Climatic Effects on Position and Dynamics of Upper Open Forest Boundary in Altay and Western Sayan in the Last 60 Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Estimation of Upper Open Forest Boundary Position for 1960s
2.3. Estimation of Contemporary Open Forest Boundary Position
2.4. Estimation of Shift in Open Forest Boundary Position for Period 1960–2020
2.5. Modeling of Spatial Pattern of Climate Parameters
3. Results
3.1. The Open Forest Boundaries’ Positions in the 1960s
3.2. Elevation of Open Forest Boundary in 1960s at Different Latitudes and Slope Aspects
3.3. Spatial Distribution of Air Temperature, Precipitation, and Sunshine Duration in Study Area
3.4. Relationship between Climatic Parameters and the Elevational Position of the Open Forest Boundary in the 1960s
3.5. Open Forest Boundary Elevational Position in 2020
3.6. Elevation and Shifts in the OFB from 1960 to 2020 and Changes in the Areas Occupied by Woody Vegetation
3.7. Changes in Climate Variables in Study area in 1960–2020
3.8. Model Evaluation
4. Discussion
4.1. Reasons for Spatial Variation in Open Forest Boundary Elevation in Altay and Western Sayan
4.2. Elevation of Upper Open Forest Boundary on Southern and Northern Slopes
4.3. The Upward Shift of the Open Forest Boundary over the Past 60 Years
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Churakova-Sidorova, O.V.; Myglan, V.S.; Fonti, M.V.; Naumova, O.V.; Kirdyanov, A.V.; Kalugin, I.A.; Babich, V.V.; Falster, G.M.; Vaganov, E.A.; Siegwolf, R.T.W.; et al. Modern aridity in the Altai-Sayan mountain range derived from multiple millennial proxies. Sci. Rep. 2022, 12, 7752. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, D.; Andreeva, M.; Li, Y.; Fan, L.; Tang, M. Temporal-spatial variability of modern climate in the Altai Mountains during 1970–2015. PLoS ONE 2020, 15, e0230196. [Google Scholar] [CrossRef] [PubMed]
- Körner, C. Carbon limitation in trees. J. Ecol. 2003, 91, 4–17. [Google Scholar] [CrossRef]
- Körner, C. Alpine Treelines; Springer: Basel, Switzerland, 2012; ISBN 978-3-0348-0395-3. [Google Scholar]
- Holtmeier, F.K.; Broll, G. Treeline research-from the roots of the past to present time: A review. Forests 2020, 11, 38. [Google Scholar] [CrossRef]
- Holtmeier, F.-K. Mountain Timberlines: Ecology, Patchiness, and Dynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; ISBN 978-1-4020-9705-8. [Google Scholar]
- Paulsen, J.; Körner, C. A climate-based model to predict potential treeline position around the globe. Alp. Bot. 2014, 124, 1–12. [Google Scholar] [CrossRef]
- Scherrer, D.; Körner, C. Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob. Chang. Biol. 2010, 16, 2602–2613. [Google Scholar] [CrossRef]
- Jobbágy Esteban, G.; Jackson, R.B. Global controls of forest line elevation in the northern and southern hemispheres. Glob. Ecol. Biogeogr. 2000, 9, 253–268. [Google Scholar] [CrossRef]
- Klinge, M.; Dulamsuren, C.; Erasmi, S.; Karger, D.N.; Hauck, M. Climate effects on vegetation vitality at the treeline of boreal forests of Mongolia. Biogeosciences 2018, 15, 1319–1333. [Google Scholar] [CrossRef]
- Gorchakovsky, P.L.; Shiyatov, S.G. Phytoindication of Environmental Conditions and Natural Processes in High Mountains; Nauka: Moskow, Russia, 1985. [Google Scholar]
- Klinge, M.; Böhner, J.; Erasmi, S. Modeling forest lines and forest distribution patterns with remote-sensing data in a mountainous region of semiarid central Asia. Biogeosciences 2015, 12, 2893–2905. [Google Scholar] [CrossRef]
