Effects of Seed Biological Characteristics and Environmental Factors on Seed Germination of the Critically Endangered Species Hopea chinensis (Merr.) Hand.-Mazz. in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Determination of Morphological Characteristics of Fruits and Seeds
2.3. Experimental Design for Seed Germination Studies
2.3.1. General Seed Germination Experiments
2.3.2. The Effect of Seed Biological Characteristics on Seed Germination
2.3.3. The Effect of Environmental Factors on Seed Germination
2.3.4. Germination Indicator Statistics
2.4. Data Analysis
3. Results
3.1. Biological Traits of the H. chinensis Seeds
3.2. Effects of Biological Traits of H. chinensis Seeds on Their Germination
3.2.1. Effect of Calyx Lobes and Seed Coat on Seed Germination
3.2.2. Effect of Seed Weight on Seed Germination
3.2.3. Effect of Water Content on Seed Germination
3.3. Effects of Environmental Factors on Seed Germination of H. chinensis
3.3.1. Effect of Temperature on Seed Germination
3.3.2. Effect of Light on Seed Germination
3.3.3. Effects of Substrate on Seed Germination
3.3.4. Effect of Burial Depth on Seed Germination
3.3.5. Effects of Simulated Drought Stress on Seed Germination
3.3.6. Effects of Salt on Seed Germination
3.3.7. Effects of Flooding on Seed Germination
4. Discussion
4.1. Differences in Biological Seed Characteristics among Different Populations of H. chinensis
4.2. The Influence of Biological Characters on H. chinensis Seed Germination
4.3. The Influence of Environmental Factors on H. chinensis Seed Germination
4.4. The Relationship between Seed Germination and the Threat of Extinction of H. chinensis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pimm, S.L.; Jenkins, C.N.; Abell, R.; Brooks, T.M.; Gittleman, J.L.; Joppa, L.N.; Raven, P.H.; Roberts, C.M.; Sexton, J.O. The biodiversity of species and their rates of extinction, distribution, and protection. Science 2014, 344, 1246752. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Zhang, X.; Zha, J.; Li, J.; Li, J. Predicting climate change impacts on the rare and endangered Horsfieldia tetratepala in China. Forests 2022, 13, 1051. [Google Scholar] [CrossRef]
- Harvey-Brown, Y.; Shaw, K.; Davies, K.; Rivers, M. Using the global tree assessment at multiple scales of planning and action. Diversity 2022, 14, 891. [Google Scholar] [CrossRef]
- Xu, J.; Xiao, P.; Li, T.T.; Wang, Z. Research progress on endangered plants: A bibliometric analysis. Biodivers. Conserv. 2022, 31, 1125–1147. [Google Scholar] [CrossRef]
- Xu, Y.; Zang, R. Conservation of rare and endangered plant species in China. iScience 2023, 26, 106008. [Google Scholar] [CrossRef]
