Agroforestry Species Selection for Forest Rehabilitation in the Asia-Pacific Region: A Meta-Analysis on High-Level Taxonomy
Abstract
:1. Introduction
2. Methodology
2.1. Study Economies
2.2. Data Collection
2.3. Data Analysis
3. Results
4. Discussion
4.1. “Generalist” Agroforestry Species Combination within Each Economy
4.2. Duplicating Agroforestry Species Combinations within Similar Ecological Regions
4.3. Limitation of High-Level Taxonomy Meta-Analysis
4.4. Practice of Agroforestry with Indigenous Food and Non-Food Plants (Trees and Others) Have Higher Economic Value
4.5. Promoting Agroforestry Research and Policy Is Needed
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sodhi, N.S.; Brook, B.W. Southeast Asian Biodiversity in Crisis; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Miller, F.P.; Mcgregor, A. Rescaling political ecology? World regional approaches to climate change in the Asia Pacific. Prog. Hum. Geogr. 2020, 44, 663–682. [Google Scholar] [CrossRef]
- Dasgupta, R.; Hashimoto, S.; Gundimeda, H. Biodiversity/ecosystem services scenario exercises from the Asia–Pacific: Typology, archetypes and implications for sustainable development goals (SDGs). Sustain. Sci. 2019, 14, 241–257. [Google Scholar] [CrossRef]
- Woodward, A.; Hales, S.; Weinstein, P. Climate change and human health in the Asia Pacific region: Who will be most vulnerable? Clim. Res. 1998, 11, 31–38. [Google Scholar] [CrossRef]
- Leakey, R.; Schreckenberg, K.; Tchoundjeu, Z. The participatory domestication of West African indigenous fruits. Int. For. Rev. 2003, 5, 338–347. [Google Scholar] [CrossRef]
- Siwatibau, S. Emerging issues in Pacific Island countries and their implications for sustainable forest management. In The Future of Forests in Asia and the Pacific: Outlook for 2020; Leslie, R.N., Ed.; Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific: Bangkok, Thailand, 2020. [Google Scholar]
- Gintings, A.; Lai, C. Agroforestry in Asia and the Pacific: With special reference to silvopasture systems. In Proceedings of the ACIAR Proceedings, Australian Centre for International Agricultural Research, Canberra, NSW, Australia, 11–16 November 1994; pp. 32–38. [Google Scholar]
- Zomer, R.J.; Trabucco, A.; Coe, R.; Place, F. Trees on Farm: Analysis of Global Extent and Geographical Patterns of Agroforestry; ICRAF Working Paper; World Agroforestry Centre: Nairobi, Kenya, 2009. [Google Scholar]
- Green, R.E.; Cornell, S.J.; Scharlemann, J.P.W.; Balmford, A. Farming and the fate of wild nature. Science 2005, 307, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Leakey, R. The role of trees in agroecology and sustainable agriculture in the tropics. Annu. Rev. Phytopathol. 2014, 52, 113–133. [Google Scholar] [CrossRef]
- Leakey, R. Definition of agroforestry revisited. In Multifunctional Agriculture–Achieving Sustainable Development in Africa; Academic Press: San Diego, CA, USA, 2017; pp. 5–6. [Google Scholar]
- Gholz, H.L. Agroforestry: Realities, Possibilities and Potentials; Springer Science and Business Media: New York, NY, USA, 1987. [Google Scholar]
- Nair, P.R. Agroforestry Systems in the Tropics; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1989. [Google Scholar]
- De Giusti, G.; Kristjanson, P.; Rufino, M.C. Agroforestry as a climate change mitigation practice in smallholder farming: Evidence from Kenya. Clim. Chang. 2019, 153, 379–394. [Google Scholar] [CrossRef]
- Estrada, L.D.L. Exploring the Potential for Adaptation and Mitigation to Climate Change of Coffee Agroforestry Systems in Central America. Ph.D. Thesis, Universität Hamburg, Hamburg, Germany, 2019. [Google Scholar]
