Lignin Use in Enhancing the Properties of Willow Pellets
Abstract
:1. Introduction
Material | Energy Content (MJ/kg) |
---|---|
Coal | |
Lignite | 13.14–17.31 A; 22.04 B; 23.21 C |
Bituminous | 17.33 D; 21.90–29.19 A |
Anthracite | 19.35–30.00 *E |
Forest-Derived LCB | |
Softwood | 17.38 F; 19.7–20.2 G; 21–21.2 H |
Hardwood | 17.6–19.1 G; 19.9–20.1 I |
Agricultural-Derived LCB and Energy Crops | |
Wheat Straw | 12.3 H; 17.5 I |
Miscanthus | 17–20 J |
Willow | 18.6–18.8 K; 19 L |
LCB and Lignin Type | Ash Content | Energy Content | Bulk Density | Durability | Pellet Length | Moisture Absorption |
---|---|---|---|---|---|---|
Mixed Softwoods (Pine, Spruce, and Fir) and High Purity Indulin AT Lignin A | -- | ↑ | -- | -- | -- | -- |
Norway Spruce (Picea abies) and LignoBoost Kraft Lignin (Dry * and Wet *) B | -- | ↑ | X | ↑ | ↑ | -- |
Scotch Pine (Pinus sylvestris) and Lignosulfonate C | ↑ | ↓ | -- | ↑ | -- | -- |
Spruce (Picea sp.) and Kraft Lignin D | ↑ | ↑ | -- | ↑ | ↑ | ↑ |
Pine (Pinus sp.) and Kraft Lignin E | -- | -- | X | ↑ | -- | -- |
Larch (Larix kaempferi C.), Tulip Tree (Liriodendron tulipifera L.) and Alkaline Lignin F | -- | -- | -- | ↑ | -- | -- |
Eucalyptus (Eucalyptus urophylla, Eucalyptus grandis) and Kraft Lignin G | ↓ | ↑ | ↓ | ↑ | ↓ | -- |
Eucalyptus (Eucalyptus nitens) and Sodium Lignosulfonate H | X | ↑ | -- | -- | -- | -- |
2. Materials and Methods
2.1. Procurement of Lignocellulosic Biomass and Lignin
2.2. Characterization of Lignin
2.3. Pelletizing of Lignocellulosic Biomass and Lignin-Added Pellets
2.4. Characterization of Fuel Pellets
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Lignin
3.1.1. Chemical Composition
3.1.2. Radical Quenching Ability
3.1.3. Glass Transition Temperature
3.1.4. Particle Size Distribution
3.2. Characterization of Fuel Pellets
3.2.1. Ash Content
3.2.2. Energy Content
3.2.3. Bulk Density
3.2.4. Durability
3.2.5. Pellet Length
3.2.6. Moisture Absorption
3.2.7. Carbon Monoxide Emissions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ralph, J.; Brunow, G.; Boerjan, W. Lignins. In eLS; Wiley: Hoboken, NJ, USA, 2007; ISBN 978-0-470-01617-6. [Google Scholar]
- Hu, F.; Ragauskas, A. Pretreatment and Lignocellulosic Chemistry. BioEnergy Res. 2012, 5, 1043–1066. [Google Scholar] [CrossRef]
- U.S. Energy Information Association. Annual Energy Outlook; U.S. Energy Information Administration: Washington, DC, USA, 2023; p. 50.
- Zima, W.; Ojczyk, G. Combustion of wood pellets in a low-power multi-fuel automatically stoked heating boiler. Arch. Thermodyn. 2022, 43, 169–184. [Google Scholar] [CrossRef]
- U.S. Department of Energy. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry; U.S. Department of Energy: Oak Ridge, TN, USA, 2011; pp. 1–227.
