Sustainability of Forest Eco-Products: Comprehensive Analysis and Future Research Directions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Analysis
3.1. Analysis of the Change in Characteristics of Literature Quantity
3.2. Analysis of Journals Published
3.3. Analysis of Research Institutions
3.4. Analysis of Authors’ Collaborative Networks
3.5. Research Hotspot
3.5.1. Keywords Co-Linear Network Analysis
3.5.2. Keywords Cluster Analysis
- Application of science, technology, and assessment models to forest ecological products: The advancement of science and technology played a crucial role in the development of forest ecosystem products. By compiling and analyzing statistical data, it was possible to gauge the developmental status of forest ecosystem products. This approach also facilitated a more in-depth exploration of innovation within forest ecosystem products, thereby ensuring their sustainable development. For instance, the application of remote sensing technology enabled the monitoring of the health status and trends of forest ecosystems. This timely detection of issues allowed for prompt interventions, such as in cases of forest fires, ensuring the sustainability of forest ecosystem products [69]. Additionally, remote sensing technology could be combined with other techniques to simulate ecosystems, investigating the relationship between the diversity of forest ecosystem functions and productivity [70]. Various other technologies, such as geographic information systems (GIS) and sensor technology, were extensively employed in the study of forest ecosystem products [71,72,73,74]. Furthermore, while researching forest ecosystem products, models were often employed for data analysis and forecasting. These models aided in the formulation of more scientific and feasible forest management plans. For instance, machine learning algorithms and random forests were commonly employed [75,76,77,78].
- The main products and by-products of forests are: The principal and by-products of forests, as part of the material product supply within forest ecosystem products, have long been the focus of researchers’ attention. The study encompasses various aspects, including trade pricing and sustainable development of timber and non-timber forest products [79,80,81,82,83]. In terms of research on timber product trade, Zhang, and Ying argued that the implementation of China’s new logging ban policy in natural forests would reduce China’s timber supply and consequently impact the international timber market. For instance, Viola, Di C examined individual consumption intentions towards non-wood forest products, using three European countries as examples. The study revealed that people’s motivation for consuming non-wood forest products like mushrooms was primarily for recreational purposes. As a result, consumers exhibited a high degree of demand elasticity, implying that their consumption intentions would not substantially decrease even with higher prices [84].
- Urban forest ecosystem services: The research on urban forest ecosystems not only addressed climate change and environmental challenges but also provided habitats for plants, microorganisms, and animals within urban areas, simultaneously offering psychological healing to humans. These ecosystems also held significant economic value, generating income through eco-tourism in urban settings. In recent years, an increasing number of scholars have incorporated urban forest ecosystems into sustainable urban planning [37,85,86,87].
- Interactions Between Ecosystem Function and Biodiversity: The reciprocal mechanisms between biodiversity and ecosystem function have been a prominent subject of research [33,52,54,55]. Ecosystem functions encompass a range of services provided to human society, and biodiversity safeguards the realization of these services. The loss of biodiversity may result in impaired ecosystem functionality, subsequently affecting the services rendered by the ecosystem, such as water source protection and air purification [88,89,90,91].
- Sustainable forest management: Sustainable forest management encompasses a number of research aspects, including ecological conservation and restoration, sustainable use of wood and non-wood resources, and maintenance of ecosystem services. It was more of a concept that human beings adhered to in order to maintain forest resources and ensure that the ecological, economic, and social well-being of forests could be enjoyed in the future as well, and research on it covered all aspects of forest ecological products. Forest certification has also received much attention recently as an indicator of sustainable management objectives [92,93].
- Research on the economic value of forest ecological products: Chinese scholars’ investigations into forest ecological products have predominantly focused on their economic benefits. The study of the economic value of forest ecological products has emerged as a primary area of interest in recent years. This encompasses two main aspects: firstly, the economic valuation of forest ecological products, and secondly, research into the mechanisms and pathways for realizing the economic value of these products. Apart from assessing the overall value of forest ecological products in China [62,65], Chinese researchers have also provided corresponding economic valuation estimation data and implementation pathways based on the varying endowments of forest resources and policies across different regions in China [63]. Additionally, the unexpected emergence of the concept of an “ecological bank” has lent robust support to the pathways for realizing the value of forest products [22].
- Research on the economic value of forest ecological products: This research encompassed associations between the functional characteristics of plants and the services provided by forest ecosystems [94], the efficacy of microbial applications in forestry production [95], the positive role of measuring water conservation functions in assessing forest ecological value [30,96], and the role of soil retention in restraining soil erosion and thereby maintaining the security functions of the ecosystem [97]. Furthermore, with the carbon neutrality target proposed by China, research related to forest carbon sequestration has garnered increasing attention [98].
- Sustainable Forest Management: Research on sustainable forest management within the country primarily focused on studies related to the restoration of degraded forest ecosystems [99]. Additionally, ZHU, Jiao J conducted research on the impact of secondary forest ecological conservation systems in Northeast China as an experimental subject, contributing significantly to the theory of sustainable forest development and its crucial role in ecosystem restoration [100].