- Segura, F.; Vicente, M.J.; Franco, J.A.; Martínez-Sánchez, J.J. Effects of maternal environmental factors on physical dormancy of Astragalus nitidiflorus seeds (Fabaceae), a critically endangered species of SE Spain. Flora 2015, 216, 71–76. [Google Scholar] [CrossRef]
- Xiao, Z.; Zou, T.; Lu, S.; Xu, Z. Soil microorganisms interacting with residue-derived allelochemicals effects on seed germination. Saudi J. Biol. Sci. 2020, 27, 1057–1065. [Google Scholar] [CrossRef]
- Gao, R.; Hou, J.; Zhao, R.; Yang, X.; Hou, X.; Huo, L.; Hidayati, S.N.; Walck, J.L. Seed dormancy and germination of a critically endangered plant, Elaeagnus mollis, on the Loess Plateau of China. Eur. J. For. Res. 2021, 140, 451–461. [Google Scholar] [CrossRef]
- Jiménez-Alfaro, B.; Silveira, F.A.; Fidelis, A.; Poschlod, P.; Commander, L.E. Seed germination traits can contribute better to plant community ecology. J. Veg. Sci. 2016, 27, 637–645. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Wang, G.; Zhang, J.; Wang, G. Analysis of gene expression in early seed germination of rice: Landscape and genetic regulation. BMC Plant Biol. 2022, 22, 70. [Google Scholar] [CrossRef]
- Batlla, D.; Benech-Arnold, R.L. Weed seed germination and the light environment: Implications for weed management. Weed Biol. Manag. 2014, 14, 77–87. [Google Scholar] [CrossRef]
- Fernández, M.; Tapias, R. Seed dormancy and seedling ecophysiology reveal the ecological amplitude of the threatened endemism Picris willkommii (Schultz Bip.) Nyman (Asteraceae). Plants 2022, 11, 1981. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Chen, H.; Tang, W.; Luo, W.; Wang, Y. Biological and ecological characteristics of Hopea chinensis, a plant endemic to Guangxi. Biodiv. Sci. 2008, 16, 15–23. [Google Scholar]
- Shi, Y.; Duan, N.; Liu, B. Complete chloroplast genome sequence of Hopea chinensis (Dipterocarpaceae), a rare and critically endangered species. Mitochondrial DNA B 2019, 4, 4079–4080. [Google Scholar] [CrossRef] [PubMed]
- Mayrinck, R.C.; Vilela, L.C.; Pereira, T.M.; Rodrigues-Junior, A.G.; Davide, A.C.; Vaz, T.A.A. Seed desiccation tolerance/sensitivity of tree species from Brazilian biodiversity hotspots: Considerations for conservation. Trees 2019, 33, 777–785. [Google Scholar] [CrossRef]
- Wu, L.M.; Fang, Y.; Yang, H.N.; Bai, L.Y. Effects of drought-stress on seed germination and growth physiology of quinclorac-resistant Echinochloa crusgalli. PLoS ONE 2019, 14, e0214480. [Google Scholar] [CrossRef]
- Nosratti, I.; Amiri, S.; Bagheri, A.; Chauhan, B. Environmental factors affecting seed germination and seedling emergence of foxtail sophora (Sophora alopecuroides). Weed Sci. 2018, 66, 71–77. [Google Scholar] [CrossRef]