- Craswell, E.; Sajjapongse, A.; Howlett, D.; Dowling, A. Agroforestry in the management of sloping lands in Asia and the Pacific. In Directions in Tropical Agroforestry Research; Springer: Berlin/Heidelberg, Germany, 1998; pp. 121–137. [Google Scholar]
- Dumont, E.S.; Bonhomme, S.; Pagella, T.F.; Sinclair, F.L. Structured stakeholder engagement leads to development of more diverse and inclusive agroforestry options. Exp. Agric. 2019, 55, 252–274. [Google Scholar] [CrossRef]
- Kumar, B. Agroforestry: The new old paradigm for Asian food security. J. Trop. Agric. 2006, 44, 1–14. [Google Scholar]
- Hong, Y.-Z.; Liu, W.-P.; Dai, Y.-W. Income diversification strategies and household welfare: Empirical evidence from forestry farm households in China. Agrofor. Syst. 2019, 93, 1909–1925. [Google Scholar] [CrossRef]
- Kang, B.; Akinnifesi, F. Agroforestry as alternative land-use production systems for the tropics. In Natural Resources Forum; Wiley Online Library: Hoboken, NJ, USA, 2000. [Google Scholar]
- Wiersum, K.F. Forest gardens as an ‘intermediate’ land-use system in the nature-culture continuum: Characteristics and future potential. In New Vistas in Agroforestry; Springer: Berlin/Heidelberg, Germany, 2004; pp. 123–134. [Google Scholar]
- Dieterle, G.; Karsenty, A. Wood Security: The importance of incentives and economic valorisation in conserving and expanding forests. Int. For. Rev. 2020, 22, 81–92. [Google Scholar] [CrossRef]
- Hecht, S.B.; Saatchi, S.S. Globalization and forest resurgence: Changes in forest cover in El Salvador. BioScience 2007, 57, 663–672. [Google Scholar] [CrossRef]
- Laurance, S.G. Landscape connectivity and biological corridors. Agrofor. Biodivers. Conserv. Trop. Landsc. 2004, 1, 50–63. [Google Scholar]
- APFNET. Building Resilience and Sustaining Livelihoods; The Asia-Pacific Network for Sustainable Forest Management and Rehabilitation (APFNet): Beijing, China, 2019. [Google Scholar]
- Schroth, G. Tree root characteristics as criteria for species selection and systems design in agroforestry. In Agroforestry: Science, Policy and Practice; Springer: Berlin/Heidelberg, Germany, 1995; pp. 125–143. [Google Scholar]
- Whiting, D.; Bousselot, J.; Cox, R.; O’Meara, C. Tree selection: Right plant, right place. Gardening series. Colo. Master Gard. 2004, 7, 832. [Google Scholar]
- Ranjitkar, S.; Sujakhu, N.M.; Lu, Y.; Wang, Q.; Wang, M.; He, J.; Mortimer, P.E.; Xu, J.; Kindt, R.; Zomer, R.J. Climate modelling for agroforestry species selection in Yunnan Province, China. Environ. Model. Softw. 2016, 75, 263–272. [Google Scholar] [CrossRef]
- Lebot, V.; Walter, A.; Sam, C. The domestication of fruit and nut tree species in Vanuatu, Oceania. In Idigenous Fruit Tree in the Tropics: Domestication, Utilization and Commercialization; Akinnifesi, F.K., Ed.; CABI: Wallingford, UK, 2008; pp. 120–136. [Google Scholar]
- Pauku, R.L.; Lowe, A.J.; Leakey, R.R. Domestication of indigenous fruit and nut trees for agroforestry in the Solomon Islands. For. Trees Livelihoods 2010, 19, 269–287. [Google Scholar] [CrossRef]
- Leakey, R. Living with the Trees of Life: Towards the Transformation of Tropical Agriculture; CABI: Wallingford, UK, 2012; pp. 40–46. [Google Scholar]
- Schroth, G.; Coutinho, P.; Moraes, V.H.; Albernaz, A.L. Rubber agroforests at the Tapajós River, Brazilian Amazon-environmentally benign land use systems in an old forest frontier region. Agric. Ecosyst. Environ. 2003, 97, 151–165. [Google Scholar] [CrossRef]
- El-Kassaby, Y.A.; Ritland, K. Impact of selection and breeding on the genetic diversity in Douglas-fir. Biodivers. Conserv. 1996, 5, 795–813. [Google Scholar] [CrossRef]