- Dashtseren, A.; Ishikawa, M.; Iijima, Y.; Jambaljav, Y. Temperature Regimes of the Active Layer and Seasonally Frozen Ground under a Forest-Steppe Mosaic, Mongolia: Temperature Regimes of the Active Layer and Seasonally Frozen Ground, Mongolia. Permafr. Periglac. Process. 2014, 25, 295–306. [Google Scholar] [CrossRef]
- Måren, I.E.; Karki, S.; Prajapati, C.; Yadav, R.K.; Shrestha, B.B. Facing north or south: Does slope aspect impact forest stand characteristics and soil properties in a semiarid trans-Himalayan valley? J. Arid Environ. 2015, 121, 112–123. [Google Scholar] [CrossRef]
- Klinge, M.; Böhner, J.; Lehmkuhl, F. Climate pattern, snow- and timberlines in the Altai Mountains, Central Asia. Erdkunde 2003, 57, 296–307. [Google Scholar] [CrossRef]
- Böhner, J.; Selige, T. Spatial prediction of soil attributes using terrain analysis and climate regionalization. Gott. Geograpihsche Abh. 2002, 115, 13–27. [Google Scholar]
- Petrov, I.A.; Shushpanov, A.S.; Golyukov, A.S.; Kharuk, V.I. Pinus sibirica Du Tour response to climate change in the forests of the kuznetsk alatau mountains. Sib. J. For. Sci. 2019, 5, 43–53. [Google Scholar] [CrossRef]
- Khutornoy, O.V. Structure and dynamics of conifers tree line in the mountains of southern siberia. Proc. Tigirek State Nat. Reserv. 2015, 7, 210–215. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Im, S.T.; Dvinskaya, M.L. Forest-tundra ecotone response to climate change in the Western Sayan Mountains, Siberia. Scand. J. For. Res. 2010, 25, 224–233. [Google Scholar] [CrossRef]
- Kienle, D.R.; Irl, S.D.H.; Beierkuhnlein, C. Mass elevation effect and continentality have a stronger impact on global treelines than spatial isolation. Glob. Ecol. Biogeogr. 2023, 32, 1087–1097. [Google Scholar] [CrossRef]
- Kharlamova, N.; Kozlova, D. Statistical Characteristics of Atmospheric Precipitation Regime in the Altai Region. News Altai State Univ. 2014, 1, 145–150. [Google Scholar] [CrossRef]
- Pryakhina, G.V.; Zelepukina, E.S.; Osipova, T.N.; Gavrilkina, S.A.; Solovyev, V.A.; Vinogradova, T.A. Seasonal distribution patterns of precipitation on the territory of West Sayan ridge and taking them into account during the runoff modeling. Vestn. Saint Petersbg. Univ. Earth Sci. 2019, 64, 466–476. [Google Scholar] [CrossRef]
- Kharlamova, N. Klimat Altaiskogo Regiona [Climate of Altay Region]; Altay State University: Barnaul, Russia, 2013. [Google Scholar]
- Sinergise Ltd. EO Browser. Available online: https://www.sentinel-hub.com/explore/eobrowser (accessed on 16 August 2023).
- Hart, T.S.; Greene, S.L.; Afonin, A. Mapping for Germplasm Collections: Site Selection and Attribution. In Proceedings of the 3rd International Conference/Workshop on Integrating GIS and Environmental Modeling, Santa Fe, NM, USA, 21–25 January 1996; National Center for Geographic Information and Analysis (NCGIA): Santa Barbara, CA, USA, 1996. [Google Scholar]
- Veselov, V.; Pribilskaya, I.M.O. АИСОРИ. Available online: http://aisori-m.meteo.ru/waisori/ (accessed on 16 August 2023).
- Berrar, D. Cross-validation. Encycl. Bioinforma. Comput. Biol. ABC Bioinform. 2018, 1–3, 542–545. [Google Scholar] [CrossRef]
- Grafius, D.R. Distribution and Biomass Dynamics of the Alpine Treeline Ecotone Across the Western United States. Ph.D. Thesis, University of Iowa, Iowa City, IA, USA, 2012. [Google Scholar]
- Climate Diagrams and Normals per Station. Available online: https://www.meteoswiss.admin.ch/climate/the-climate-of-switzerland/climate-normals/climate-diagrams-and-normals-per-station.html (accessed on 16 August 2023).