- Boscagli, A.; Sette, B. Seed germination enhancement in Satureja montana L. ssp. Montana. Seed Sci. Technol. 2001, 29, 347–355. [Google Scholar]
- Wyse, S.V.; Hulme, P.E. Limited evidence for a consistent seed mass-dispersal trade-off in wind-dispersed pines. J. Ecol. 2021, 109, 284–293. [Google Scholar] [CrossRef]
- Dech, J.P.; Maun, M.A. Adventitious root production and plastic resource allocation to biomass determine burial tolerance in woody plants from central Canadian coastal dunes. Ann. Bot.-London 2006, 98, 1095–1105. [Google Scholar] [CrossRef]
- Li, N.; Li, Y. Signaling pathways of seed size control in plants. Curr. Opin. Plant Biol. 2016, 33, 23–32. [Google Scholar] [CrossRef]
- Larios, E.; Búrquez, A.; Becerra, J.X.; Venable, D.L. Natural selection on seed size through the life cycle of a desert annual plant. Ecology 2014, 95, 3213–3220. [Google Scholar] [CrossRef]
- Silvertown, J.; Charlesworth, D. Introduction to Plant Population Biology; Longman Press: London, UK, 1982. [Google Scholar]
- Baskin, J.; Baskin, C. A classification system for seed dormancy. Seed Sci. Res. 2004, 14, 1–16. [Google Scholar] [CrossRef]
- Wu, Y.; Shen, Y.B. Seed coat structural and permeability properties of Tilia miqueliana seeds. J. Plant Growth Regul. 2021, 40, 1198–1209. [Google Scholar] [CrossRef]
- Zhu, M.; Dai, S.; Ma, Q.; Li, S. Identification of the initial water-site and movement in Gleditsia sinensis seeds and its relation to seed coat structure. Plant Methods 2021, 17, 55. [Google Scholar] [CrossRef] [PubMed]
- Geritz, S.; Gyllenberg, M.; Toivonen, J. Adaptive correlations between seed size and germination time. J. Math. Biol. 2018, 77, 1943–1968. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Gutterman, Y. Seedling desiccation tolerance of Leymus racemosus (Poaceae) (wild rye), a perennial sand-dune grass inhabiting the Junggar Basin of Xinjiang, China. Seed Sci. Res. 2004, 14, 233–239. [Google Scholar] [CrossRef]
- Khera, N.; Saxena, A.K.; Singh, R.P. Seed size variability and its influence on germination and seedling growth of five multipurpose tree species. Seed Sci. Technol. 2004, 32, 319–330. [Google Scholar] [CrossRef]
- Du, Y.; Huang, Z. Effects of seed mass and emergence time on seedling performance in Castanopsis chinensis. Forest Ecol. Manag. 2008, 255, 2495–2501. [Google Scholar] [CrossRef]
- Domic, A.; Capriles, J.; Camilo, G. Evaluating the fitness effects of seed size and maternal tree size on Polylepis tomentella (Rosaceae) seed germination and seedling performance. J. Trop. Ecol. 2020, 36, 115–122. [Google Scholar] [CrossRef]
- Ma, S.M.; Lan, Q.Y.; Tan, Y.H.; Yu, L.; Yang, M.Z. Desiccation tolerance and storability of seeds in Hopea mollissima CY Wu. Seed Sci. Technol. 2011, 39, 435–442. [Google Scholar] [CrossRef]