- Schluter, D. A variance test for detecting species associations, with some example applications. Ecology 1984, 65, 998–1005. [Google Scholar] [CrossRef]
- Sanchez, P.A. Science in agroforestry. Agrofor. Syst. 1995, 30, 5–55. [Google Scholar] [CrossRef]
- Palm, C.A.; Myers, R.J.; Nandwa, S.M. Combined use of organic and inorganic nutrient sources for soil fertility maintenance and replenishment. In Replenishing Soil Fertility in Africa; Buresh, R.J., Sanchez, P.A., Calhoun, F., Eds.; ASA, CSSA, SSSA Special Publication: Madison, WI, USA, 1997; p. 264. [Google Scholar]
- Michon, G.; De Foresta, H. The Indonesian agroforest model. Forest resource management and biodiversity conservation. In Conserving Biodiversity Outside Protected Areas: The Role of Traditional Agroecosystems; Halliday, P., Gilmour, D.A., Switz, G., Eds.; IUCN: Gland, Switzerland, 1995; pp. 90–106. [Google Scholar]
- Michon, G.; De Foresta, H. The agroforest model as an alternative to the pure plantation model for domestication and commercialization of NTFPs. In Domestication and Commercialization of Non-Timber Forest Products in Agroforestry Systems; Leakey, R.R.B., Temu, A.B., Melnyk, M., Eds.; FAO: Rome, Italy, 1996; pp. 160–175. [Google Scholar]
- Boonkird, S.A.; Fernandes, E.C.M.; Nair, P.K.R. Forest villages: An agroforestry approach to rehabilitating forest land degraded by shifting cultivation in Thailand. Agrofor. Syst. 1984, 2, 87–102. [Google Scholar] [CrossRef]
- Schroth, G.; Da Mota, M.D.S.S. Agroforestry: Complex multistrata agriculture. In Encyclopedia of Agriculture and Food Systems; van Alfen, N., Ed.; Elsevier Publishers: San Diego, CA, USA, 2014; Volume 1. [Google Scholar]
- Cairns, M.F. Shifting Cultivation and Environmental Change: Indigenous People, Agriculture and Forest Conservation; Routledge: London, UK, 2015. [Google Scholar]
- Brewbaker, J.L. Significant nitrogen fixing trees in agroforestry systems. In Agroforestry: Realities, Possibilities and Potentials; CABI: Wallingford, UK, 1987; pp. 31–45. [Google Scholar]
- Kwesiga, F.; Akinnifesi, F.K.; Mafongoya, P.L.; McDermott, M.H.; Agumya, A. Agroforestry research and development in southern Africa during the 1990s: Review and challenges ahead. Agrofor. Syst. 2003, 59, 173–186. [Google Scholar] [CrossRef]
- Jaramillo, P.M.D.; Guimarães, A.A.; Florentino, L.A.; Silva, K.B.; Nóbrega, R.S.A.; Moreira, F.M.D.S. Symbiotic nitrogen-fixing bacterial populations trapped from soils under agroforestry systems in the Western Amazon. Sci. Agric. 2013, 70, 397–404. [Google Scholar] [CrossRef]
- Rhoades, C. Single-tree influences on soil properties in agroforestry: Lessons from natural forest and savanna ecosystems. Agrofor. Syst. 1996, 35, 71–94. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, R.; Cheng, J.; Deng, Z.; Guan, W.; El-Kassaby, Y.A. Species association in Xanthoceras sorbifolium Bunge communities and selection for agroforestry establishment. Agrofor. Syst. 2017, 93, 1531–1543. [Google Scholar] [CrossRef]
- Rao, N. The achievement of food and nutrition security in South Asia is deeply gendered. Nat. Food 2020, 1, 206–209. [Google Scholar] [CrossRef]
- Kindt, R. WorldFlora: An R package for exact and fuzzy matching of plant names against the World Flora Online Taxonomic Backbone data. Appl. Plant Sci. 2020, 8, e11388. [Google Scholar] [CrossRef]