3.6. Research Evolution Trends
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ellison, D.; Morris, C.E.; Locatelli, B.; Sheil, D.; Cohen, J.; Murdiyarso, D.; Gutierrez, V.; Noordwijk, M.V.; Creed, I.F.; Pokorny, J.; et al. Trees, Forests and Water: Cool Insights for a Hot World. Glob. Environ. Chang. 2017, 43, 51–61. [Google Scholar] [CrossRef]
- Trumbore, S.; Brando, P.; Hartmann, H. Forest Health and Global Change. Science 2015, 349, 814–818. [Google Scholar] [CrossRef] [PubMed]
- Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Brando, P.M.; Morton, D.C.; Lawrence, D.M.; Yang, H.; Randerson, J.T. Deforestation-Induced Climate Change Reduces Carbon Storage in Remaining Tropical Forests. Nat. Commun. 2022, 13, 1964. [Google Scholar] [CrossRef] [PubMed]
- Phillips, O.L.; Aragão, L.E.O.C.; Lewis, S.L.; Fisher, J.B.; Lloyd, J.; López-González, G.; Malhi, Y.; Monteagudo, A.; Peacock, J.; Quesada, C.A.; et al. Drought Sensitivity of the Amazon Rainforest. Science 2009, 323, 1344–1347. [Google Scholar] [CrossRef] [PubMed]
- Abram, N.J.; Henley, B.J.; Sen Gupta, A.; Lippmann, T.J.R.; Clarke, H.; Dowdy, A.J.; Sharples, J.J.; Nolan, R.H.; Zhang, T.; Wooster, M.J.; et al. Connections of Climate Change and Variability to Large and Extreme Forest Fires in Southeast Australia. Commun. Earth Environ. 2021, 2, 8. [Google Scholar] [CrossRef]
- Marchi, E.; Chung, W.; Visser, R.; Abbas, D.; Nordfjell, T.; Mederski, P.S.; McEwan, A.; Brink, M.; Laschi, A. Sustainable Forest Operations (SFO): A New Paradigm in a Changing World and Climate. Sci. Total Environ. 2018, 634, 1385–1397. [Google Scholar] [CrossRef]
- Koutika, L.-S.; Matondo, R.; Mabiala-Ngoma, A.; Tchichelle, V.S.; Toto, M.; Madzoumbou, J.-C.; Akana, J.A.; Gomat, H.Y.; Mankessi, F.; Mbou, A.T.; et al. Sustaining Forest Plantations for the United Nations’ 2030 Agenda for Sustainable Development. Sustainability 2022, 14, 14624. [Google Scholar] [CrossRef]
- Scharlemann, J.P.W.; Brock, R.C.; Balfour, N.; Brown, C.; Burgess, N.D.; Guth, M.K.; Ingram, D.J.; Lane, R.; Martin, J.G.C.; Wicander, S.; et al. Towards Understanding Interactions between Sustainable Development Goals: The Role of Environment–Human Linkages. Sustain. Sci. 2020, 15, 1573–1584. [Google Scholar] [CrossRef]
- Ferrario, P.; Fumagalli, N.; Senes, G.; Toccolini, A. Composite Assessment of Productive, Protective and Recreational Functions in Forest Planning. Environ. Eng. Manag. J. 2014, 13, 1277–1290. [Google Scholar] [CrossRef]
- Chen, S.L. Comprehensively promote the construction project of national forest ecological labeling products. China For. Ind. 2020, 16–21. [Google Scholar]
- Liyao, Y.U.; Tian, S.H.I.; Jingjing, G.U.O. Developing Mechanisms to Realize the Value of Forest Ecological Products. For. Resour. Manag. 2019, 28. [Google Scholar] [CrossRef]
- Kindler, E. A Comparison of the Concepts: Ecosystem Services and Forest Functions to Improve Interdisciplinary Exchange. For. Policy Econ. 2016, 67, 52–59. [Google Scholar] [CrossRef]
- Gutsch, M.; Lasch-Born, P.; Kollas, C.; Suckow, F.; Reyer, C.P.O. Balancing Trade-Offs between Ecosystem Ser vices in Germany’s Forests under Climate Change. Environ. Res. Lett. 2018, 13, 045012. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Schoenemann, M.; López-Felices, B. An Analysis of the Worldwide Research on the Socio-Cultural Valuation of Forest Ecosystem Services. Sustainability 2022, 14, 2089. [Google Scholar] [CrossRef]
- Peng, W.Y.; Wei, C.X.J. The Supply Capacity Improvement and Value Realization Path of Ecological Products in Beijing-Tianjin-Hebei. China Bus. Mark. 2021, 35, 49–60. [Google Scholar] [CrossRef]
- Dai, F.; Feng, X.M.; Song, X.F. Game Analysis on Forest Eco-products Supply. World For. Res. 2013, 26, 93–96. [Google Scholar] [CrossRef]
- Niu, X.; Wang, B.; Liu, S.; Liu, C.; Wei, W.; Kauppi, P.E. Economical Assessment of Forest Ecosystem Services in China: Characteristics and Implications. Ecol. Complex. 2012, 11, 1–11. [Google Scholar] [CrossRef]
- Zhu, Z.; Huang, C.M.; Xu, Z.G.; Shen, Y.Q.; Bai, J.D. How risk attitude of farmers influences the supply willing ness of forest carbon sequestration in Zhejiang Province. Resour. Sci. 2016, 38, 565–575. [Google Scholar]
- Gao, J.Z. On Forest Ecological Product-The Function of Forest Ecological Environment on the Base of Product Concept. China For. Econ. 2007, 17–19+37. [Google Scholar]
- Zhang, L.B.; Yu, H.Y.; Li, D.Q.; Jia, Z.Y.; Wu, F.C.; Liu, X. Connotation and Value Implementation Mechanism of Ecological Products. Trans. Chin. Soc. Agric. Mach. 2019, 50, 173–183. [Google Scholar]
- Wu, X.Y.; Li, X. Eco-bank Innovation Mechanism Enabling Ecological Product Value Realization. World For. Res. 2023, 36, 128–134. [Google Scholar] [CrossRef]
- Kauppi, P.E.; Stål, G.; Arnesson-Ceder, L.; Hallberg Sramek, I.; Hoen, H.F.; Svensson, A.; Wernick, I.K.; Högberg, P.; Lundmark, T.; Nordin, A. Managing Existing Forests Can Mitigate Climate Change. For. Ecol. Manag. 2022, 513, 120186. [Google Scholar] [CrossRef]