- Szerencsits, E. Swiss Tree Lines—A GIS-Based Approximation. Landsc. Online 2012, 28, 1–18. [Google Scholar] [CrossRef]
- Quervain, A. Die Hebung der Atmosphärischen Lsothermenin der Schweizer Alpen und ihre Beziehung zu deren Höhengrenzen; Forgotten Books: Leipzig, Germany, 1904. [Google Scholar]
- Brockmann-Jerosch, H. Baumgrenze und Klimacharakter. Beiträge zur geobotanischen Landesaufnahme 6; Verlag von Rascher & Cie: Zurich, Switzerland, 1919; Volume 255. [Google Scholar]
- Zhang, B.; Yao, Y. Implications of mass elevation effect for the altitudinal patterns of global ecology. J. Geogr. Sci. 2016, 26, 871–877. [Google Scholar] [CrossRef]
- Irl, S.D.H.; Anthelme, F.; Harter, D.E.V.; Jentsch, A.; Lotter, E.; Steinbauer, M.J.; Beierkuhnlein, C. Patterns of island treeline elevation—A global perspective. Ecography (Cop.) 2016, 39, 427–436. [Google Scholar] [CrossRef]
- Troll, C. The Upper Timberlines in Different Climatic Zones. Arct. Alp. Res. 1973, 5, 3–18. [Google Scholar]
- Beloiu, M.; Poursanidis, D.; Tsakirakis, A.; Chrysoulakis, N.; Hoffmann, S.; Lymberakis, P.; Barnias, A.; Kienle, D.; Beierkuhnlein, C. No treeline shift despite climate change over the last 70 years. For. Ecosyst. 2022, 9, 100002. [Google Scholar] [CrossRef]
- Dulamsuren, C.; Hauck, M.; Khishigjargal, M.; Leuschner, H.H.; Leuschner, C. Diverging climate trends in Mongolian taiga forests influence growth and regeneration of Larix sibirica. Oecologia 2010, 163, 1091–1102. [Google Scholar] [CrossRef]
- van den Besselaar, E.J.M.; Sanchez-Lorenzo, A.; Wild, M.; Klein Tank, A.M.G.; de Laat, A.T.J. Relationship between sunshine duration and temperature trends across Europe since the second half of the twentieth century. J. Geophys. Res. 2015, 120, 10823–10836. [Google Scholar] [CrossRef]
- Macias-Fauria, M.; Johnson, E.A. Warming-induced upslope advance of subalpine forest is severely limited by geomorphic processes. Proc. Natl. Acad. Sci. USA 2013, 110, 8117–8122. [Google Scholar] [CrossRef]
- Hagedorn, F.; Gavazov, K.; Alexander, J.M. Above- and belowground linkages shape responses of mountain vegetation to climate change. Science 2019, 365, 1119–1123. [Google Scholar] [CrossRef]
- Brodersen, C.R.; Germino, M.J.; Johnson, D.M.; Reinhardt, K.; Smith, W.K.; Resler, L.M.; Bader, M.Y.; Sala, A.; Kueppers, L.M.; Broll, G.; et al. Seedling Survival at Timberline Is Critical to Conifer Mountain Forest Elevation and Extent. Front. For. Glob. Chang. 2019, 2, 9. [Google Scholar] [CrossRef]
Equation | Free Term | Coefficients with Independent Variables | Multiply R | R2 | ||||
---|---|---|---|---|---|---|---|---|
Summer Air Temperature | Summer Sunshine Duration | Summer Precipitation | Winter Precipitation | Product of Air Temperature by Sunshine Duration | ||||
A | 1559.7 | −37.50 | 1.70 | −3.00 | 1.90 | 0.90 | 0.80 | |
p-value | 0.13 | 0.62 | 0.23 | 0.06 | ||||
B | −585.9 | −50.02 | 4.10 | 0.08 | 0.89 | 0.80 | ||
p-value | 0.05 | 0.24 | 0.97 | |||||
C | −461.1 | −49.81 | 3.96 | 0.89 | 0.80 | |||
p-value | <0.05 | <0.05 | ||||||
D | 1531.0 | −232.28 | 1.13 | 0.26 | 0.89 | 0.80 | ||
p-value | 0.31 | 0.75 | 0.42 |
Aspect | Average Shift Area, ha | Mean of Shift Area per 1 km of Borderline in 1960s, ha |
---|---|---|
E | 302.0 | 15.1 |
N | 397.7 | 17.3 |
NE | 397.3 | 15.3 |
NW | 422.3 | 15.1 |
Mean N-NE-NW | 405.8 | 15.9 |
S | 409.6 | 17.8 |
SE | 517.0 | 18.5 |
SW | 531.1 | 19.0 |
W | 348.4 | 15.2 |
Mean S-SE-SW | 465.5 | 17.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moiseev, P.A.; Nizametdinov, N.F. Climatic Effects on Position and Dynamics of Upper Open Forest Boundary in Altay and Western Sayan in the Last 60 Years. Forests 2023, 14, 1987. https://doi.org/10.3390/f14101987
Moiseev PA, Nizametdinov NF. Climatic Effects on Position and Dynamics of Upper Open Forest Boundary in Altay and Western Sayan in the Last 60 Years. Forests. 2023; 14(10):1987. https://doi.org/10.3390/f14101987
Chicago/Turabian StyleMoiseev, Pavel A., and Nail’ F. Nizametdinov. 2023. "Climatic Effects on Position and Dynamics of Upper Open Forest Boundary in Altay and Western Sayan in the Last 60 Years" Forests 14, no. 10: 1987. https://doi.org/10.3390/f14101987
APA StyleMoiseev, P. A., & Nizametdinov, N. F. (2023). Climatic Effects on Position and Dynamics of Upper Open Forest Boundary in Altay and Western Sayan in the Last 60 Years. Forests, 14(10), 1987. https://doi.org/10.3390/f14101987