- Lin, W.Y.; Tseng, M.C.; Su, J.H. A Confidence-Lift Support Specification for Interesting Associations Mining; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Angeline, D.M.D. Association Rule Generation for Student Performance Analysis Using Apriori Algorithm; The SIJ Transactions on Computer Science Engineering & Its Applications (CSEA): Austin, TX, USA, 2013; Volume 1, pp. 12–16. [Google Scholar]
- Schreck, T.; Keim, D.; Mansmann, F. Regular treemap layouts for visual analysis of hierarchical data. In Proceedings of the 22nd Spring Conference on Computer Graphics, New York, NY, USA, 20 April 2006. [Google Scholar]
- Team, R. RStudio: Integrated Development for R. RStudio; PBC: Boston, MA, USA, 2020. [Google Scholar]
- Nebiyou, M.; Muluneh, M. A review paper on: The role of agroforestry for rehabilitation of degraded soil. J. Biol. Agric. Healthc. 2016, 5, 128–135. [Google Scholar]
- Shah, F.; Sangram, B.C.; Akash Ravindra, C.; Uthappa, A.R.; Kumar, M.; Kakade, V.; Pradhan, A.; Jinger, D.; Rawale, G.; Yadav, D.K.; et al. Agroforestry systems for soil health improvement and maintenance. Sustainability 2022, 14, 14877. [Google Scholar]
- Squires, D. Biodiversity Conservation in Asia. Asia Pac. Policy Stud. 2014, 1, 144–159. [Google Scholar] [CrossRef]
- Van Noordwijk, M.; Tata, H.L.; Xu, J.; Dewi, S.; Minang, P.A. Segregate or integrate for multifunctionality and sustained change through rubber-based agroforestry in Indonesia and China. In Agroforestry-the Future of Global Land Use; Springer: Berlin/Heidelberg, Germany, 2012; pp. 69–104. [Google Scholar]
- Noshiro, S.; Joshi, L.; Suzuki, M. Ecological wood anatomy of Alnus nepalensis (Betulaceae) in East Nepal. J. Plant Res. 1994, 107, 399–408. [Google Scholar] [CrossRef]
- Shrestha, P.M.; Dhillion, S.S. Medicinal plant diversity and use in the highlands of Dolakha district, Nepal. J. Ethnopharmacol. 2003, 86, 81–96. [Google Scholar] [CrossRef]
- Gyanaranjan, S.; Afaq, M.W.; Amita, S.; Sandeep, R. Agroforestry for forestry and landscape restoration. Int. J. Adv. Study Res. Work. 2020, 9, 536–542. [Google Scholar]
- Page, T.; Southwell, I.; Russell, M.; Tate, H.; Tungon, J.; Sam, C.; Dickinson, G.; Robson, K.; Leakey, R.R.B. Geographic and phenotypic variation in heartwood and essential oil characters in natural populations of Santalum austrocaledonicum in Vanuatu. Chem. Biodivers. 2010, 7, 1990–2006. [Google Scholar] [CrossRef]
- Da Silva, J.A.T.; Kher, M.M.; Soner, D.; Page, T.; Zhang, X.; Nataraj, M.; Ma, G. Sandalwood: Basic biology, tissue culture, and genetic transformation. Planta 2016, 243, 847–887. [Google Scholar] [CrossRef]
- Elevitch, C.R.; Wilkinson, K.M. Agroforestry Guides for Pacific Islands; Permanent Agricutlture Resources: Holualoa, HI, USA, 2000. [Google Scholar]
- Dhakal, L.P.; Lillesø, J.P.B.; Kjær, E.D.; Jha, P.K.; Aryal, H.L. Seed Sources of Agroforestry Trees in a Farmland Context: A Guide to Tree Seed Source Establishment in Nepal; Forest & Landscape: Hørsholm, Denmark, 2005. [Google Scholar]
- Orwa, C. Agroforestree Database 4.0: A Tree Reference and Selection Guide; World Agroforestry Centre: Nairobi, Kenya, 2010. [Google Scholar]
- Hijmans, R.J. Cross-validation of species distribution models: Removing spatial sorting bias and calibration with a null model. Ecology 2012, 93, 679–688. [Google Scholar] [CrossRef] [PubMed]
- Pauku, R.L. Barringtonia procera (cutnut). ver. 2.1. In Species Profiles for Pacific Island Agroforestry; Elevitch, C.R., Ed.; Permanent Agriculture Resources (PAR): Holualoa, HI, USA, 2006. [Google Scholar]
- Benchaa, S.; Hazzit, M.; Abdelkrim, H. Allelopathic effect of Eucalyptus citriodora essential oil and its potential use as bioherbicide. Chem. Biodivers. 2018, 15, e1800202. [Google Scholar] [CrossRef]
