Measuring Tree Diameter with Photogrammetry Using Mobile Phone Cameras
Abstract
:1. Introduction and Background
1.1. Background and Previous Work
1.2. Study Goals
2. Methods
2.1. Description of Mobile Phone Application
2.2. Description of Field Trials
Preprocessing of Field Data
2.3. Statistical Analyses
2.4. Graphical Statistical Analysis
2.5. Analysis of Uncertainty among Users and Species
Statistical Tests
3. Results and Discussion
3.1. Results of Statistical Analysis and Species-Level Analysis
3.2. Graphical Statistical Analysis
3.3. Results of User and Species-Uncertainty Analysis
3.4. Limitations and Assumptions
3.5. Discussion of Results and Future Work
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, S.; Gillespie, A.J.; Lugo, A.E. Biomass estimation methods for tropical forests with applications to forest inventory data. For. Sci. 1989, 35, 881–902. [Google Scholar]
- Smith, W.B. Forest inventory and analysis: A national inventory and monitoring program. Environ. Pollut. 2002, 116, S233–S242. [Google Scholar] [CrossRef]
- Corona, P.; Chirici, G.; McRoberts, R.E.; Winter, S.; Barbati, A. Contribution of large-scale forest inventories to biodiversity assessment and monitoring. For. Ecol. Manag. 2011, 262, 2061–2069. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C.; Hoehn, R.E. The Urban Forest Effects (UFORE) Model: Field Data Collection Manual; US Department of Agriculture Forest Service, Northeastern Research Station: Syracuse, NY, USA, 2003; pp. 4–11. [Google Scholar]
- Luoma, V.; Saarinen, N.; Wulder, M.A.; White, J.C.; Vastaranta, M.; Holopainen, M.; Hyyppä, J. Assessing precision in conventional field measurements of individual tree attributes. Forests 2017, 8, 38. [Google Scholar] [CrossRef]
- Fahey, T.J.; Woodbury, P.B.; Battles, J.J.; Goodale, C.L.; Hamburg, S.P.; Ollinger, S.V.; Woodall, C.W. Forest carbon storage: Ecology, management, and policy. Front. Ecol. Environ. 2010, 8, 245–252. [Google Scholar] [CrossRef]
- Skutsch, M. (Ed.) Community Forest Monitoring for the Carbon Market: Opportunities under REDD; Routledge: London, UK, 2012. [Google Scholar]
- Kerchner, C.D.; Keeton, W.S. California’s regulatory forest carbon market: Viability for northeast landowners. For. Policy Econ. 2015, 50, 70–81. [Google Scholar] [CrossRef]
- Hurtt, G.; Zhao, M.; Sahajpal, R.; Armstrong, A.; Birdsey, R.; Campbell, E.; Dolan, K.; Dubayah, R.; Fisk, J.P.; Flanagan, S.; et al. Beyond MRV: High-resolution forest carbon modeling for climate mitigation planning over Maryland, USA. Environ. Res. Lett. 2019, 14, 045013. [Google Scholar] [CrossRef]
- Fan, Y.; Feng, Z.; Mannan, A.; Khan, T.U.; Shen, C.; Saeed, S. Estimating tree position, diameter at breast height, and tree height in real-time using a mobile phone with RGB-D SLAM. Remote Sens. 2018, 10, 1845. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, S.; Xu, A.; Chen, B. Passive measurement method of tree diameter at breast height using a smartphone. Comput. Electron. Agric. 2019, 163, 104875. [Google Scholar] [CrossRef]
- Proudman, A.; Ramezani, M.; Digumarti, S.T.; Chebrolu, N.; Fallon, M. Towards real-time forest inventory using handheld LiDAR. Robot. Auton. Syst. 2022, 157, 104240. [Google Scholar] [CrossRef]
- Tatsumi, S.; Yamaguchi, K.; Furuya, N. ForestScanner: A mobile application for measuring and mapping trees with LiDAR-equipped iPhone and iPad. Methods Ecol. Evol. 2022, 14, 1603–1609. [Google Scholar] [CrossRef]
- Holcomb, A.; Tong, L.; Keshav, S. Robust Single-Image Tree Diameter Estimation with Mobile Phones. Remote Sens. 2023, 15, 772. [Google Scholar] [CrossRef]
- Houghton, R.A.; Butman, D.; Bunn, A.G.; Krankina, O.N.; Schlesinger, P.; Stone, T.A. Mapping Russian forest biomass with data from satellites and forest inventories. Environ. Res. Lett. 2007, 2, 045032. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Ohmann, J.; Gregory, M.; Roberts, H.; Yang, Z.; Bell, D.M.; Kane, V.; Hughes, M.J.; Cohen, W.B.; Powell, S.; et al. An empirical, integrated forest biomass monitoring system. Environ. Res. Lett. 2018, 13, 025004. [Google Scholar] [CrossRef]