- Makepa, D.C.; Chihobo, C.H.; Musademba, D. Advances in Sustainable Biofuel Production from Fast Pyrolysis of Lignocellulosic Biomass. Biofuels 2023, 14, 529–550. [Google Scholar] [CrossRef]
- Therasme, O.; Volk, T.A.; Cabrera, A.M.; Eisenbies, M.H.; Amidon, T.E. Hot Water Extraction Improves the Characteristics of Willow and Sugar Maple Biomass with Different Amount of Bark. Front. Energy Res. 2018, 6, 93. [Google Scholar] [CrossRef]
- Eisenbies, M.H.; Volk, T.A.; Amidon, T.E.; Shi, S. Influence of Blending and Hot Water Extraction on the Quality of Wood Pellets. Fuel 2019, 241, 1058–1067. [Google Scholar] [CrossRef]
- Heller, M.C.; Keoleian, G.A.; Mann, M.K.; Volk, T.A. Life Cycle Energy and Environmental Benefits of Generating Electricity from Willow Biomass. Renew. Energy 2004, 29, 1023–1042. [Google Scholar] [CrossRef]
- Langholtz, M.; Eaton, L.; Davis, M.; Shedden, M.; Brandt, C.; Volk, T.; Richard, T. Economic Comparative Advantage of Willow Biomass in the Northeast USA. Biofuels Bioprod. Biorefining 2019, 13, 74–85. [Google Scholar] [CrossRef]
- Strehler, A. Technologies of Wood Combustion. Ecol. Eng. 2000, 16, 25–40. [Google Scholar] [CrossRef]
- Bradley, M.S.A. Biomass Fuel Transport and Handling. In Fuel Flexible Energy Generation; Elsevier: Amsterdam, The Netherlands, 2016; pp. 99–120. ISBN 978-1-78242-378-2. [Google Scholar]
- Soto-Garcia, L.; Huang, X.; Thimmaiah, D.; Denton, Z.; Rossner, A.; Hopke, P. Measurement and Modeling of Carbon Monoxide Emission Rates from Multiple Wood Pellet Types. Energy Fuels 2015, 29, 3715–3724. [Google Scholar] [CrossRef]
- Wang, L.; Skjevrak, G.; Skreiberg, Ø.; Wu, H.; Nielsen, H.K.; Hustad, J.E. Investigation on Ash Slagging Characteristics During Combustion of Biomass Pellets and Effect of Additives. Energy Fuels 2018, 32, 4442–4452. [Google Scholar] [CrossRef]
- Zeng, T.; Pollex, A.; Weller, N.; Lenz, V.; Nelles, M. Blended Biomass Pellets as Fuel for Small Scale Combustion Appliances: Effect of Blending on Slag Formation in the Bottom Ash and Pre-Evaluation Options. Fuel 2018, 212, 108–116. [Google Scholar] [CrossRef]
- Lohrer, C.; Schmidt, M.; Krause, U. A Study on the Influence of Liquid Water and Water Vapour on the Self-Ignition of Lignite Coal-Experiments and Numerical Simulations. J. Loss Prev. Process Ind. 2005, 18, 167–177. [Google Scholar] [CrossRef]
- Stelte, W.; Nielsen, N.P.K.; Hansen, H.O.; Dahl, J.; Shang, L.; Sanadi, A.R. Pelletizing Properties of Torrefied Wheat Straw. Biomass Bioenergy 2013, 49, 214–221. [Google Scholar] [CrossRef]
- Berghel, J.; Frodeson, S.; Granström, K.; Renström, R.; Ståhl, M.; Nordgren, D.; Tomani, P. The Effects of Kraft Lignin Additives on Wood Fuel Pellet Quality, Energy Use and Shelf Life. Fuel Process. Technol. 2013, 112, 64–69. [Google Scholar] [CrossRef]
- Carroll, J.P.; Finnan, J. Physical and Chemical Properties of Pellets from Energy Crops and Cereal Straws. Biosyst. Eng. 2012, 112, 151–159. [Google Scholar] [CrossRef]
- Kuang, X.; Shankar, T.; Bi, X.; Lim, C.; Sokhansanj, S.; Melin, S. Rate and Peak Concentrations of Off-Gas Emissions in Stored Wood Pellets—Sensitivities to Temperature, Relative Humidity, and Headspace Volume. Ann. Occup. Hyg. 2009, 53, 789–796. [Google Scholar] [CrossRef]