- Turner, E.C.; Foster, W.A. The impact of forest conversion to oil palm on arthropod abundance and biomass in Sabah, Malaysia. J. Trop. Ecol. 2009, 25, 23–30. [Google Scholar] [CrossRef]
- Liu, C.A.; Liang, M.Y.; Nie, Y.; Tang, J.W.; Siddique, K.H. The conversion of tropical forests to rubber plantations accelerates soil acidification and changes the distribution of soil metal ions in topsoil layers. Sci. Total Environ. 2019, 696, 134082. [Google Scholar] [CrossRef]
- Wallace, H.; Poienou, M.; Randall, B.; Moxon, J. Post harvest cracking and testa removal methods for Canarium indicum nuts in the Pacific. Acta Hortic. 2010, 880, 499–502. [Google Scholar] [CrossRef]
- Leakey, R.; Fuller, S.; Treloar, T.; Stevenson, L.; Hunter, D.; Nevenimo, T.; Binifa, J.; Moxon, J. Characterization of tree-to-tree variation in morphological, nutritional and medical properties of Canarium indicum nuts. Agrofor. Syst. 2008, 73, 77–87. [Google Scholar] [CrossRef]
- Seongmin, S.; Khaing, T.S.; Haeun, L.; Tae, H.K.; Seongeun, L.; Mi, S.P. A Systematic Map of Agroforestry Research Focusing on Ecosystem Services in the Asia-Pacific Region. Forests 2020, 11, 368. [Google Scholar]
- Mi, S.P.; Himlal, B.; Seongmin, S. Systematic approach to agroforestry policies and practices in Asia. Forests 2022, 13, 635. [Google Scholar]
- Schulz, J. Imitating Natural Ecosystems through Successional Agroforestry for the Regeneration of Degraded Lands—A Case Study of Smallholder Agriculture in Northeastern Brazil; Nova Science Publishers: New York, NY, USA, 2011; pp. 3–17. [Google Scholar]
- Viswanath, S.; Lubina, P. Traditional Agroforestry Systems. In Agroforestry; Springer: Berlin/Heidelberg, Germany, 2017; pp. 91–119. [Google Scholar]
- Leakey, R. A re-boot of tropical agriculture benefits food production, rural economies, health, social justice and the environment. Nat. Food 2020, 1, 260–265. [Google Scholar] [CrossRef]
- Rudebjer, P.; Del Catello, R. How Agroforestry is Taught in Southeast Asia: A Status and Needs Assessment in Indonesia, Lao PDR, the Philippines, Thailand and Vietnam; Southeast Asian Network for Forestry Education (SEANAFE): Bogor, Indonesia, 1999. [Google Scholar]
- Rahman, S.; Rahman, M.; Codilan, A.; Farhana, K. Analysis of the economic benefits from systematic improvements to shifting cultivation and its evolution towards stable continuous agroforestry in the upland of Eastern Bangladesh. Int. For. Rev. 2007, 9, 536–547. [Google Scholar] [CrossRef]
- Ojha, H.; Persha, L.; Chhatre, A. Community Forestry in Nepal: A Policy Innovation for Local Livelihoods; International Food Policy Research Institute: Washington, DC, USA, 2009. [Google Scholar]
- Finlayson, R. The role of agroforestry in climate-change adaptation in Southeast Asia. Appropr. Technol. 2017, 44, 24–26. [Google Scholar]
- Neupane, R.; Thapa, G. Retracted article: Impact of agroforestry intervention on farm income under the subsistence farming system of the middle hills, Nepal. Agrofor. Syst. 2001, 53, 31–37. [Google Scholar] [CrossRef]
- Silvianingsih, Y.; Hairiah, K.; Suprayogo, D.; Van Noordwijk, M. Agroforests, swiddening and livelihoods between restored peat domes and river: Effects of the 2015 fire ban in Central Kalimantan (Indonesia). Int. For. Rev. 2020, 22, 382–396. [Google Scholar] [CrossRef]
- Kandji, S.T.; Verchot, L.; Mackensen, J. Climate Change and Variability in the Sahel Region: Impacts and Adaptation Strategies in the Agricultural Sector; World Agroforestry Centre Nairobi: Nairobi, Kenya, 2006. [Google Scholar]
