Intelligent Analysis Strategy for the Key Factor of Soil Nitrogen and Phosphorus Loss via Runoff under Simulated Karst Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sample
2.2. Experimental Setup
2.3. Experimental Processes
2.4. Data Set
2.5. Data Analysis with Random Forest Regression
2.6. Statistical Analysis
3. Results
3.1. Characteristics Analysis based on the Normal Single Factor Analysis
3.2. Characteristics of the Features Based on the Random Forest Regression
3.3. Characteristics Analysis Based on the RF Regression Multifactor Analysis
3.4. Nitrogen and Phosphorus Nutrition Value Characterizations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Zhao, M.; Yan, Z.; Yang, Y.; Niklas, K.J.; Huang, H.; Mipam, T.D.; He, X.; Hu, H.; Wright, S.J. Global patterns and predictors of soil microbial biomass carbon, nitrogen, and phosphorus in terrestrial ecosystems. Catena 2022, 211, 106037. [Google Scholar] [CrossRef]
- Mu, H.; Fu, S.; Liu, B.; Yu, B.; Wang, A. Influence of soil and water conservation measures on soil fertility in the Beijing mountain area. Environ. Monit. Assess. 2018, 190, 504–515. [Google Scholar] [CrossRef] [PubMed]
- Tittonell, P.; Scopel, E.; Andrieu, N.; Posthumus, H.; Mapfumo, P.; Corbeels, M.; van Halsema, G.E.; Lahmar, R.; Lugandu, S.; Rakotoarisoa, J.; et al. Agroecology-based aggradation-conservation agriculture (ABACO): Targeting innovations to combat soil degradation and food insecurity in semi-arid Africa. Field Crop. Res. 2012, 132, 168–174. [Google Scholar] [CrossRef]
- Bochet, E.; Garcia-Fayos, P. Factors controlling vegetation establishment and water erosion on motorway slopes in Valencia, Spain. Restor. Ecol. 2004, 12, 166e174. [Google Scholar] [CrossRef]
- Wildemeersch, J.C.; Garba, M.; Sabiou, M.; Sleutel, S.; Cornelis, W. The effect of water and soil conservation (WSC) on the soil chemical, biological, and physical quality of a Plinthosol in Niger. Land Degrad. Dev. 2015, 26, 773–783. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, P.; Gao, X.; Persaud, N. Soil quality indicators in relation to land use and topography in a small catchment on the loess plateau of China. Land Degrad. Dev. 2015, 26, 54–61. [Google Scholar] [CrossRef]
- Lucon, T.N.; Costa, A.T.; Galvão, P.; Leite, M.G.P. Cadmium behavior in a karst environment hydrological cycle. Environ. Sci. Pollut. Res. Int. 2020, 27, 8965–8979. [Google Scholar] [CrossRef]
- Chen, Z.; Auler, A.S.; Bakalowicz, M.; Drew, D.; Griger, F.; Hartmann, J.; Veni, G. The world karst aquifer mapping project: Concept, mapping procedure and map of Europe. Hydrogeol. J. 2017, 25, 771–785. [Google Scholar] [CrossRef]
- Guo, T.; Wang, Q.; Li, D. Sediment and solute transport on soil slope under simultaneous influence of rainfall impact and scouring flow. Hydrol. Process. 2010, 24, 1446–1454. [Google Scholar] [CrossRef]
- Rouhipour, H.; Ghadiri, H.; Rose, C.W. Investigation of the interaction between flow-driven and rainfall-driven erosion processes. Aust. J. Soil Res. 2006, 44, 503–514. [Google Scholar] [CrossRef]
- Tormo, J.; Bochet, E.; García-Fayos, P. Roadfill revegetation in semiarid mediterranean environments. Part II: Topsoiling, species selection, and hydroseeding. Restor. Ecol. 2007, 15, 97–102. [Google Scholar] [CrossRef]
- Zheng, F.L.; Huang, C.H.; Norton, L.D. Vertical hydraulic gradient and run-on water and sediment effects on erosion processes and sediment regimes. Soil Sci. Soc. Am. 2000, 64, 4–11. [Google Scholar] [CrossRef]
- Ching, J.; Phoon, K.K. Constructing Site-Specific Multivariate Probability Distribution Model Using Bayesian Machine Learning. J. Eng. Mech. 2019, 145, 04018126. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, S.; Zhou, C.; Luo, H. Intelligent Approach Based on Random Forest for Safety Risk Prediction of Deep Foundation Pit in Subway Stations. J. Comput. Civil. Eng. 2019, 33, 05018004. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.; Mendes, M.P.; Garciasoldado, M.J.; Chicaolmo, M.; Ribeiro, L. Predictive Modeling of Groundwater Nitrate Pollution Using Random Forest and Multisource Variables Related to Intrinsic and Specific Vulnerability: A Case Study in an Agricultural Setting (Southern Spain). Sci. Total Environ. 2014, 476, 189–206. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Galiano, V.; Sanchez-Castillo MChica-Olmo, M.; Chica-Rivas, M. Machine Learning Predictive Models for Mineral Prospectivity: An Evaluation of Neural Networks, Random Forest, Regression Trees and Support Vector Machines. Ore Geol. Rev. 2015, 71, 804–818. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Y.X.; Zhang, K.; Hu, M.; Weng, Q.; Zhang, H.C. Spatial heterogeneity modeling of water quality based on random forest regression and model interpretation. Environ. Res. 2021, 202, 111660. [Google Scholar] [CrossRef]
