oliveira, A.D. Seleção de modelos polinomiais para representar o perfil e volume do fuste de Tectona grandis L.f. Acta Amaz. 2006, 36, 465–482. [Google Scholar] [CrossRef]
- Aye, T.N.; Brännström, Å.; Carlsson, L. Prediction of tree sapwood and heartwood profiles using pipe model and branch thinning theory. Tree Physiol. 2022, 42, 2174–2185. [Google Scholar] [CrossRef]
- Scolforo, J.R.S. Biometria Florestal: Modelos de Crescimento e Produção Florestal; UFLA/FAEPE: Lavras, Brazil, 2006. [Google Scholar]
- Beltran, H.A.; Chauchard, L.; Iaconis, A.; Pastur, G.M. Equações de afilamento e volume para tamanhos comerciais de nothofagus obliqua e N. alpina. Cerne 2017, 23, 299–309. [Google Scholar] [CrossRef]
- Kokutse, A.D.; Stokes, A.; Kokutse, N.K.; Kokou, K. Which factors most influence heartwood distribution and radial growth in plantation teak? Ann. For. Sci. 2010, 67, 407. [Google Scholar] [CrossRef]
- Martins, A.P.M.; Machado, S.D.A.; Figueiredo Filho, A.; Corte, A.P.D.; Gorenstein, M.R. Efeito da idade na forma do fuste de Araucaria angustifolia na região Centro-Sul do Paraná. Pesqui. Florest. Bras. 2017, 37, 109. [Google Scholar] [CrossRef]
- Shahzad, M.K.; Hussain, A.; Burkhart, H.E.; Li, F.; Jiang, L. Stem taper functions for Betula platyphylla in the Daxing’an Mountains, northeast China. J. For. Res. 2020, 32, 529–541. [Google Scholar] [CrossRef]
- Diéguez-Aranda, U.; Castedo-Dorado, F.; Álvarez-González, J.G.; Rojo, A. Compatible taper function for Scots pine plantations in northwestern Spain. Can. J. For. Res. 2006, 36, 1190–1205. [Google Scholar] [CrossRef]
- Campos, J.C.C.; Leite, H.G. Mensuração Florestal: Perguntas e Respostas; 5. Aufl.; UFV: Viçosa, Brazil, 2017; ISBN 9788572695794. [Google Scholar]
- Téo, S.J.; Esteves, J.H. Efeito da idade sobre o polinômio do quinto grau para afilamento de Pinus taeda L. BIOFIX Sci. J. 2022, 7, 66. [Google Scholar] [CrossRef]
- Téo, S.J.; Machado, S.B.; Filho, A.F.; Tomé, M. Stem taper equation with extensive applicability to several age classes of Pinus taeda L. Floresta 2018, 48, 471–482. [Google Scholar] [CrossRef]
- Tang, X.; Pérez-Cruzado, C.; Fehrmann, L.; Álvarez-González, J.G.; Lu, Y.; Kleinn, C. Development of a compatible taper function and stand-level merchantable volume model for Chinese fir plantations. PLoS ONE 2016, 11, e0147610. [Google Scholar] [CrossRef]
- Favalessa, C.M.C.; Ubialli, J.A.; Caldeira, S.F.; Drescher, R. Funções de afilamento não segmentadas e segmentadas para Tectona grandis na região centro-sul matogrossense. Pesqui. Florest. Bras. 2012, 32, 373–387. [Google Scholar] [CrossRef]
- Fernández-Sólis, D.; Berrocal, A.; Moya, R. Heartwood formation and prediction of heartwood parameters in Tectona grandis L.f. trees growing in forest plantations in Costa Rica. Bois For. Trop. 2018, 335, 25–37. [Google Scholar] [CrossRef]
- Berrocal, A.; Gaitan-Alvarez, J.; Moya, R.; Fernández-Sólis, D.; Ortiz-Malavassi, E. Development of heartwood, sapwood, bark, pith and specific gravity of teak (Tectona grandis) in fast-growing plantations in Costa Rica. J. For. Res. 2020, 31, 667–676. [Google Scholar] [CrossRef]
- Tewari, V.P.; Mariswamy, K.M. Heartwood, sapwood and bark content of teak trees grown in Karnataka, India. J. For. Res. 2013, 24, 721–725. [Google Scholar] [CrossRef]
- Arce, N.; Moya, R. Propriedades da Madeira de Clones adultos de Tectona grandis crescendo na Costa Rica. Cerne 2015, 21, 353–362. [Google Scholar] [CrossRef]
- Moya, R.; Gaitán-Álvarez, J.; Ortiz-Malavassi, E.; Berrocal, A.; Fernández-Sólis, D. Equations for predicting heartwood merchantable volume and tradable sawlog in Tectona grandis. J. Trop. For. Sci. 2020, 32, 379–390. [Google Scholar] [CrossRef]
- EMBRAPA. Sistema Brasileiro de Classificação de Solos: 5a Edição 2018; EMBRAPA: Brasilia, Brazil, 2018. [Google Scholar]
- IBGE. Technical Manual of the Brazilian Vegetation; IBGE: Rio de Janeiro, Brazil, 2012. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- INMET National Institute of Meteorology. Meteorological Data. Available online: https://portal.inmet.gov.br/dadoshistoricos (accessed on 3 February 2023).