- Lin, B.; Ge, J. Valued Forest Carbon Sinks: How Much Emissions Abatement Costs Could Be Reduced in China. J. Clean. Prod. 2019, 224, 455–464. [Google Scholar] [CrossRef]
- Miura, S.; Amacher, M.; Hofer, T.; San-Miguel-Ayanz, J.; Ernawati; Thackway, R. Protective Functions and Eco system Services of Global Forests in the Past Quarter-Century. For. Ecol. Manag. 2015, 352, 35–46. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Chen, C.; Song, M. Visualizing a Field of Research: A Methodology of Systematic Scientometric Reviews. PLoS ONE 2019, 14, e0223994. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, L.; Peng, W.; Zhang, C.; Li, C.; Robinson, B.E.; Wu, X.; Kong, L.; Li, R.; Xiao, Y.; et al. Realizing the Values of Natural Capital for Inclusive, Sustainable Development: Informing China’s New Ecological Development Strategy. Proc. Natl. Acad. Sci. USA 2019, 116, 8623–8628. [Google Scholar] [CrossRef]
- Sheng, W.; Zhen, L.; Xie, G.; Xiao, Y. Determining Eco-Compensation Standards Based on the Ecosystem Ser vices Value of the Mountain Ecological Forests in Beijing, China. Ecosyst. Serv. 2017, 26, 422–430. [Google Scholar] [CrossRef]
- Biao, Z.; Wenhua, L.; Gaodi, X.; Yu, X. Water Conservation of Forest Ecosystem in Beijing and Its Value. Ecol. Econ. 2010, 69, 1416–1426. [Google Scholar] [CrossRef]
- Xia, J.; Chen, J.; Piao, S.; Ciais, P.; Luo, Y.; Wan, S. Terrestrial Carbon Cycle Affected by Non-Uniform Climate Warming. Nat. Geosci. 2014, 7, 173–180. [Google Scholar] [CrossRef]
- Yang, F.; Ichii, K.; White, M.A.; Hashimoto, H.; Michaelis, A.R.; Votava, P.; Zhu, A.-X.; Huete, A.; Running, S.W.; Nemani, R.R. Developing a Continental-Scale Measure of Gross Primary Production by Combining MODIS and AmeriFlux Data through Support Vector Machine Approach. Remote Sens. Environ. 2007, 110, 109–122. [Google Scholar] [CrossRef]
- Zhu, L.; Hughes, A.C.; Zhao, X.-Q.; Zhou, L.-J.; Ma, K.-P.; Shen, X.-L.; Li, S.; Liu, M.-Z.; Xu, W.-B.; Watson, J.E.M. Regional Scalable Priorities for National Biodiversity and Carbon Conservation Planning in Asia. Sci. Adv. 2021, 7, eabe4261. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Xiao, C.; Feng, Z.; Chen, Y. Land-Planning Management Based on Multiple Ecosystem Services and Simulation in Tropical Forests. J. Environ. Manag. 2022, 323, 116216. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yu, X.; Jiang, M.; Xue, Z.; Lu, X.; Zou, Y. A Consistent Ecosystem Services Valuation Method Based on Total Economic Value and Equivalent Value Factors: A Case Study in the Sanjiang Plain, Northeast China. Ecol. Complex. 2017, 29, 40–48. [Google Scholar] [CrossRef]
- Pan, Q.; Wen, Z.; Wu, T.; Zheng, T.; Yang, Y.; Li, R.; Zheng, H. Trade-Offs and Synergies of Forest Ecosystem Services from the Perspective of Plant Functional Traits: A Systematic Review. Ecosyst. Serv. 2022, 58, 101484. [Google Scholar] [CrossRef]
- Lin, J.; Kroll, C.N.; Nowak, D.J.; Greenfield, E.J. A Review of Urban Forest Modeling: Implications for Management and Future Research. Urban For. Urban Green. 2019, 43, 126366. [Google Scholar] [CrossRef]
- Tanner, S.J.; Escobedo, F.J.; Soto, J.R. Recognizing the Insurance Value of Resilience: Evidence from a Forest Restoration Policy in the Southeastern U.S. J. Environ. Manag. 2021, 289, 112442. [Google Scholar] [CrossRef]
- Stanturf, J.A.; Palik, B.J.; Dumroese, R.K. Contemporary Forest Restoration: A Review Emphasizing Function. For. Ecol. Manag. 2014, 331, 292–323. [Google Scholar] [CrossRef]
- Vose, J.M.; Sun, G.; Ford, C.R.; Bredemeier, M.; Otsuki, K.; Wei, X.; Zhang, Z.; Zhang, L. Forest Ecohydrological Research in the 21st Century: What Are the Critical Needs? Ecohydrology 2011, 4, 146–158. [Google Scholar] [CrossRef]
- Hill, B.H.; Kolka, R.K.; McCormick, F.H.; Starry, M.A. A Synoptic Survey of Ecosystem Services from Headwater Catchments in the United States. Ecosyst. Serv. 2014, 7, 106–115. [Google Scholar] [CrossRef]
- Kauppi, P.E.; Birdsey, R.A.; Pan, Y.; Ihalainen, A.; Nöjd, P.; Lehtonen, A. Effects of Land Management on Large Trees and Carbon Stocks. Biogeosciences 2015, 12, 855–862. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.J.; Wang, Y.Q.; Zhang, H.L.; Zhu, J.Q.; Li, Y.P.; Liu, N. Value assessment on service function of forest ecosystem in Jinyun Mountain, Chongqing City of southwestern China. J. Beijing For. Univ. 2013, 35, 46–55. [Google Scholar] [CrossRef]
- Ge, Y.Y.; Xin, B.Y.; Li, X. Urban forest construction based on ecosystem service function improvement in warm temperate semi-humid areas. J. Beijing For. Univ. 2020, 42, 127–141. [Google Scholar]
- Wang, Y.S.; Yu, X.X.; Jia, G.D.; Yin, W.L.; Zhai, M.P.; Wang, X.; Zheng, P.F. Review on Ecological Forestry Development in Beijing Metropolis. World For. Res. 2021, 34, 6–13. [Google Scholar] [CrossRef]