- McKendry, P. Energy Production from Biomass (Part 1): Overview of Biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, P.F.P.; Rossi, G.; Conti, L.; Ferraz, G.A.E.S.; Leso, L.; Barbari, M. Physical Properties of Miscanthus Grass and Wheat Straw as Bedding Materials for Dairy Cattle. In Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production; Coppola, A., Di Renzo, G.C., Altieri, G., D’Antonio, P., Eds.; Lecture Notes in Civil Engineering; Springer International Publishing: Cham, Switzerland, 2020; Volume 67, pp. 239–246. ISBN 978-3-030-39298-7. [Google Scholar]
- Miao, Z.; Phillips, J.W.; Grift, T.E.; Mathanker, S.K. Measurement of Mechanical Compressive Properties and Densification Energy Requirement of Miscanthus × Giganteus and Switchgrass. BioEnergy Res. 2015, 8, 152–164. [Google Scholar] [CrossRef]
- Moon, Y.-H.; Yang, J.; Koo, B.-C.; An, J.-W.; Cha, Y.-L.; Youn, Y.-M.; Yu, G.-D.; An, G.H.; Park, K.-G.; Choi, I.-H. Analysis of Factors Affecting Miscanthus Pellet Production and Pellet Quality Using Response Surface Methodology. BioResources 2014, 9, 3334–3346. [Google Scholar] [CrossRef]
- Eisenbies, M.H.; Volk, T.A.; Therasme, O.; Hallen, K. Three Bulk Density Measurement Methods Provide Different Results for Commercial Scale Harvests of Willow Biomass Chips. Biomass Bioenergy 2019, 124, 64–73. [Google Scholar] [CrossRef]
- Puig-Arnavat, M.; Shang, L.; Sárossy, Z.; Ahrenfeldt, J.; Henriksen, U.B. From a Single Pellet Press to a Bench Scale Pellet Mill—Pelletizing Six Different Biomass Feedstocks. Fuel Process. Technol. 2016, 142, 27–33. [Google Scholar] [CrossRef]
- Theerarattananoon, K.; Xu, F.; Wilson, J.; Staggenborg, S.; Mckinney, L.; Vadlani, P.; Pei, Z.; Wang, D. Effects of the Pelleting Conditions on Chemical Composition and Sugar Yield of Corn Stover, Big Bluestem, Wheat Straw, and Sorghum Stalk Pellets. Bioprocess Biosyst. Eng. 2012, 35, 615–623. [Google Scholar] [CrossRef]
- Lu, D.; Tabil, L.G.; Wang, D.; Wang, G.; Emami, S. Experimental Trials to Make Wheat Straw Pellets with Wood Residue and Binders. Biomass Bioenergy 2014, 69, 287–296. [Google Scholar] [CrossRef]
- Castellano, J.M.; Gómez, M.; Fernández, M.; Esteban, L.S.; Carrasco, J.E. Study on the Effects of Raw Materials Composition and Pelletization Conditions on the Quality and Properties of Pellets Obtained from Different Woody and Non Woody Biomasses. Fuel 2015, 139, 629–636. [Google Scholar] [CrossRef]
- Karamchandani, A.; Yi, H.; Puri, V.M. Comparison and Explanation of Predictive Capability of Pellet Quality Metrics Based on Fundamental Mechanical Properties of Ground Willow and Switchgrass. Adv. Powder Technol. 2016, 27, 1411–1417. [Google Scholar] [CrossRef]
- Quiñones-Reveles, M.A.; Ruiz-García, V.M.; Ramos-Vargas, S.; Vargas-Larreta, B.; Masera-Cerutti, O.; Ngangyo-Heya, M.; Carrillo-Parra, A. Assessment of Pellets from Three Forest Species: From Raw Material to End Use. Forests 2021, 12, 447. [Google Scholar] [CrossRef]
- Huang, Y.; Finell, M.; Larsson, S.; Wang, X.; Zhang, J.; Wei, R.; Liu, L. Biofuel Pellets Made at Low Moisture Content—Influence of Water in the Binding Mechanism of Densified Biomass. Biomass Bioenergy 2017, 98, 8–14. [Google Scholar] [CrossRef]
- Kaliyan, N.; Vance Morey, R. Factors Affecting Strength and Durability of Densified Biomass Products. Biomass Bioenergy 2009, 33, 337–359. [Google Scholar] [CrossRef]