- de Souza, H.J.; Miguel, E.P.; Nascimento, R.G.M.; Cabacinha, C.D.; Rezende, A.V.; Santos, M.L. dos Thinning-response modifier term in growth models: An application on clonal Tectona grandis Linn F. stands at the amazonian region. For. Ecol. Manag. 2022, 511, 120109. [Google Scholar] [CrossRef]
- Dos Santos, M.L.; Miguel, E.P.; Dos Santos, C.R.C.; De Souza, H.J.; Martins, W.B.R.; Lima, M.D.R.; Arce, J.E.; Silva, J.N.M. Forecasting production in thinned clonal stands of Tectona grandis in Eastern Amazonia. For. Syst. 2022, 31, e024. [Google Scholar] [CrossRef]
- Machado, S.B.; Figueiredo Filho, A. Dendrometria; UNICENTRO: Guarapuava, Brazil, 2014; ISBN 8589346196. [Google Scholar]
- Kozak, A.; Munro, D.D.; Smith, J.H.G. Taper Functions and their Application in Forest Inventory. For. Chron. 1969, 45, 278–283. [Google Scholar] [CrossRef]
- Demaerschalk, J.P. Integrated Systems for the Estimation of Tree Taper and Volume. Can. J. For. Res. 1973, 3, 90–94. [Google Scholar] [CrossRef]
- Bergmeir, C.; Hyndman, R.J.; Koo, B. A note on the validity of cross-validation for evaluating autoregressive time series prediction. Comput. Stat. Data Anal. 2018, 120, 70–83. [Google Scholar] [CrossRef]
- Kohavi, R.; Edu, S. A study of cross-validation and bootstrap for accuracy estimation and model selection. Proc. Int. Jt. Conf. Artif. Intell. 1993, 2, 1137–1143. [Google Scholar]
- Parresol, B.R. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 1999, 4, 573–593. [Google Scholar]
- Akaike, H. On the likelihood of a time series model. J. R. Stat. Soc. 1978, 27, 217–235. [Google Scholar] [CrossRef]
- Shapiro, A.S.S.; Wilk, M.B. Biometrika Trust An Analysis of Variance Test for Normality (Complete Samples) Published by: Oxford University Press on behalf of Biometrika Trust Stable. Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing: R Foundation for Statistical Computing 2023; R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2023. [Google Scholar]
- Gregoire, T.G.; Schabenberger, O.; Barrett, J.P. Linear modelling of irregularity spaced, unbalanced, longitudinal data from permanent-plot measurements. Can. J. For. Res. 1995, 25, 137–156. [Google Scholar] [CrossRef]
- García, O.; Burkhart, H.E.; Amateis, R.L. A biologically-consistent stand growth model for loblolly pine in the Piedmont physiographic region, USA. For. Ecol. Manag. 2011, 262, 2035–2041. [Google Scholar] [CrossRef]
- Goulding, C.J.; Murray, J.C. Polynomial taper equations that are compatible with tree volume equations. N. Zeal. J. For. Sci. 1976, 5, 313–322. [Google Scholar]
- Kokutse, A.D.; Baillères, H.; Stokes, A.; Kokou, K. Proportion and quality of heartwood in Togolese teak (Tectona grandis L.f.). For. Ecol. Manag. 2004, 189, 37–48. [Google Scholar] [CrossRef]