- Yu, X.X.; Zhou, B.; Lv, X.Z.; Yang, Z.G. Evaluation of water conservation function in mountain forest areas of Beijing based on InVEST model. Sci. Silvae Sin. 2012, 48, 1–5. [Google Scholar]
- He, S.X.; Li, X.Y.; Mo, F.; Zhou, B.; Gao, G.L. The water conservation study of typical forest ecosystems in the forest transect of eastern China. Acta Ecol. Sin. 2011, 31, 3285–3295. [Google Scholar]
- Liu, L.X.; Liu, C.Z.; Mao, Z.J. Evaluation of forest ecosystem service functions in Fenglin Biosphere Nature Reserve, Heilongjiang Province. J. Beijing For. Univ. 2011, 33, 38–44. [Google Scholar] [CrossRef]
- Han, L.H.; Tian, G.S.; Gao, H. Impact of Industrial Integration on the Development of Forest Rehabilitation Industry. J. Northeast. For. Univ. 2021, 49, 100–105. [Google Scholar] [CrossRef]
- Chen, H. Contingent Valuation Method Applied in the Assessment of Forestry Ecological Tourism Product Value. For. Econ. 2005, 60–62. [Google Scholar] [CrossRef]
- Hao, J.F.; Jin, S.; Ma, Q.Y.; Lei, R.D.; Zhou, X.F. The influence of climate change on the structure and productivity of the typical forest ecosystem in the warm temperate Zone. J. Arid Land Resour. Environ. 2008, 22, 63–69. [Google Scholar]
- Bruelheide, H.; Nadrowski, K.; Assmann, T.; Bauhus, J.; Both, S.; Buscot, F.; Chen, X.; Ding, B.; Durka, W.; Erfmeier, A.; et al. Designing Forest Biodiversity Experiments: General Considerations Illustrated by a New Large Experiment in Subtropical China. Methods Ecol. Evol. 2014, 5, 74–89. [Google Scholar] [CrossRef]
- Bruelheide, H.; Chen, Y.; Huang, Y.; Ma, K.; Niklaus, P.A.; Schmid, B. Response to Comment on “Impacts of Species Richness on Productivity in a Large-Scale Subtropical Forest Experiment”. Science 2019, 363, eaav9863. [Google Scholar] [CrossRef] [PubMed]
- Isbell, F.; Craven, D.; Connolly, J.; Loreau, M.; Schmid, B.; Beierkuhnlein, C.; Bezemer, T.M.; Bonin, C.; Bruelheide, H.; De Luca, E.; et al. Biodiversity Increases the Resistance of Ecosystem Productivity to Climate Extremes. Nature 2015, 526, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Van Der Plas, F.; Manning, P.; Allan, E.; Scherer-Lorenzen, M.; Verheyen, K.; Wirth, C.; Zavala, M.A.; Hector, A.; Ampoorter, E.; Baeten, L.; et al. Jack-of-All-Trades Effects Drive Biodiversity–Ecosystem Multifunctionality Relationships in European Forests. Nat. Commun. 2016, 7, 11109. [Google Scholar] [CrossRef] [PubMed]
- Plas, F.; Ratcliffe, S.; Ruiz-Benito, P.; Scherer-Lorenzen, M.; Verheyen, K.; Wirth, C.; Zavala, M.A.; Ampoorter, E.; Baeten, L.; Barbaro, L.; et al. Continental Mapping of Forest Ecosystem Functions Reveals a High but Unrealised Potential for Forest Multifunctionality. Ecol. Lett. 2018, 21, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Muys, B.; Baeten, L.; Bruelheide, H.; De Wandeler, H.; Desie, E.; Hättenschwiler, S.; Jactel, H.; Jaroszewicz, B.; Jucker, T.; et al. Climatic Conditions, Not above- and Belowground Resource Availability and Uptake Capacity, Mediate Tree Diversity Effects on Productivity and Stability. Sci. Total Environ. 2022, 812, 152560. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, F.M.; Keeton, W.S.; Lindner, M.; Svoboda, M.; Verkerk, P.J.; Bauhus, J.; Bruelheide, H.; Burrascano, S.; Debaive, N.; Duarte, I.; et al. Protection Gaps and Restoration Opportunities for Primary Forests in Europe. Divers. Distrib. 2020, 26, 1646–1662. [Google Scholar] [CrossRef]
- Sun, G.; Wei, X.; Hao, L.; Sanchis, M.G.; Hou, Y.; Yousefpour, R.; Tang, R.; Zhang, Z. Forest Hydrology Modeling Tools for Watershed Management: A Review. For. Ecol. Manag. 2023, 530, 120755. [Google Scholar] [CrossRef]
- Sun, G.; Caldwell, P.V.; McNulty, S.G. Modelling the Potential Role of Forest Thinning in Maintaining Water Supplies under a Changing Climate across the Conterminous United States. Hydrol. Process. 2015, 29, 5016–5030. [Google Scholar] [CrossRef]
- Duan, K.; Sun, G.; Sun, S.; Caldwell, P.V.; Cohen, E.C.; McNulty, S.G.; Aldridge, H.D.; Zhang, Y. Divergence of Ecosystem Services in U.S. National Forests and Grasslands under a Changing Climate. Sci. Rep. 2016, 6, 24441. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Ren, X.X.; Hu, W. Assessment of forest ecosystem services value in China. Sci. Silvae Sin. 2011, 47, 145–153. [Google Scholar]
- Wang, B.; Lu, S.W.; You, W.Z.; Ren, X.X.; Xing, Z.K.; Wang, S.M. Evaluation of forest ecosystem services value in Liaoning Province. Chin. J. Appl. Ecol. 2010, 21, 1792–1798. [Google Scholar] [CrossRef]
- Wang, B.; Ren, X.X.; Hu, W. Regional variation of forest ecosystem services in China. J. Beijing For. Univ. 2011, 33, 43–47. [Google Scholar] [CrossRef]
- Wang, B.; Niu, X.; Song, Q.F. Forest ecosystem service assessment and path design of value-oriented realization in China. Environ. Prot. 2020, 48, 28–36. [Google Scholar] [CrossRef]
- Song, Q.F.; Niu, X.; Wang, B. Review on forest ecosystem services assessment based on big data. Chin. J. Ecol. 2015, 34, 2914–2921. [Google Scholar] [CrossRef]