- Miller, B.G. CHAPTER 1—Introduction to Coal. In Coal Energy Systems; Miller, B.G., Ed.; Academic Press: Burlington, MA, USA, 2005; pp. 1–27. ISBN 978-0-12-497451-7. [Google Scholar]
- Atimtay, A.T.; Topal, H. Co-Combustion of Olive Cake with Lignite Coal in a Circulating Fluidized Bed. Fuel 2004, 83, 859–867. [Google Scholar] [CrossRef]
- Senior, C.L.; Bool, L.E.; Srinivasachar, S.; Pease, B.R.; Porle, K. Pilot Scale Study of Trace Element Vaporization and Condensation during Combustion of a Pulverized Sub-Bituminous Coal. Fuel Process. Technol. 2000, 63, 149–165. [Google Scholar] [CrossRef]
- Graham, S.; Eastwick, C.; Snape, C.; Quick, W. Mechanical Degradation of Biomass Wood Pellets during Long Term Stockpile Storage. Fuel Process. Technol. 2017, 160, 143–151. [Google Scholar] [CrossRef]
- Telmo, C.; Lousada, J. Heating Values of Wood Pellets from Different Species. Biomass Bioenergy 2011, 35, 2634–2639. [Google Scholar] [CrossRef]
- Demirbaş, A.; Demirbaş, A.H. Estimating the Calorific Values of Lignocellulosic Fuels. Energy Explor. Exploit. 2004, 22, 135–143. [Google Scholar] [CrossRef]
- Brosse, N.; Dufour, A.; Meng, X.; Sun, Q.; Ragauskas, A. Miscanthus: A Fast-Growing Crop for Biofuels and Chemicals Production: A Fast-Growing Crop for Biofuels and Chemicals Production. Biofuels Bioprod. Biorefining 2012, 6, 580–598. [Google Scholar] [CrossRef]
- Volk, T.A.; Heavey, J.P.; Eisenbies, M.H. Advances in Shrub-willow Crops for Bioenergy, Renewable Products, and Environmental Benefits. Food Energy Secur. 2016, 5, 97–106. [Google Scholar] [CrossRef]
- Prins, M.J.; Ptasinski, K.J.; Janssen, F.J.J.G. Torrefaction of Wood. J. Anal. Appl. Pyrolysis 2006, 77, 35–40. [Google Scholar] [CrossRef]
- Anukam, I.; Berghel, J.; Frodeson, S.; Famewo, E.; Nyamukamba, P. Characterization of Pure and Blended Pellets Made from Norway Spruce and Pea Starch: A Comparative Study of Bonding Mechanism Relevant to Quality. Energies 2019, 12, 4415. [Google Scholar] [CrossRef]
- Anukam, A.; Berghel, J.; Henrikson, G.; Frodeson, S.; Ståhl, M. A Review of the Mechanism of Bonding in Densified Biomass Pellets. Renew. Sustain. Energy Rev. 2021, 148, 111249. [Google Scholar] [CrossRef]
- Frodeson, S.; Henriksson, G.; Berghel, J. Pelletizing Pure Biomass Substances to Investigate the Mechanical Properties and Bonding Mechanisms. BioResources 2017, 13, 1202–1222. [Google Scholar] [CrossRef]
- Whittaker, C.; Shield, I. Factors Affecting Wood, Energy Grass and Straw Pellet Durability—A Review. Renew. Sustain. Energy Rev. 2017, 71, 1–11. [Google Scholar] [CrossRef]
- Irvine, G.M. The Glass Transitions of Lignin and Hemicellulose and Their Measurement by Differential Thermal Analysis. Tappi J. 1984, 67, 118–121. [Google Scholar]
- Kaliyan, N.; Morey, R.V. Natural Binders and Solid Bridge Type Binding Mechanisms in Briquettes and Pellets Made from Corn Stover and Switchgrass. Bioresour. Technol. 2010, 101, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Kadla, J.F.; Ehara, K.; Gilkes, N.; Saddler, J.N. Organosolv Ethanol Lignin from Hybrid Poplar as a Radical Scavenger: Relationship between Lignin Structure, Extraction Conditions, and Antioxidant Activity. J. Agric. Food Chem. 2006, 54, 5806–5813. [Google Scholar] [CrossRef] [PubMed]