- Lasco, R.; Villegas, K.; Sanchez, P.; Villamor, G. Climate change R and D at the World Agroforestry Centre (ICRAF)-Philippines. In Proceedings of the 2007 FORESPI Symposium, College, Laguna, Philippines, 29 November 2007. [Google Scholar]
- Miccolis, A.; Peneireiro, F.; Marques, H.; Vieira, D.; Arcoverde, M.; Hoffmann, M.; Rehder, T.; Pereira, A. Agroforestry systems for ecological restoration: How to reconcile conservation and production. In Options for Brazil’s Cerrado and Caatinga Biomes; Instituto Sociedade, População e Natureza–ISPN/World Agroforestry Centre (ICRAF); Instituto Sociedade, População e Natureza: Brasilia, Brazil, 2016. [Google Scholar]
- Kartawinata, K. The use of secondary forest species in rehabilitation of degraded forest lands. J. Trop. For. Sci. 1994, 7, 76–86. [Google Scholar]
- Bishaw, B.; Abdelkadir, A. Agroforestry and community forestry for rehabilitation of degraded watersheds on the Ethiopian highlands. In Proceedings of the International Conference on African Development Archives, Addis Ababa, Ethiopia, 11–12 July 2003; Volume 78. [Google Scholar]
- Rohadi, D.; Herawati, T.; Lastini, T. Improving Economic Outcomes for Smallholders Growing Teak in Agroforestry Systems in Indonesia; Australian Centre for International Agricultural Research (ACIAR): Canberra, NSW, Australia, 2015. [Google Scholar]
- Blumfield, T.J.; Reverchon, F. Vocational Training Centres as Hubs for Community Forestry Extension in Solomon Islands. Future Direction of Small-scale and Community-based Forestry. In Proceedings of the IUFRO 3.08 & 6.08 Joint Conference, Fukuoka, Japan, 7–9 October 2013. [Google Scholar]
Economy (Country) | Population 1 | Forest Coverage (%) 2 | Land Area (1000 ha) 3 | GDP/Year (Billion USD) 4 | Annual Precipitation (mm) 5 | Annual Temperature (°C) 6 |
---|---|---|---|---|---|---|
China (Yunnan) ‡ | 46,930,000 | 55.25 | 39,410 | 39.79 | 2352 | 12–22 |
Fiji | 916,000 | 62.03 | 1827 | 4.94 | 2592 | 27 |
Indonesia | 281,844,000 | 49.39 | 187,752 | 1320 | 2702 | 21–33 |
Nepal | 30,770,000 | 41.59 | 14,335 | 40.83 | 1500 | 25 |
The Philippines | 113,964,000 | 23.99 | 29,817 | 404.28 | 2348 | 27 |
Papua New Guinea | 9,466,000 | 79.25 | 45,286 | 30.63 | 3142 | 23–30 |
Thailand | 70,183,000 | 38.97 | 51,089 | 495.34 | 1622 | 28.9 |
Vietnam | 99,699,000 | 46.48 | 31,343 | 408.8 | 1820 | 23–27 |
Total | 653,772,000 | 400,859 | 2744.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Su, K.; Wang, Q.; Yang, L.; Sun, W.; Ranjitkar, S.; Shen, L.; Kindt, R.; Ji, Y.; Marshall, P.; et al. Agroforestry Species Selection for Forest Rehabilitation in the Asia-Pacific Region: A Meta-Analysis on High-Level Taxonomy. Forests 2023, 14, 2045. https://doi.org/10.3390/f14102045
Zhang W, Su K, Wang Q, Yang L, Sun W, Ranjitkar S, Shen L, Kindt R, Ji Y, Marshall P, et al. Agroforestry Species Selection for Forest Rehabilitation in the Asia-Pacific Region: A Meta-Analysis on High-Level Taxonomy. Forests. 2023; 14(10):2045. https://doi.org/10.3390/f14102045
Chicago/Turabian StyleZhang, Wanjie, Kaiwen Su, Qing Wang, Li Yang, Weina Sun, Sailesh Ranjitkar, Lixin Shen, Roeland Kindt, Yuman Ji, Peter Marshall, and et al. 2023. "Agroforestry Species Selection for Forest Rehabilitation in the Asia-Pacific Region: A Meta-Analysis on High-Level Taxonomy" Forests 14, no. 10: 2045. https://doi.org/10.3390/f14102045
APA StyleZhang, W., Su, K., Wang, Q., Yang, L., Sun, W., Ranjitkar, S., Shen, L., Kindt, R., Ji, Y., Marshall, P., Pisey, P. S., & El-Kassaby, Y. A. (2023). Agroforestry Species Selection for Forest Rehabilitation in the Asia-Pacific Region: A Meta-Analysis on High-Level Taxonomy. Forests, 14(10), 2045. https://doi.org/10.3390/f14102045