- Kong, F.B.; Wang, N.; Xu, C.Y. Value Realization Efficiency of Forest Ecological Products in the Birthplace of “Two Mountains” Idea. Sci. Silvae Sin. 2022, 58, 12–22. [Google Scholar]
- Kong, F.B.; Cui, M.Y.; Xu, C.Y.; Lu, Y.; Shen, Y.Q. Impact of the Realization of Values of Forest Ecological Prod ucts on the Urban-Rural Gap in Zhejiang Province. Sci. Silvae Sin. 2023, 59, 31–43. [Google Scholar]
- Crowley, M.A.; Stockdale, C.A.; Johnston, J.M.; Wulder, M.A.; Liu, T.; McCarty, J.L.; Rieb, J.T.; Cardille, J.A.; White, J.C. Towards a Whole-system Framework for Wildfire Monitoring Using Earth Observations. Glob. Chang. Biol. 2023, 29, 1423–1436. [Google Scholar] [CrossRef]
- Schneider, F.D.; Longo, M.; Paul-Limoges, E.; Scholl, V.M.; Schmid, B.; Morsdorf, F.; Pavlick, R.P.; Schimel, D.S.; Schaepman, M.E.; Moorcroft, P.R. Remote Sensing-Based Forest Modeling Reveals Positive Effects of Functional Diversity on Productivity at Local Spatial Scale. J. Geophys. Res. Biogeosci. 2023, 128, e2023JG007421. [Google Scholar] [CrossRef]
- Zerouali, B.; Santos, C.A.G.; Do Nascimento, T.V.M.; Silva, R.M.D. A Cloud-Integrated GIS for Forest Cover Loss and Land Use Change Monitoring Using Statistical Methods and Geospatial Technology over Northern Algeria. J. Environ. Manag. 2023, 341, 118029. [Google Scholar] [CrossRef] [PubMed]
- Irina, L.-T.; Javier, B.-P.; Maria Teresa, C.-B.; Euridice, L.-A.; Luz Maria del Carrnen, C.-I. Integrating Ecological and Socioeconomic Criteria in a GIS-Based Multicriteria-Multiobjective Analysis to Develop Sustainable Harvesting Strategies for Mexican Oregano Lippia Graveolens Kunth, a Non-Timber Forest Product. Land Use Policy 2019, 81, 668–679. [Google Scholar] [CrossRef]
- Nolde, M.; Mueller, N.; Strunz, G.; Riedlinger, T. Assessment of Wildfire Activity Development Trends for East ern Australia Using Multi-Sensor Earth Observation Data. Remote Sens. 2021, 13, 4975. [Google Scholar] [CrossRef]
- Burgess, S.S.O.; Kranz, M.L.; Turner, N.E.; Cardell-Oliver, R.; Dawson, T.E. Harnessing Wireless Sensor Technologies to Advance Forest Ecology and Agricultural Research. Agric. For. Meteorol. 2010, 150, 30–37. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, S.; Zhao, F.; Tian, L.; Zhao, Z. Comparison of Machine Learning Algorithms for Forest Parameter Estimations and Application for Forest Quality Assessments. For. Ecol. Manag. 2019, 434, 224–234. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, L.; Zhou, Y.; Ji, B.; Zhou, G.; Fang, H.; Yin, J.; Deng, X. Quantifying Driving Factors of Vegetation Carbon Stocks of Moso Bamboo Forests Using Machine Learning Algorithm Combined with Structural Equation Model. For. Ecol. Manag. 2018, 429, 406–413. [Google Scholar] [CrossRef]
- Guo, F.; Wang, G.; Su, Z.; Liang, H.; Wang, W.; Lin, F.; Liu, A. What Drives Forest Fire in Fujian, China? Evidence from Logistic Regression and Random Forests. Int. J. Wildland Fire 2016, 25, 505–519. [Google Scholar] [CrossRef]
- Aviña-Hernández, J.; Ramírez-Vargas, M.; Roque-Sosa, F.; Martínez-Rincón, R.O. Predictive Performance of Random Forest on the Identification of Mangrove Species in Arid Environments. Ecol. Inform. 2023, 75, 102040. [Google Scholar] [CrossRef]
- Clark, J. Forest Policy for Sustainable Commodity Wood Production: An Examination Drawing on the Australian Experience. Ecol. Econ. 2004, 50, 219–232. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S. Wood Trade Responses to Ecological Rehabilitation Program: Evidence from China’s New Logging Ban in Natural Forests. For. Policy Econ. 2021, 122, 102339. [Google Scholar] [CrossRef]
- So, H.W.; Lafortezza, R. Reviewing the Impacts of Eco-Labelling of Forest Products on Different Dimensions of Sustainability in Europe. For. Policy Econ. 2022, 145, 102851. [Google Scholar] [CrossRef]
- Kilchling, P.; Hansmann, R.; Seeland, K. Demand for Non-Timber Forest Products: Surveys of Urban Consumers and Sellers in Switzerland. For. Policy Econ. 2009, 11, 294–300. [Google Scholar] [CrossRef]
- Huber, P.; Hujala, T.; Kurttila, M.; Wolfslehner, B.; Vacik, H. Application of Multi Criteria Analysis Methods for a Participatory Assessment of Non-Wood Forest Products in Two European Case Studies. For. Policy Econ. 2019, 103, 103–111. [Google Scholar] [CrossRef]
- Di Cori, V.; Franceschinis, C.; Robert, N.; Pettenella, D.M.; Thiene, M. Moral Foundations and Willingness to Pay for Non-Wood Forest Products: A Study in Three European Countries. Sustainability 2021, 13, 13445. [Google Scholar] [CrossRef]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban Green Space, Public Health, and Environmental Justice: The Challenge of Making Cities “Just Green Enough”. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef]