- Marshall, A.; McLaughlin, B.P.; Zerr, C.; Yanguas-Fernández, E.; Hall, J.S. Early indications of success rehabilitating an underperforming teak (Tectona grandis) plantation in Panama through enrichment planting. New For. 2020, 52, 377–395. [Google Scholar] [CrossRef]
- Priya, P.B.; Bhat, K.M. Influence of rainfall, irrigation and age on the growth periodicity and wood structure in teak (Tectona grandis). IAWA J. 1999, 20, 181–192. [Google Scholar] [CrossRef]
- Pérez Cordero, L.D.; Kanninen, M. Heartwood, sapwood and bark content, and wood dry density of young and mature teak (Tectona grandis) trees grown in Costa Rica. Silva Fenn. 2003, 37, 45–54. [Google Scholar] [CrossRef]
- Rivero, J.; Moya, R. Propiedades físico-mecánicas de la madera de Tectona grandis Linn. F. (teca), proveniente de una plantación de ocho años de edad en Cochabamba, Bolivia. Rev. For. Mesoam. Kurú 2006, 3, 50–63. [Google Scholar]
- Leite, H.G.; da Silva, M.L.M.; Binoti, D.H.B.; Fardin, L.; Takizawa, F.H. Estimation of inside-bark diameter and heartwood diameter for Tectona grandis Linn. trees using artificial neural networks. Eur. J. For. Res. 2011, 130, 263–269. [Google Scholar] [CrossRef]
Variables | Min. | Max. | Mean | σ |
---|---|---|---|---|
t | 4 | 12 | 6.8 | 2.32 |
dbhwb | 9.65 | 38.95 | 24.36 | 5.88 |
dbhwob | 7.75 | 35.00 | 21.43 | 5.26 |
dbhh | 2.50 | 25.70 | 13.52 | 4.76 |
th | 8.70 | 20.05 | 16.51 | 2.05 |
Model No. | Model | Author |
---|---|---|
1 | Schöepfer (1966) | |
2 | Kozak (2004) | |
3 | Demaerschalk (1973) |
Model No. | Model | Parameters | Standard Error of the Parameters | RMSE (cm) | RMSPE (%) | AIC | |
---|---|---|---|---|---|---|---|
M1 | Schöepfer (1966) | b0 = 1.33336 ** | 0.00562 | 0.975 | 1.680 | 9.466 | 7015.47 |
b1 = −7.03844 ** | 0.153444 | ||||||
b2 = 42.12448 ** | 1.678178 | ||||||
b3 = −131.16996 ** | 7.104489 | ||||||
b4 = 189.42682 ** | 12.618292 | ||||||
b5 = −102.60384 ** | 7.912444 | ||||||
b6 = 3.44771 ** | 0.124378 | ||||||
b7 = 10.68827 ** | 0.181427 | ||||||
M2 | Kozak (2004) | α0 = 0.91005 ** | 0.05794 | 0.977 | 1.558 | 8.783 | 7036.914 |
α1 = 0.93388 ** | 0.01907 | ||||||
α2 = 0.11368 ** | 0.03731 | ||||||
b1 = 46.68804 ** | 2.1297 | ||||||
b2 = −11.19448 ** | 3.89455 | ||||||
b3 = 98.48906 ** | 4.26556 | ||||||
b4 = 40.37705 ** | 32.4903 | ||||||
b5 = 0.40839 ** | 0.11383 | ||||||
b6 = −142.92871 ** | 6.23398 | ||||||
b7 = 3.26184 ** | 0.11161 | ||||||
b8 = 10.91128 ** | 0.16274 | ||||||
M3 | Demaerschalk (1973) | b0 = 12.687462 ** | 0.5258129 | 0.978 | 1.532 | 8.634 | 6872.109 |
b1 = 1.193167 ** | 0.0496739 | ||||||
b2 = 0.753512 ** | 0.0351115 | ||||||
b3 = 28.045142 ** | 2.0379679 | ||||||
b4 = 0.017068 ** | 0.0023329 | ||||||
b5 = 3.822944 ** | 0.6839145 | ||||||
b6 = 3.331303 ** | 0.1112617 | ||||||
b7 = 10.744412 ** | 0.162351 | ||||||
M4 | Demaerschalk (1973) Mixed-age model | b0 = 12.397079 ** | 0.5906596 | 0.981 | 1.429 | 8.055 | 7381.798 |
b1 = 1.146381 ** | 0.0468075 | ||||||
b2 = 0.72975 ** | 0.0554166 | ||||||
b3 = 30.008968 ** | 1.8642629 | ||||||