- Lisý, A.; Ház, A.; Nadányi, R.; Jablonský, M.; Šurina, I. About Hydrophobicity of Lignin: A Review of Selected Chemical Methods for Lignin Valorisation in Biopolymer Production. Energies 2022, 15, 6213. [Google Scholar] [CrossRef]
- Demİrbas, A. Relationships between Heating Value and Lignin, Fixed Carbon, and Volatile Material Contents of Shells from Biomass Products. Energy Sources 2003, 25, 629–635. [Google Scholar] [CrossRef]
- Murphey, W.K.; Masters, K.R. Gross Heat of Combustion of Northern Red Oak (Quercus Rubra) Chemical Components. Wood Sci. 1978, 10, 139–141. [Google Scholar]
- Barbosa, B.M.; Vaz, S.; Colodette, J.L.; De Siqueira, H.F.; Da Silva, C.M.S.; Cândido, W.L. Effects of Kraft Lignin and Corn Residue on the Production of Eucalyptus Pellets. BioEnergy Res. 2023, 16, 484–493. [Google Scholar] [CrossRef]
- Oliveira, P.E.; Leal, P.; Pichara, C. Pellets Derived from Eucalyptus nitens Residue: Physical, Chemical, and Thermal Characterization for a Clean Combustion Product Made in Chile. Can. J. For. Res. 2018, 48, 1194–1203. [Google Scholar] [CrossRef]
- Sermyagina, E.; Mendoza Martinez, C.; Lahti, J.; Nikku, M.; Mänttäri, M.; Kallioinen-Mänttäri, M.; Vakkilainen, E. Characterization of Pellets Produced from Extracted Sawdust: Effect of Cooling Conditions and Binder Addition on Composition, Mechanical and Thermochemical Properties. Biomass Bioenergy 2022, 164, 106562. [Google Scholar] [CrossRef]
- Kuokkanen, M.; Vilppo, T.; Kuokkanen, T.; Stoor, T.; Niinimäki, J. Additives in Wood Pellet Production—A Pilot-Scale Study of Binding Agent Usage. BioResources 2011, 6, 4331–4355. [Google Scholar] [CrossRef]
- Musl, O.; Sulaeva, I.; Sumerskii, I.; Mahler, A.K.; Rosenau, T.; Falkenhagen, J.; Potthast, A. Mapping of the Hydrophobic Composition of Lignosulfonates. ACS Sustain. Chem. Eng. 2021, 9, 16786–16795. [Google Scholar] [CrossRef]
- Stevens, J.; Gardner, D. Enhancing the Fuel Value of Wood Pellets with the Addition of Lignin. Wood Fiber Sci. J. Soc. Wood Sci. Technol. 2010, 42, 439–443. [Google Scholar]
- Surdi De Castro, P.G.; De Siqueira, H.F.; De Castro, V.R.; Zanuncio, A.J.V.; Zanuncio, J.C.; Berger, M.D.S.; Martins, F.D.R.; Carneiro, A.D.C.O.; Gominho, J.; De Oliveira Araújo, S. Quality of Pinus Sp. Pellets with Kraft Lignin and Starch Addition. Sci. Rep. 2021, 11, 900. [Google Scholar] [CrossRef] [PubMed]
- Ahn, B.J.; Chang, H.; Lee, S.M.; Choi, D.H.; Cho, S.T.; Han, G.; Yang, I. Effect of Binders on the Durability of Wood Pellets Fabricated from Larix kaemferi C. and Liriodendron tulipifera L. Sawdust. Renew. Energy 2014, 62, 18–23. [Google Scholar] [CrossRef]
- Levitt, M.D.; Ellis, C.; Springfield, J.; Engel, R.R. Carbon Monoxide Generation from Hydrocarbons at Ambient and Physiological Temperature: A Sensitive Indicator of Oxidant Damage? J. Chromatogr. A 1995, 695, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Tumuluru, J.; Lim, C.; Bi, X.; Kuang, X.; Melin, S.; Yazdanpanah, F.; Sokhansanj, S. Analysis on Storage Off-Gas Emissions from Woody, Herbaceous, and Torrefied Biomass. Energies 2015, 8, 1745–1759. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hopke, P.K. Mechanistic Pathway of Carbon Monoxide Off-Gassing from Wood Pellets. Energy Fuels 2016, 30, 5809–5815. [Google Scholar] [CrossRef]