- Chace, J.F.; Walsh, J.J. Urban Effects on Native Avifauna: A Review. Landsc. Urban Plan. 2006, 74, 46–69. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Giannico, V.; Jim, C.Y.; Sanesi, G.; Lafortezza, R. Urban Forests, Ecosystem Services, Green Infra structure and Nature-Based Solutions: Nexus or Evolving Metaphors. Urban For. Urban Green. 2019, 37, 3–12. [Google Scholar] [CrossRef]
- Sun, G.; Vose, J. Forest Management Challenges for Sustaining Water Resources in the Anthropocene. Forests 2016, 7, 68. [Google Scholar] [CrossRef]
- Sun, Z.; Feng, M.; Zhang, X.; Zhang, S.; Zhang, W.; Li, Y.; Huang, Y.; Qi, P.; Wang, W.; Zou, Y.; et al. A Healthier Water Use Strategy in Primitive Forests Contributes to Stronger Water Conservation Capabilities Compared with Secondary Forests. Sci. Total Environ. 2022, 851, 158290. [Google Scholar] [CrossRef]
- Drever, C.R.; Cook-Patton, S.C.; Akhter, F.; Badiou, P.H.; Chmura, G.L.; Davidson, S.J.; Desjardins, R.L.; Dyk, A.; Fargione, J.E.; Fellows, M.; et al. Natural Climate Solutions for Canada. Sci. Adv. 2021, 7, eabd6034. [Google Scholar] [CrossRef]
- Karnosky, D.F. Impacts of Elevated Atmospheric CO2 on Forest Trees and Forest Ecosystems: Knowledge Gaps. Environ. Int. 2003, 29, 161–169. [Google Scholar] [CrossRef] [PubMed]
- N’Doua, B.D. The Impact of Forest Management Certification on Exports in the Wood Sector: Evidence from French Firm-Level Data. J. Clean. Prod. 2023, 418, 138032. [Google Scholar] [CrossRef]
- Stupak, I.; Lattimore, B.; Titus, B.D.; Smith, C.T. Criteria and Indicators for Sustainable Forest Fuel Production and Harvesting: A Review of Current Standards for Sustainable Forest Management. Biomass Bioenergy 2011, 35, 3287–3308. [Google Scholar] [CrossRef]
- Zheng, H.; Pan, Q.; Wen, Z.; Yang, T.Z. Relationships between plant functional traits and ecosystem services in forests: A review. Acta Ecol. Sin. 2021, 41, 7901–7912. [Google Scholar]
- Li, Q.L.; Li, A.B.; Huang, Z.Y.; Gai, X.; Bian, F.Y.; Zhong, Z.K.; Zhang, X.P. Application of phosphorus solubilizing microorganisms in forestry soil ecological restoration. World For. Res. 2022, 35, 15–20. [Google Scholar] [CrossRef]
- Liu, L.L.; Cao, W.; Shao, Q.Q. Water Conservation Function of Forest Ecosystem in the Southern and Northern Pan River Watershed. Sci. Geogr. Sin. 2016, 36, 603–611. [Google Scholar] [CrossRef]
- Dong, R.; Ren, X.L.; Gai, A.H.; He, H.L.; Zhang, L.; Li, P. Use of CERN for estimating the soil conservation capability of typical forest ecosystems in China. Acta Ecol. Sin. 2020, 40, 2310–2320. [Google Scholar]
- Mao, J.T.; Xu, W.T.; Xie, Z.Q. Trends and hotspots of forest carbon sinks based on the knowledge map. Acta Ecol. Sin. 2023, 43, 1–13. [Google Scholar] [CrossRef]
- Ma, J.M.; Liu, S.R.; Shi, Z.M.; Liu, X.L. A review on restoration evaluation studies of degraded forest ecosystem. Acta Ecol. Sin. 2010, 30, 3297–3303. [Google Scholar]
- Zhu, J.J.; Yan, Q.L.; Yu, L.Z.; Zhang, J.X.; Yang, K.; Gao, T. Support Ecological Restoration and Sustainable Management of Forests in Northeast China Based on Research of Forest Ecology and Demonstrations. Bull. Chin. Acad. Sci. 2018, 33, 107–118. [Google Scholar] [CrossRef]
- Zinda, J.A.; Trac, C.J.; Zhai, D.; Harrell, S. Dual-Function Forests in the Returning Farmland to Forest Program and the Flexibility of Environmental Policy in China. Geoforum 2017, 78, 119–132. [Google Scholar] [CrossRef]
- Huang, L.; Wang, B.; Niu, X.; Gao, P.; Song, Q. Changes in Ecosystem Services and an Analysis of Driving Fac tors for China’s Natural Forest Conservation Program. Ecol. Evol. 2019, 9, 3700–3716. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Suo, X.; Xia, C. Payoff from Afforestation under the Three-North Shelter Forest Program. J. Clean. Prod. 2020, 256, 120461. [Google Scholar] [CrossRef]
- Wang, S.; Cornelis Van Kooten, G.; Wilson, B. Mosaic of Reform: Forest Policy in Post-1978 China. For. Policy Econ. 2004, 6, 71–83. [Google Scholar] [CrossRef]
- Ke, S.; Qiao, D.; Zhang, X.; Feng, Q. Changes of China’s Forestry and Forest Products Industry over the Past 40 Years and Challenges Lying Ahead. For. Policy Econ. 2019, 106, 101949. [Google Scholar] [CrossRef]
- Aguilar, F.X.; Wen, Y. Socio-Economic and Ecological Impacts of China’s Forest Sector Policies. For. Policy Econ. 2021, 127, 102454. [Google Scholar] [CrossRef]
- Cashore, B.; Auld, G.; Newsom, D. Forest Certification (Eco-Labeling) Programs and Their Policy-Making Authority: Explaining Divergence among North American and European Case Studies. For. Policy Econ. 2003, 5, 225–247. [Google Scholar] [CrossRef]
- Kanowski, P.J. Australia’s Forests: Contested Past, Tenure-Driven Present, Uncertain Future. For. Policy Econ. 2017, 77, 56–68. [Google Scholar] [CrossRef]
- Samnakay, N. Understanding Design and Implementation Attributes for Strategic Policies: The Case of Australia’s National Environment Policies. Policy Stud. 2022, 43, 715–737. [Google Scholar] [CrossRef]
- Kilgore, M.A.; Blinn, C.R. Policy Tools to Encourage the Application of Sustainable Timber Harvesting Practices in the United States and Canada. For. Policy Econ. 2004, 6, 111–127. [Google Scholar] [CrossRef]