b4 = 0.019715 ** | 0.0021929 | ||||||
b5 = 3.905267 ** | 0.5021687 | ||||||
b6 = 3.343096 ** | 0.1038175 | ||||||
b7 = 10.693234 ** | 0.4430965 |
Age (Years) | b0 | b2 | b4 | b7 |
---|---|---|---|---|
4 | −0.4100792 | −0.005000337 | 0.00145214 | −2.02136461 |
5 | −0.5018386 | 0.041447436 | 0.001243149 | −0.96724703 |
6 | 0.0723395 | −0.009890323 | −0.000132658 | 0.01149478 |
7 | 0.6856371 | −0.111748992 | −0.00107921 | −0.43425561 |
8 | 0.1880284 | −0.014002156 | −0.00048262 | 0.41547726 |
9 | 1.1536578 | −0.119782213 | −0.002578956 | 1.45521864 |
10 | 0.3420175 | −0.036537151 | −0.000753212 | 0.3976666 |
11 | 0.2428273 | −0.026157271 | −0.00053234 | 0.27544133 |
12 | −1.7725899 | 0.281671007 | 0.002863706 | 0.86756865 |
Age (Years) | With Bark | Heartwood | |||||||
---|---|---|---|---|---|---|---|---|---|
th | dbh | Vwb | CAI Vwb | MAI Vwb | hh | Vh | CAI Vh | MAI Vh | |
4 | 11.84 | 14.31 | 0.1099 | - | 0.0275 | 6.51 | 0.0150 | - | 0.0037 |
5 | 14.43 | 17.78 | 0.1813 | 0.0714 | 0.0363 | 12.27 | 0.0351 | 0.0201 | 0.0070 |
6 | 15.94 | 21.46 | 0.2740 | 0.0927 | 0.0457 | 13.55 | 0.0607 | 0.0257 | 0.0101 |
7 | 17.00 | 22.51 | 0.3776 | 0.1036 | 0.0539 | 14.45 | 0.0910 | 0.0303 | 0.0130 |
8 | 17.74 | 27.22 | 0.4814 | 0.1038 | 0.0602 | 15.08 | 0.1282 | 0.0372 | 0.0160 |
9 | 18.74 | 29.61 | 0.5561 | 0.0747 | 0.0618 | 15.93 | 0.1597 | 0.0315 | 0.0177 |
10 | 19.10 | 30.48 | 0.6023 | 0.0462 | 0.0602 | 16.24 | 0.1843 | 0.0246 | 0.0184 |
11 | 19.50 | 31.36 | 0.6364 | 0.0341 | 0.0579 | 16.58 | 0.2066 | 0.0223 | 0.0188 |
12 | 19.85 | 32.23 | 0.6637 | 0.0273 | 0.0553 | 16.87 | 0.2277 | 0.0211 | 0.0190 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, M.L.d.; Miguel, E.P.; Biali, L.J.; Souza, H.J.d.; Santos, C.R.C.d.; Matricardi, E.A.T. The Effect of Age on the Evolution of the Stem Profile and Heartwood Proportion of Teak Clonal Trees in the Brazilian Amazon. Forests 2023, 14, 1962. https://doi.org/10.3390/f14101962
Santos MLd, Miguel EP, Biali LJ, Souza HJd, Santos CRCd, Matricardi EAT. The Effect of Age on the Evolution of the Stem Profile and Heartwood Proportion of Teak Clonal Trees in the Brazilian Amazon. Forests. 2023; 14(10):1962. https://doi.org/10.3390/f14101962
Chicago/Turabian StyleSantos, Mario Lima dos, Eder Pereira Miguel, Leonardo Job Biali, Hallefy Junio de Souza, Cassio Rafael Costa dos Santos, and Eraldo Aparecido Trondoli Matricardi. 2023. "The Effect of Age on the Evolution of the Stem Profile and Heartwood Proportion of Teak Clonal Trees in the Brazilian Amazon" Forests 14, no. 10: 1962. https://doi.org/10.3390/f14101962
APA StyleSantos, M. L. d., Miguel, E. P., Biali, L. J., Souza, H. J. d., Santos, C. R. C. d., & Matricardi, E. A. T. (2023). The Effect of Age on the Evolution of the Stem Profile and Heartwood Proportion of Teak Clonal Trees in the Brazilian Amazon. Forests, 14(10), 1962. https://doi.org/10.3390/f14101962