- Kuang, X.; Tumuluru, J.S.; Sokhansanj, S.; Lim, C.; Bi, X.; Melin, S. Effects of Headspace and Oxygen Level on Off-Gas Emissions from Wood Pellets in Storage. Ann. Occup. Hyg. 2009, 53, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Siwale, W.; Frodeson, S.; Berghel, J.; Henriksson, G.; Finell, M.; Arshadi, M.; Jonsson, C. Influence on Off-Gassing during Storage of Scots Pine Wood Pellets Produced from Sawdust with Different Extractive Contents. Biomass Bioenergy 2022, 156, 106325. [Google Scholar] [CrossRef]
- Siwale, W.; Frodeson, S.; Finell, M.; Arshadi, M.; Jonsson, C.; Henriksson, G.; Berghel, J. Understanding Off-Gassing of Biofuel Wood Pellets Using Pellets Produced from Pure Microcrystalline Cellulose with Different Additive Oils. Energies 2022, 15, 2281. [Google Scholar] [CrossRef]
- Rahman, M.A.; Squizzato, S.; Luscombe-Mills, R.; Curran, P.; Hopke, P.K. Continuous Ozonolysis Process to Produce Non-CO Off-Gassing Wood Pellets. Energy Fuels 2017, 31, 8228–8234. [Google Scholar] [CrossRef]
- Arshadi, M.; Tengel, T.; Nilsson, C. Antioxidants as Additives in Wood Pellets as a Mean to Reduce Off-Gassing and Risk for Self-Heating during Storage. Fuel Process. Technol. 2018, 179, 351–358. [Google Scholar] [CrossRef]
- Sedlmayer, I.; Bauer-Emhofer, W.; Haslinger, W.; Hofbauer, H.; Schmidl, C.; Wopienka, E. Off-Gassing Reduction of Stored Wood Pellets by Adding Acetylsalicylic Acid. Fuel Process. Technol. 2020, 198, 106218. [Google Scholar] [CrossRef]
- Moreira, B.R.D.A.; Cruz, V.H.; Lima, E.W.D.; Alves, L.D.S.; Lopes, P.R.M.; Viana, R.D.S. Fuel Pellets with Antioxidant of Illicit Cigarette’s Tobacco Auto-Generate Less CO2, Produce Adequate Flame and Are Toxicologically Reliable. Biomass Bioenergy 2021, 153, 106205. [Google Scholar] [CrossRef]
- Dongre, P.; Driscoll, M.; Amidon, T.; Bujanovic, B. Lignin-Furfural Based Adhesives. Energies 2015, 8, 7897–7914. [Google Scholar] [CrossRef]
- Nagardeolekar, A.; Ovadias, M.; Wang, K.; Bujanovic, B. Willow Lignin Recovered from Hot-Water Extraction for the Production of Hydrogels and Thermoplastic Blends. ChemSusChem 2020, 13, 4702–4721. [Google Scholar] [CrossRef] [PubMed]
- Technical Association of the Pulp and Paper Industry. T 412 Moisture in Pulp, Paper, and Paperboard; TAPPI Standard Methods; Technical Association of the Pulp and Paper Industry: Peachtree Corners, GA, USA, 2012. [Google Scholar]
- Hu, Z.; Du, X.; Liu, J.; Chang, H.; Jameel, H. Structural Characterization of Pine Kraft Lignin: BioChoice Lignin vs. Indulin AT. J. Wood Chem. Technol. 2016, 36, 432–446. [Google Scholar] [CrossRef]
- Tomani, P. The Lignoboost Process. Cellul. Chem. Technol. 2010, 44, 53. [Google Scholar]
- Davis, M.W. A Rapid Modified Method for Compositional Carbohydrate Analysis of Lignocellulosics by High pH Anion-Exchange Chromatography with Pulsed Amperometric Detection (HPAEC/PAD). J. Wood Chem. Technol. 1998, 18, 235–252. [Google Scholar] [CrossRef]
- Technical Association of the Pulp and Paper Industry. T 413 Ash in Wood, Pulp, Paper and Paperboard: Combustion at 900 °C; TAPPI Standard Methods; Technical Association of the Pulp and Paper Industry: Peachtree Corners, GA, USA, 2022. [Google Scholar]
- Midwest Microlab Sulfur Testing. Available online: https://midwestlab.com/sulfur-testing/ (accessed on 14 October 2022).