- Dias, D.S.; Lopes, P.S.N.; Ribeiro, L.M.; Oliveira, L.A.A.; Mendes, E.V.; Carvalho, V.S. Tolerance of desiccation and cryopreservation of Butia capitata palm seeds. Seed Sci. Technol. 2015, 43, 90–100. [Google Scholar] [CrossRef]
- Joshi, G.; Phartyal, S.S.; Arunkumar, A.N. Non-deep physiological dormancy, desiccation and low-temperature sensitivity in seeds of Garcinia gummi-gutta (Clusiaceae): A tropical evergreen recalcitrant species. Trop. Ecol. 2017, 58, 241–250. [Google Scholar]
- Mahdavi-Darvari, F.; Noor, N.M. New insight into early somatic embryogenesis of Mangosteen (Garcinia mangostana) through de novo and comparative Transcriptome analyses. Trop. Plant Biol. 2017, 10, 30–44. [Google Scholar] [CrossRef]
- Farrant, J.M.; Pammenter, N.W.; Berjak, P. Recalcitrance-a current assessment. Seed Sci. Technol. 1988, 16, 155–166. [Google Scholar]
- Carrera-Castaño, G.; Calleja-Cabrera, J.; Pernas, M.; Gómez, L.; Oñate-Sánchez, L. An updated overview on the regulation of seed germination. Plants 2020, 9, 703. [Google Scholar] [CrossRef]
- Yang, L.W.; Liu, S.R.; Lin, R.C. The role of light in regulating seed dormancy and germination. J. Integr. Plant Biol. 2020, 62, 1310–1326. [Google Scholar] [CrossRef]
- Zhang, J.J.; Chai, S.F.; Wei, X.; Lv, S.H.; Wu, S.H. Germination characteristics of the seed of a rare and endangered plant, Garcinia paucinervis. Sci. Silv. Sin. 2018, 54, 174–185. [Google Scholar]
- Barbieri, G.F.; Stefanello, R.; Menegaes, J.F.; Munareto, J.D.; Nunes, U.R. Seed germination and initial growth of quinoa seedlings under water and salt stress. J. Agric. Sci. 2019, 11, 153. [Google Scholar] [CrossRef]
- Sidari, M.; Mallamaci, C.; Muscolo, A. Drought, salinity and heat differently affect seed germination of Pinus pinea. J. For. Res. 2008, 13, 326–330. [Google Scholar] [CrossRef]
- Gheidary, S.; Akhzari, D.; Pessarakli, M. Effects of salinity, drought, and priming treatments on seed germination and growth parameters of Lathyrus sativus L. J. Plant Nutr. 2017, 40, 1507–1514. [Google Scholar] [CrossRef]
- Gharmakher, H.N.; Saberi, M.; Heshmati, G.; Barani, H.; Shahriyari, A. Effects of different drought and salinity levels on seed germination of citrullus colocynthis. Ecopersia 2017, 5, 1903–1917. [Google Scholar]
- Zhou, W.; Yang, Y.; Zheng, C.; Luo, X.; Chandrasekaran, U.; Yin, H.; Chen, F.; Meng, Y.; Chen, L.; Shu, K. Flooding represses soybean seed germination by mediating anaerobic respiration, glycometabolism and phytohormones biosynthesis. Environ. Exp. Bot. 2021, 188, 104491. [Google Scholar] [CrossRef]