- Yu, Y.; Saatchi, S.; Domke, G.M.; Walters, B.; Woodall, C.; Ganguly, S.; Li, S.; Kalia, S.; Park, T.; Nemani, R.; et al. Making the US national forest inventory spatially contiguous and temporally consistent. Environ. Res. Lett. 2022, 17, 065002. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, X.; An, F.; Zhou, L.; Wang, X.; Wang, Z.; Zhang, H.; Yun, T. Integrating Real Tree Skeleton Reconstruction Based on Partial Computational Virtual Measurement (CVM) with Actual Forest Scenario Rendering: A Solid Step Forward for the Realization of the Digital Twins of Trees and Forests. Remote Sens. 2022, 14, 6041. [Google Scholar] [CrossRef]
- Durrant-Whyte, H.; Bailey, T. Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 2006, 13, 99–110. [Google Scholar] [CrossRef]
- Nistér, D.; Naroditsky, O.; Bergen, J. Visual odometry. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR, Washington, DC, USA, 27 June –2 July 2004; Volume 1, p. I-I. [Google Scholar]
- Lucas, B.D.; Kanade, T. An iterative image registration technique with an application to stereo vision. In Proceedings of the IJCAI’81: 7th International Joint Conference on Artificial Intelligence, Vancouver, BC, Canada, 24–28 August 1981; Volume 2, pp. 674–679. [Google Scholar]
- Ro, H.; Byun, J.H.; Park, Y.J.; Lee, N.K.; Han, T.D. AR pointer: Advanced ray-casting interface using laser pointer metaphor for object manipulation in 3D augmented reality environment. Appl. Sci. 2019, 9, 3078. [Google Scholar] [CrossRef]
- Chojnacky, D.C.; Heath, L.S.; Jenkins, J.C. Updated generalized biomass equations for North American tree species. Forestry 2014, 87, 129–151. [Google Scholar] [CrossRef]
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef]
- Levene, H. Robust tests for equality of variances. Contrib. Probab. Stat. 1960, 69, 278–292. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Jenkins, J.C.; Chojnacky, D.C.; Heath, L.S.; Birdsey, R.A. National-scale biomass estimators for United States tree species. For. Sci. 2003, 49, 12–35. [Google Scholar]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef] [PubMed]
Mean Error (cm) | Mean Percent Error (%) | RMSE (cm) | R2 (Dimensionless) | Concordance Correlation (Dimensionless) | Intraclass Correlation (Dimensionless) | |
---|---|---|---|---|---|---|
Honey Locust (N = 207) | 1.33 | −5.50 | 2.18 | 0.84 | 0.87 | 0.87 |
Black Walnut (N = 180) | 2.45 | −9.62 | 3.19 | 0.95 | 0.94 | 0.93 |
Black Locust (N = 14) | 1.29 | −15.42 | 1.54 | 0.95 | 0.89 | 0.89 |
Pitch-Loblolly Pine (N = 13) | 1.58 | −17.49 | 1.65 | 0.99 | 0.94 | 0.94 |
All (N = 414) | 1.90 | −8.27 | 2.71 | 0.90 | 0.91 | 0.91 |
(A) Paired T Test | (B) One Way ANOVA | (C) Levene’s Test | ||||
---|---|---|---|---|---|---|
T Statistic (p Value) | F Statistic (p Value) | W Statistic (p Value) | ||||
Manual 1 | Manual 2 | Manual 1 | Manual 2 | Manual 1 | Manual 2 | |
User 1 | −3.27 (0.0014) | −3.45 (0.0008) | 6.81 (0.0097) | 7.46 (0.0068) | 1.21 (0.2735) | 1.03 (0.312) |
User 1 repeat | −2.82 (0.0057) | −2.98 (0.0036) | 5.7 (0.0178) | 6.29 (0.0129) | 1.6 (0.2078) | 1.39 (0.2391) |
User 2 | −3.04 (0.0039) | −3.06 (0.0037) | 6.31 (0.0131) | 6.8 (0.01) | 0.07 (0.7928) | 0.04 (0.8398) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahamed, A.; Foye, J.; Poudel, S.; Trieschman, E.; Fike, J. Measuring Tree Diameter with Photogrammetry Using Mobile Phone Cameras. Forests 2023, 14, 2027. https://doi.org/10.3390/f14102027
Ahamed A, Foye J, Poudel S, Trieschman E, Fike J. Measuring Tree Diameter with Photogrammetry Using Mobile Phone Cameras. Forests. 2023; 14(10):2027. https://doi.org/10.3390/f14102027
Chicago/Turabian StyleAhamed, Aakash, John Foye, Sanjok Poudel, Erich Trieschman, and John Fike. 2023. "Measuring Tree Diameter with Photogrammetry Using Mobile Phone Cameras" Forests 14, no. 10: 2027. https://doi.org/10.3390/f14102027
APA StyleAhamed, A., Foye, J., Poudel, S., Trieschman, E., & Fike, J. (2023). Measuring Tree Diameter with Photogrammetry Using Mobile Phone Cameras. Forests, 14(10), 2027. https://doi.org/10.3390/f14102027