- Shahidi, F.; Chandrasekara, A. Hydroxycinnamates and Their in Vitro and in Vivo Antioxidant Activities. Phytochem. Rev. 2010, 9, 147–170. [Google Scholar] [CrossRef]
- TA Instruments Choosing Conditions in Modulated DSC. Available online: https://www.tainstruments.com/pdf/literature/TN45.pdf (accessed on 7 July 2023).
- ISO 18125:2017; Solid Biofuels—Determination of Calorific Value. ISO Copyright Office: Geneva, Switzerland, 2017.
- ISO 18134:2017; Solid Biofuels—Determination of Moisture Content—Oven Dry Method—Part 2: Total Moisture—Simplified Method. ISO Copyright Office: Geneva, Switzerland, 2017.
- ISO 18122:2015; Solid Biofuels—Determination of Ash Content. ISO Copyright Office: Geneva, Switzerland, 2015.
- ISO 17828:2015; Solid Biofuels—Determination of Bulk Density. ISO Copyright Office: Geneva, Switzerland, 2015.
- ISO 17831:2015; Solid Biofuels—Determination of Mechanical Durability of Pellets and Briquettes—Part 1: Pellets. ISO Copyright Office: Geneva, Switzerland, 2015.
- ISO 17829:2015; Solid Biofuels—Determination of Length and Diameter of Pellets. ISO Copyright Office: Geneva, Switzerland, 2015.
- ISO 17225:2021; Fuel Specifications and Classes—Part 1—General Requirements. ISO Copyright Office: Geneva, Switzerland, 2021.
- Technical Association of the Pulp and Paper Industry. T 550 Determination of Equilibrium Moisture in Pulp, Paper and Paperboard for Chemical Analysis; TAPPI Standard Methods; Technical Association of the Pulp and Paper Industry: Peachtree Corners, GA, USA, 2013. [Google Scholar]
- Soto-Garcia, L.; Huang, X.; Thimmaiah, D.; Rossner, A.; Hopke, P.K. Exposures to Carbon Monoxide from Off-Gassing of Bulk Stored Wood Pellets. Energy Fuels 2015, 29, 218–226. [Google Scholar] [CrossRef]
- Sjöström, E. Chapter 3: Wood Polysaccharides. In Wood Chemistry—Fundamentals and Applications; Academic Press: Cambridge, MA, USA, 1993; pp. 51–70. [Google Scholar]
- Coykendall, L.H. Formation and Control of Sulfur Oxides in Boilers. J. Air Pollut. Control Assoc. 1962, 12, 567–591. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. US EPA News Releases. Available online: https://www.epa.gov/newsreleases/epa-releases-2021-data-collected-under-greenhouse-gas-reporting-program#:~:text=The%20data%20show%20that%20in%202021%3A%201%20Power,tons%20of%20greenhouse%20gas%20emissions.%20...%20More%20items (accessed on 30 March 2023).
- Galkin, M.V.; Samec, J.S.M. Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery. ChemSusChem 2016, 9, 1544–1558. [Google Scholar] [CrossRef] [PubMed]
- Glasser, W.G.; Northey, R.A.; Schultz, T.P. (Eds.) Lignin: Historical, Biological, and Materials Perspectives; ACS Symposium Series; American Chemical Society; Distributed by Oxford University Press: Washington, DC, USA; Cary, NC, USA, 2000; ISBN 978-0-8412-3611-0. [Google Scholar]
- Olsson, A.-M.; Salmén, L. The Effect of Lignin Structure on the Viscoelastic Properties of Wood. Nord. Pulp Pap. Res. J. 1997, 12, 140–144. [Google Scholar] [CrossRef]
- Umezawa, T. Lignin Modification in Plants for Valorization. Phytochem. Rev. 2018, 17, 1305–1327. [Google Scholar] [CrossRef]
- ISO 17225:2021; Fuel Specifications and Classes—Part 2—Graded Wood Pellets. ISO Copyright Office: Geneva, Switzerland, 2021.