- Tang, W.X.; Mao, S.Z.; Pan, B.; Huang, S.X.; Mo, L.; Luo, W.H. Spatial distribution pattern of seed rain and seed germination characteristics of endangered plant Hopea chinensis. J. Fujian Coll. For. 2009, 29, 97–102. [Google Scholar]
- Chen, C.; Zhang, Y.; Fu, X.; Chen, C.; Wu, S.; Zhang, C.; Zhang, H.; Chang, Y.; Chen, S.; Zhao, J.; et al. Influential factors and transcriptome analyses of immature diploid embryo anthocyanin accumulation in maize. BMC Plant Biol. 2022, 22, 609. [Google Scholar] [CrossRef]
- Kaur, S.; Tiwari, V.; Kumari, A.; Chaudhary, E.; Sharma, A.; Ali, U.; Garg, M. Protective and defensive role of anthocyanins under plant abiotic and biotic stresses: An emerging application in sustainable agriculture. J. Biotechnol. 2022, 361, 12–29. [Google Scholar] [CrossRef] [PubMed]
- Berjak, P.; Pammenter, N.W. Implications of the lack of desiccation tolerance in recalcitrant seeds. Front. Plant Sci. 2013, 4, 478. [Google Scholar] [CrossRef]
Site | GPS Coordinates | Altitude (m) | Slope Aspect | Slope Degree (°) | Rock Exposed Degree (%) | Distribution Type | No. of Fruiting Plants |
---|---|---|---|---|---|---|---|
HQ | 21.6675° N 107.4997° E | 286 | Northwest | 35 | 50 | Contagious | 8 |
NS | 21.7261° N 108.0425° E | 196 | South | 10 | 80 | Random | 3 |
DZ | 22.0303° N 107.8944° E | 324 | Southwest | 25 | 85 | Contagious | 4 |
PF | 21.7061° N 107.9767° E | 188 | Southeast | 20 | 70 | Random | 4 |
Trait | Population | Mean | ||||
---|---|---|---|---|---|---|
DZ | HQ | PF | NS | |||
Phenotypic | SL (mm) | 15.0 ± 1.3 a 8.8% | 13.9 ± 1.3 a 9.2% | 14.6 ± 1.1 a 7.6% | 13.7 ± 1.1 a 7.8% | 14.3 8.2% |
SW (mm) | 10.4 ± 1.2 a 11.1% | 9.2 ± 0.9 a 9.8% | 10.7 ± 0.7 a 6.9% | 10.2 ± 0.8 a 8.1% | 10.1 9.7% | |
SLW | 1.5 ± 0.1 a 9.3% | 1.5 ± 0.1 a 7.2% | 1.4 ± 0.2 a 16.2% | 1.4 ± 0.0 a 2.9% | 1.4 10.1% | |
CLL (cm) | 9.0 ± 0.3 a 3.6% | 7.2 ± 0.6 c 8.3% | 8.7 ± 0.9 ab 10.3% | 7.5 ± 0.8 bc 10.3% | 8.1 12.3% | |
CLW (cm) | 2.6 ± 0.2 a 7.2% | 1.7 ± 0.2 b 9.9% | 1.8 ± 0.1 b 5.6% | 1.9 ± 0.0 b 2.2% | 2.0 20.5% | |
CLLW | 3.5 ± 0.3 c 7.2% | 4.3 ± 0.1 b 3.3% | 5.0 ± 0.6 a 13.0% | 4.0 ± 0.2 bc 4.2% | 4.2 15.4% | |
TSW (g) | 598.8 ± 32.6 b 5.4% | 584.0 ± 29.1 b 5.0% | 719.5 ± 30.6 a 4.3% | 470.7 ± 25.6 c 5.4% | 593.3 16.1% | |
MC (%) | 46.7 ± 2.2 b 4.8% | 46.8 ± 1.6 b 3.4% | 56.3 ± 2.7 a 4.8% | 42.6 ± 0.9 c 2.1% | 48.1 11.5% | |
Germination traits | GP (%) | 73.3 ± 7.6 b 10.4% | 91.7 ± 2.9 a 3.2% | 76.7 ± 7.6 b 10.0% | 90.0 ± 5.0 a 5.6% | 82.9 11.9% |
GE (%) | 36.7 ± 5.8 a 15.8% | 40.0 ± 5.0 a 12.5% | 31.7 ± 2.9 a 9.1% | 31.7 ± 5.8 a 18.2% | 35.0 16.1% | |
MGT (d) | 8.5 ± 0.8 b 8.8% | 9.8 ± 0.1 a 1.4% | 9.7 ± 0.4 a 4.0% | 10.2 ± 0.3 a 2.7% | 9.6 8.0% | |
LR (cm) | 5.9 ± 0.3 b 5.8% | 6.6 ± 0.3 a 5.1% | 6.1 ± 0.3 ab 4.3% | 6.2 ± 0.2 ab 2.6% | 6.2 6.2% | |