- Singh, B.; Sihag, P.; Singh, K. Modelling of impact of water quality on infiltration rate of soil by random forest regression. Model. Earth Syst. Environ. 2017, 3, 999–1004. [Google Scholar] [CrossRef]
- Li, T.Y.; He, B.H.; Chen, Z.P.; Zhang, Y.; Liang, C. Effects of gravel on con-centrated flow hydraulics and erosion in simulated landslide deposits. Catena 2017, 156, 197–204. [Google Scholar] [CrossRef]
- Zeng, R.C.; Zhang, Y.Q.; He, B.H.; Li, T.Y.; Zeng, C. Hydraulics characteristics of concentration flow relative to angle between rock and slope in the karst trough valley area. Acta Pedol. Sin. 2021, 58, 1179–1189. [Google Scholar]
- GB/T 7479-1987; Water Quality—Determination of Ammonium—Nessler’s Reagent Colorimetric Method. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 1987.
- GB/T 7480-1987; Water Quality—Determination of Nitrate—Spectrophotometric Method with Phenol Disulfonic Acid. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 1987.
- GB/T 11894-1989; Water Quality—Determination of Total Nitrogen—Alkaline Potassium Persulfate Digestion-UV Spectro Photo Metric Method. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 1989.
- GB/T 11893-1989; Water Quality—Determination of Total Phosphorus—Ammonium Molybdate Spectrophotometric Method. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 1989.
- Jin, X.L.; Diao, W.Y.; Xiao, C.H.; Wang, F.Y.; Chen, B.; Wang, K.R.; Li, S.K. Estimation of wheat agronomic parameters using new spectral indices. PLoS ONE 2013, 8, e72736. [Google Scholar] [CrossRef] [PubMed]
- Puissant, A.; Rougier, S.; Stumpf, A. Object-oriented mapping of urban trees using random forest classifiers. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 235–245. [Google Scholar] [CrossRef]
- Nitze, I.; Barrett, B.; Cawkwell, F. Temporal optimization of image acquisition for land cover classification with random forest and MODIS time-series. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 136–146. [Google Scholar]
- Mo, W.B.; Yang, N.; Zhao, Y.L.; Xu, Z.G. Impacts of land use patterns on river water quality: The case of Dongjiang Lake Basin, China. Ecol. Inform. 2003, 75, 102083. [Google Scholar] [CrossRef]
- Prasad, P.; Loveson, V.J.; Chandra, P.; Kotha, M. Evaluation and comparison of the earth observing sensors in land cover/land use studies using machine learning algorithms. Ecol. Inform. 2022, 68, 101522. [Google Scholar] [CrossRef]
Soil Particle Size Distribution | Bulk Density g cm−3 | ||
---|---|---|---|
<0.002 mm | 0.002–0.02 mm | >0.02 mm | |
28.23% | 51.09% | 20.68% | 1.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zeng, R.; Li, T.; Song, L.; He, B. Intelligent Analysis Strategy for the Key Factor of Soil Nitrogen and Phosphorus Loss via Runoff under Simulated Karst Conditions. Forests 2023, 14, 2109. https://doi.org/10.3390/f14102109
Zhang Y, Zeng R, Li T, Song L, He B. Intelligent Analysis Strategy for the Key Factor of Soil Nitrogen and Phosphorus Loss via Runoff under Simulated Karst Conditions. Forests. 2023; 14(10):2109. https://doi.org/10.3390/f14102109
Chicago/Turabian StyleZhang, Yuqi, Rongchang Zeng, Tianyang Li, Lan Song, and Binghui He. 2023. "Intelligent Analysis Strategy for the Key Factor of Soil Nitrogen and Phosphorus Loss via Runoff under Simulated Karst Conditions" Forests 14, no. 10: 2109. https://doi.org/10.3390/f14102109
APA StyleZhang, Y., Zeng, R., Li, T., Song, L., & He, B. (2023). Intelligent Analysis Strategy for the Key Factor of Soil Nitrogen and Phosphorus Loss via Runoff under Simulated Karst Conditions. Forests, 14(10), 2109. https://doi.org/10.3390/f14102109