- Sharma, V.; Jaiswal, P.K.; Kumar, S.; Mathur, M.; Swami, A.K.; Yadav, D.K.; Chaudhary, S. Discovery of Aporphine Analogues as Potential Antiplatelet and Antioxidant Agents: Design, Synthesis, Structure-Activity Relationships, Biological Evaluations, and in Silico Molecular Docking Studies. ChemMedChem 2018, 13, 1817–1832. [Google Scholar] [CrossRef]
- Nagardeolekar, A. Studies of Lignin-Based Gels as Sorbents. Ph.D. Thesis, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA, 2020. [Google Scholar]
Material | Bulk Density (kg/m3) |
---|---|
Coal | |
Lignite | 560–574 A |
Bituminous | 670–910 B |
Anthracite | 800–930 B |
Forest-Derived LCB | |
Softwood | |
Chips | 160–215 C |
Pellets | 578–637 D; 681 E; 700 F |
Hardwood | |
Chips | 180–235 C |
Pellets | 650 G |
Agricultural-Derived LCB and Energy Crops | |
Wheat Straw | |
Loose | 20–40 H |
Chopped | 20–80 H |
Baled | 110–200 H |
Pellets | 560–710 H |
Miscanthus | |
Chopped | 26 I |
Baled | 230 J |
Pellets | 615 E; 624 K |
Willow | |
Chips | 195–393 L |
Pellets | 655 E; 690 M |
Content, % OD Lignin | RecL | ComL |
---|---|---|
Lignin | ||
Acid-Insoluble | 84.58 (±0.08) | 92.86 (±0.03) |
Acid-Soluble | 7.83 (±0.20) | 4.21 (±0.19) |
Total Lignin | 92.41 | 97.07 |
Polysaccharides | ||
Arabinan | 0.08 (±0.00) | 0.11 (±0.00) |
Galactan | 0.34 (±0.01) | 0.65 (±0.01) |
Rhamnan | 0.06 (±0.00) | 0.00 (±0.00) |
Glucan | 0.83 (±0.02) | 0.24 (±0.00) |
Xylan | 1.57 (±0.01) | 0.45 (±0.01) |
Mannan | 0.13 (±0.00) | 0.07 (±0.00) |
Total Polysaccharides | 3.01 | 1.52 |
Ash | 0.41 (±0.12) | 1.14 (±0.12) |
Sulfur | 1.80 (±0.04) | 2.61 (±0.11) |
Pellet Property | Control | RecL-Pellets | ComL-Pellets |
---|---|---|---|
Ash Content (% O.D. Biomass) | 3.57 (±0.29) A | 3.18 (±0.38) A | 3.72 (±0.36) A |
Gross Calorific Value (MJ/kg) | 19.88 (±0.06) A | 20.12 (±0.05) B | 20.19 (±0.03) B |
Bulk Density (kg/m3, Dry Basis) | 612 (±1) A | 642 (±9) B | 633 (±1) B |
Durability Index | 90.4 (±0.5) A | 95.4 (±1.0) B | 95.2 (±0.13) B |
Average Pellet Length (mm) | 16.43 (±4.91) A | 17.89 (±4.58) A | 17.95 (±4.80) A |
Moisture Absorption (% Moisture Gained) | 2.64 (±0.02) A | 2.50 (±0.05) B | 2.62 (±0.01) A |
CO Emissions (ppm) | 55 (±13) A | 32 (±4) B | 39 (±4) AB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elniski, A.; Dongre, P.; Bujanovic, B.M. Lignin Use in Enhancing the Properties of Willow Pellets. Forests 2023, 14, 2041. https://doi.org/10.3390/f14102041
Elniski A, Dongre P, Bujanovic BM. Lignin Use in Enhancing the Properties of Willow Pellets. Forests. 2023; 14(10):2041. https://doi.org/10.3390/f14102041
Chicago/Turabian StyleElniski, Autumn, Prajakta Dongre, and Biljana M. Bujanovic. 2023. "Lignin Use in Enhancing the Properties of Willow Pellets" Forests 14, no. 10: 2041. https://doi.org/10.3390/f14102041
APA StyleElniski, A., Dongre, P., & Bujanovic, B. M. (2023). Lignin Use in Enhancing the Properties of Willow Pellets. Forests, 14(10), 2041. https://doi.org/10.3390/f14102041