SH (cm) | 5.7 ± 0.4 c 7.8% | 7.7 ± 0.4 a 4.5% | 5.3 ± 0.4 c 7.9% | 6.4 ± 0.2 b 3.5% | 6.3 16.2% | |
VI | 24.2 ± 2.3 c 9.7% | 35.9 ± 2.3 a 6.4% | 21.3 ± 2.5 c 11.6% | 29.2 ± 0.3 b 1.0% | 27.6 22.0% |
Study Object | Treatment | GP (%) | GE (%) | MGT (d) | VI |
---|---|---|---|---|---|
Calyx lobes and seed coat | S1 | 85.0 ± 5.0 a | 33.3 ± 2.9 b | 9.4 ± 0.3 b | 31.3 ± 0.7 b |
S2 | 90.0 ± 5.0 a | 31.7 ± 5.8 b | 10.2 ± 0.3 a | 29.2 ± 0.3 b | |
S3 | 93.3 ± 2.9 a | 65.0 ± 5.0 a | 6.8 ± 0.2 c | 41.5 ± 3.1 a | |
Seed weight | <0.5 g | 0.0 | – | – | – |
0.5–1.0 g | 25.0 ± 5.0 b | 13.3 ± 2.9 d | 8.0 ± 0.4 ab | 6.6 ± 0.8 d | |
1.1–1.5 g | 93.3 ± 5.8 a | 41.7 ± 2.9 c | 8.3 ± 0.3 a | 31.3 ± 2.3 c | |
1.6–2.0 g | 96.7 ± 2.9 a | 48.3 ± 2.9 b | 7.6 ± 0.2 b | 44.6 ± 2.9 b | |
>2.0 g | 95.0 ± 5.0 a | 73.3 ± 2.9 a | 6.0 ± 0.4 c | 49.3 ± 1.4 a | |
Dehydration period duration | 0 d | 90.0 ± 5.0 a | 31.7 ± 5.77 a | 10.2 ± 0.3 b | 29.2 ± 0.3 a |
2 d | 86.7 ± 2.9 ab | 30.0 ± 0.0 ab | 10.1 ± 0.3 b | 25.7 ± 1.6 ab | |
4 d | 83.3 ± 2.9 b | 25.0 ± 5.0 b | 10.1 ± 0.3 b | 22.7 ± 2.7 b | |
6 d | 71.7 ± 2.9 c | 8.3 ± 2.9 c | 10.7 ± 0.4 b | 16.5 ± 1.1 d | |
8 d | 51.7 ± 2.9 d | 5.0 ± 5.0 cd | 10.4 ± 0.3 b | 10.8 ± 1.1 e | |
10 d | 38.3 ± 2.9 e | 0.0 ± 0.0 d | 10.3 ± 0.5 b | 6.1 ± 0.5 f | |
12 d | 28.3 ± 2.9 f | 0.0 ± 0.0 d | 11.5 ± 0.4 a | 3.3 ± 0.4 g | |
14 d | 13.3 ± 2.9 g | 0.0 ± 0.0 d | 12.1 ± 0.5 a | 1.4 ± 0.3 g | |
16 d | 0.0 | – | – | – |
Study Object | Treatment | GP (%) | GE (%) | MGT (d) | VI |
---|---|---|---|---|---|
Temperature | 15 °C | 60.0 ± 5.0 d | 16.7 ± 2.9 e | 10.9 ± 0.8 a | 5.4 ± 0.6 f |
20 °C | 88.3 ± 5.8 a | 33.3 ± 5.8 b | 9.2 ± 0.4 b | 23.1 ± 1.2 c | |
25 °C | 90.0 ± 5.0 a | 31.7 ± 5.8 bc | 10.2 ± 0.3 a | 29.2 ± 0.3 b | |
30 °C | 83.3 ± 2.9 ab | 46.7 ± 2.9 a | 7.4 ± 0.6 c | 45.2 ± 1.2 a | |
35 °C | 33.3 ± 5.8 e | 30.0 ± 5.0 bcd | 4.3 ± 0.4 d | 9.4 ± 1.7 e | |
40 °C | 26.7 ± 2.9 e | 23.3 ± 2.9 de | 4.2 ± 0.5 d | 2.8 ± 0.3 g | |
20/10 °C | 68.3 ± 2.9 c | 25.0 ± 0.0 cd | 9.4 ± 0.2 b | 15.7 ± 0.7 d | |
30/15 °C | 78.3 ± 2.9 b | 36.7 ± 2.9 b | 8.9 ± 0.3 b | 30.2 ± 3.4 b | |
Light | Continuous darkness | 86.7 ± 2.9 a | 30.0 ± 5.0 a | – | – |
Continuous light | 91.7 ± 2.9 a | 33.3 ± 2.9 a | – | – | |
Periodic light | 88.3 ± 7.6 a | 31.7 ± 5.8 a | – | – | |
Substrate | Filter paper | 90.0 ± 5.0 a | 31.7 ± 5.8 a | 10.2 ± 0.3 a | 29.2 ± 0.3 b |
Sand | 88.3 ± 2.9 a | 33.3 ± 2.9 a | 10.0 ± 0.4 a | 34.5 ± 0.9 a | |
Clay loam | 85.0 ± 5.0 a | 30.0 ± 5.0 a | 10.2 ± 0.4 a | 25.7 ± 1.3 c | |
Sand + Clay loam | 85.0 ± 5.0 a | 30.0 ± 0.0 a | 9.8 ± 0.3 a | 27.8 ± 1.2 b | |
Burial depth | 0.0 cm | 86.7 ± 2.9 a | 28.3 ± 2.9 a | 9.7 ± 0.2 d | 29.8 ± 1.5 a |
0.5 cm | 28.3 ± 2.9 d | 0.0 ± 0.0 b | 15.0 ± 0.3 b | 3.6 ± 0.4 d | |