- Garrett, R.D.; Cammelli, F.; Ferreira, J.; Levy, S.A.; Valentim, J.; Vieira, I. Forests and Sustainable Development in the Brazilian Amazon: History, Trends, and Future Prospects. In Annual Review of Environment and Resources; Gadgil, A., Tomich, T.P., Eds.; Annual Reviews: Palo Alto, CA, USA, 2021; Volume 46, pp. 625–652. ISBN 978-0-8243-2346-2. [Google Scholar]
- McDermott, C.L. Certification and Equity: Applying an “Equity Framework” to Compare Certification Schemes across Product Sectors and Scales. Environ. Sci. Policy 2013, 33, 428–437. [Google Scholar] [CrossRef]
- Palus, H.; Parobek, J.; Sulek, R.; Lichy, J.; Salka, J. Understanding Sustainable Forest Management Certification in Slovakia: Forest Owners’ Perception of Expectations, Benefits and Problems. Sustainability 2018, 10, 2470. [Google Scholar] [CrossRef]
- Chen, J.; Tikina, A.; Kozak, R.; Innes, J.L.; Duinker, P.; Larson, B. The Efficacy of Forest Certification: Perceptions of Canadian Forest Products Retailers. For. Chron. 2011, 87, 636–643. [Google Scholar] [CrossRef]
- Lemes, P.G.; Zanuncio, J.C.; Jacovine, L.A.G.; Wilcken, C.F.; Lawson, S.A. Forest Stewardship Council and Re sponsible Wood Certification in the Integrated Pest Management in Australian Forest Plantations. For. Policy Econ. 2021, 131, 102541. [Google Scholar] [CrossRef]
- Ma, S.; Tian, M.H.; Hou, F.M.; Wu, H.M.; Miao, D.L. Research Hotspots and Trends of Forest Certification at Home and Abroad Based on Literature Analysis. J. Beijing For. Univ. Soc. Sci. 2023, 22, 70–76. [Google Scholar] [CrossRef]
- Lewis, R.A.; Davis, S.R. Forest Certification, Institutional Capacity, and Learning: An Analysis of the Impacts of the Malaysian Timber Certification Scheme. For. Policy Econ. 2015, 52, 18–26. [Google Scholar] [CrossRef]
- Tröster, R.; Hiete, M. Success of Voluntary Sustainability Certification Schemes—A Comprehensive Review. J. Clean. Prod. 2018, 196, 1034–1043. [Google Scholar] [CrossRef]
- Bosona, T.; Gebresenbet, G. Food Traceability as an Integral Part of Logistics Management in Food and Agricultural Supply Chain. Food Control 2013, 33, 32–48. [Google Scholar] [CrossRef]
- Carlson, A.; Palmer, C. A Qualitative Meta-Synthesis of the Benefits of Eco-Labeling in Developing Countries. Ecol. Econ. 2016, 127, 129–145. [Google Scholar] [CrossRef]
- Ludvig, A.; Tahvanainen, V.; Dickson, A.; Evard, C.; Kurttila, M.; Cosovic, M.; Chapman, E.; Wilding, M.; Weiss, G. The Practice of Entrepreneurship in the Non-Wood Forest Products Sector: Support for Innovation on Private Forest Land. For. Policy Econ. 2016, 66, 31–37. [Google Scholar] [CrossRef]
- Živojinović, I.; Nedeljković, J.; Stojanovski, V.; Japelj, A.; Nonić, D.; Weiss, G.; Ludvig, A. Non-Timber Forest Products in Transition Economies: Innovation Cases in Selected SEE Countries. For. Policy Econ. 2017, 81, 18–29. [Google Scholar] [CrossRef]
- Konu, H. Developing a Forest-Based Wellbeing Tourism Product Together with Customers—An Ethnographic Approach. Tour. Manag. 2015, 49, 1–16. [Google Scholar] [CrossRef]
- Giessen, L.; Burns, S.; Sahide, M.A.K.; Wibowo, A. From Governance to Government: The Strengthened Role of State Bureaucracies in Forest and Agricultural Certification. Policy Soc. 2016, 35, 71–89. [Google Scholar] [CrossRef]
- Primmer, E.; Varumo, L.; Krause, T.; Orsi, F.; Geneletti, D.; Brogaard, S.; Aukes, E.; Ciolli, M.; Grossmann, C.; Hernández-Morcillo, M.; et al. Mapping Europe’s Institutional Landscape for Forest Ecosystem Service Provision, Innovations and Governance. Ecosyst. Serv. 2021, 47, 101225. [Google Scholar] [CrossRef]
- Buongiorno, J.; Zhu, S. Potential Effects of a Trans-Pacific Partnership on Forest Industries. For. Policy Econ. 2017, 81, 97–104. [Google Scholar] [CrossRef]
- Chambers, J.M.; Wyborn, C.; Ryan, M.E.; Reid, R.S.; Riechers, M.; Serban, A.; Bennett, N.J.; Cvitanovic, C.; Fernández-Giménez, M.E.; Galvin, K.A.; et al. Six Modes of Co-Production for Sustainability. Nat. Sustain. 2021, 4, 983–996. [Google Scholar] [CrossRef]
- Du, W.; Yan, H.; Yang, Y. Pattern Changes of Ecological Product Trade in Countries along the Belt and Road. Environ. Sci. Pollut. Res. 2023, 30, 49038–49051. [Google Scholar] [CrossRef]
Rank | WOS | CNKI | ||||
---|---|---|---|---|---|---|
Institution | Quantity | Country | Institution | Quantity | Region | |
1 | Chinese Academy of Sciences | 342 | China | Chinese Academy of Sciences | 73 | Beijing |
2 | United States Forest Service | 187 | USA | Chinese Academy of Forestry | 57 | Beijing |
3 | University of Chinese Academy of Sciences | 121 | China | Beijing Forestry University | 28 | Beijing |
4 | Universidad Nacional Autónoma de México | 83 | Mexico | National Forestry and Grassland Administration | 22 | Beijing |
5 | Beijing Normal University | 80 | USA | Northeast Forestry University | 19 | Heilongjiang |