1.0 cm | 38.3 ± 2.9 c | 0.0 ± 0.0 b | 15.0 ± 0.1 b | 7.8 ± 0.5 c | |
3.0 cm | 66.7 ± 2.9 b | 0.0 ± 0.0 b | 13.9 ± 0.4 c | 17.3 ± 0.4 b | |
5.0 cm | 65.0 ± 5.0 b | 0.0 ± 0.0 b | 16.1 ± 0.3 a | 17.5 ± 0.9 b | |
PEG6000 | 0% | 95.6 ± 3.9 a | 46.7 ± 13.3 a | 7.7 ± 0.7 d | 20.6 ± 1.4 a |
5% | 82.2 ± 3.9 b | 40.0 ± 6.7 a | 7.9 ± 0.4 d | 17.1 ± 1.0 b | |
10% | 68.9 ± 3.9 c | 24.4 ± 3.9 b | 9.6 ± 0.6 c | 8.8 ± 1.0 c | |
15% | 48.9 ± 7.7 d | 4.4 ± 3.9 c | 11.8 ± 0.9 b | 3.5 ± 0.5 d | |
25% | 20.0 ± 6.7 e | 0.0 ± 0.0 c | 12.8 ± 0.8 ab | 0.5 ± 0.2 e | |
35% | 8.9 ± 3.9 f | 0.0 ± 0.0 c | 13.2 ± 0.8 a | 0.2 ± 0.1 e | |
NaCl | 0 mM | 95.6 ± 3.9 a | 46.7 ± 13.3 a | 7.7 ± 0.7 c | 20.6 ± 1.4 a |
100 mM | 82.2 ± 7.7 b | 26.7 ± 17.6 b | 9.3 ± 1.0 bc | 14.3 ± 2.4 b | |
200 mM | 48.9 ± 10.2 c | 11.1 ± 3.9 bc | 10.2 ± 1.1 b | 5.0 ± 1.0 c | |
300 mM | 42.2 ± 7.7 c | 0.0 ± 0.0 c | 13.2 ± 0.8 a | 2.3 ± 0.5 d | |
400 mM | 6.7 ± 0.0 d | 0.0 ± 0.0 c | 11.0 ± 1.0 b | 0.1 ± 0.0 d | |
Waterlogging | 0 d | 90.0 ± 0.0 a | 33.3 ± 2.9 a | 9.8 ± 0.3 a | 30.5 ± 1.5 a |
1 d | 86.7 ± 2.9 a | 33.3 ± 2.9 a | 9.4 ± 0.4 a | 29.5 ± 2.3 a | |
3 d | 65.0 ± 5.0 b | 30.0 ± 5.0 ab | 8.6 ± 0.1 b | 18.7 ± 2.3 b | |
5 d | 40.0 ± 5.0 c | 26.7 ± 2.9 b | 7.3 ± 0.3 c | 11.8 ± 1.8 c | |
7 d | 15.0 ± 5.0 d | 11.7 ± 2.9 c | 6.6 ± 0.5 d | 3.5 ± 1.1 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Xiao, Y.; Ling, Y.; Liao, N.; Wang, R.; Wang, Y.; Liang, H.; Li, J.; Chen, F. Effects of Seed Biological Characteristics and Environmental Factors on Seed Germination of the Critically Endangered Species Hopea chinensis (Merr.) Hand.-Mazz. in China. Forests 2023, 14, 1975. https://doi.org/10.3390/f14101975
Liu X, Xiao Y, Ling Y, Liao N, Wang R, Wang Y, Liang H, Li J, Chen F. Effects of Seed Biological Characteristics and Environmental Factors on Seed Germination of the Critically Endangered Species Hopea chinensis (Merr.) Hand.-Mazz. in China. Forests. 2023; 14(10):1975. https://doi.org/10.3390/f14101975
Chicago/Turabian StyleLiu, Xiongsheng, Yufei Xiao, Yaming Ling, Nanyan Liao, Renjie Wang, Yong Wang, Huizi Liang, Juan Li, and Fengfan Chen. 2023. "Effects of Seed Biological Characteristics and Environmental Factors on Seed Germination of the Critically Endangered Species Hopea chinensis (Merr.) Hand.-Mazz. in China" Forests 14, no. 10: 1975. https://doi.org/10.3390/f14101975
APA StyleLiu, X., Xiao, Y., Ling, Y., Liao, N., Wang, R., Wang, Y., Liang, H., Li, J., & Chen, F. (2023). Effects of Seed Biological Characteristics and Environmental Factors on Seed Germination of the Critically Endangered Species Hopea chinensis (Merr.) Hand.-Mazz. in China. Forests, 14(10), 1975. https://doi.org/10.3390/f14101975