6 | Universidade de São Paulo | 75 | Brazil | University of Chinese Academy of Sciences | 18 | Beijing |
7 | University of Florida | 74 | USA | Central South University of Forestry and Technology | 16 | Hunan |
8 | Swedish University of Agricultural Sciences | 73 | Sweden | Zhejiang A&F University | 9 | Zhejiang |
9 | Beijing Forestry University | 70 | China | Nanjing Forestry University | 8 | Jiangsu |
10 | Technical University of Munich | 67 | Germany | Northwest A&F University | 6 | Shaanxi |
Rank | WOS | CNKI | ||||
---|---|---|---|---|---|---|
Author | Year | Quantity | Author | Year | Quantity | |
1 | Bruelheide, Helge | 2013 | 14 | Wang, Bing | 2010 | 21 |
2 | Muys, Bart | 2013 | 13 | Niu, Xiang | 2013 | 13 |
3 | Sun, Ge | 2015 | 12 | Song, Qing F | 2013 | 10 |
4 | Bauhus, Juergen | 2018 | 12 | Kong, Fan B | 2022 | 5 |
5 | Penuelas, Josep | 2015 | 11 | Ren, Xiao X | 2010 | 4 |
6 | Verheyen, Kris | 2013 | 11 | Zhang, Biao | 2009 | 4 |
7 | Edwards, David P | 2014 | 11 | Xu, Cai Y | 2023 | 4 |
8 | Ammer, Christian | 2019 | 10 | Shao, Quan Q | 2012 | 4 |
9 | Pretzsch, Hans | 2015 | 10 | Yu, Li Z | 2013 | 3 |
10 | Eisenhauer, Nico | 2018 | 9 | Zhou, Ya D | 2015 | 3 |
Rank | WOS | CNKI | ||||
---|---|---|---|---|---|---|
Quantity | Year | Keywords | Quantity | Year | Keywords | |
1 | 834 | 2003 | biodiversity | 21 | 2011 | value assessment |
2 | 670 | 2003 | climate change | 13 | 2009 | water conservation |
3 | 615 | 2003 | conservation | 9 | 2009 | ecological function |
4 | 614 | 2003 | management | 9 | 2010 | service function |
5 | 498 | 2004 | impact | 6 | 2009 | forest ecology |
6 | 403 | 2004 | land use | 6 | 2022 | value realization |
7 | 365 | 2003 | dynamics | 6 | 2009 | soil conservation |
8 | 355 | 2003 | vegetation | 6 | 2004 | economic value |
9 | 323 | 2003 | pattern | 4 | 2011 | urban forest |
10 | 286 | 2005 | community | 4 | 2014 | nature forest protection project |
11 | 272 | 2005 | model | 4 | 2011 | nature reserve |
12 | 249 | 2003 | growth | 4 | 2011 | canopy interception |
13 | 242 | 2006 | landscape | 4 | 2012 | invest model |
14 | 226 | 2004 | tropical forest | 3 | 2009 | forest resource |
15 | 198 | 2007 | carbon | 3 | 2012 | integrated storage capacity method |
16 | 183 | 2003 | area | 3 | 2010 | sustainable development |
Label | Size | Keywords |
---|---|---|
0 | 171 | remote sensing; machine learning; random forest; google earth engine; modis |
1 | 165 | non-timber forest products; traditional ecological knowledge; ethnobotany; non-timber forest products; climate change |
2 | 145 | ecosystem services; urban forestry; urban forest; social–ecological systems; land use change |
3 | 143 | functional diversity; ecosystem function; climate change; ecosystem functioning; biodiversity |
4 | 89 | boreal forest; forest restoration; aboveground biomass; allometry; tree mortality |
5 | 79 | microbial community; nutrient cycling; plfa; phosphorus; nitrogen |
6 | 4 | environment; Bacillus thuringiensis; Pinus taeda; risk assessment; somatic embryogenesis |
Label | Size | Keywords |
---|---|---|
0 | 65 | forest ecosystem; economic value; value assessment; ecosystem services; ecosystem services value |
1 | 37 | ecosystem services; landscape pattern; forest ecosystem; ecosystem service; atmospheric pollution |
2 | 28 | ecosystem service function; ecological service value; ecosystem service value; value assessment; urban forest |
3 | 27 | water conservation; soil conservation; integrated storage capacity method; forest vegetation type; upper Tailan river |
4 | 25 | forest ecology; forest rehabilitation; industrial integration; functional services; forest environmental resources |
5 | 23 | service function; periodical inventory; carbon fixation; oxygen released; forest eco-system; continuous observation |
6 | 14 | forest ecosystem services; forest ecosystem service; Wuning county; ecological effect; ecological model |
8 | 12 | ecological benefit; nature forest protection project; sustainable development; function index; ecological service function |
9 | 12 | water conservation function; in-vest model; Chinese fir plantation; non-capillary porosity; forest ecological system |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Tian, G. Sustainability of Forest Eco-Products: Comprehensive Analysis and Future Research Directions. Forests 2023, 14, 2008. https://doi.org/10.3390/f14102008
Wang J, Tian G. Sustainability of Forest Eco-Products: Comprehensive Analysis and Future Research Directions. Forests. 2023; 14(10):2008. https://doi.org/10.3390/f14102008
Chicago/Turabian StyleWang, Jinghua, and Gang Tian. 2023. "Sustainability of Forest Eco-Products: Comprehensive Analysis and Future Research Directions" Forests 14, no. 10: 2008. https://doi.org/10.3390/f14102008
APA StyleWang, J., & Tian, G. (2023). Sustainability of Forest Eco-Products: Comprehensive Analysis and Future Research Directions. Forests, 14(10), 2008. https://doi.org/10.3390/f14102008