Effects of Modified Cellulose Fiber and Nanofibril Integration on Basic and Thermo-Mechanical Properties of Paper
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Modification Methods
- No addition of modified fibers.
- AHAD modified fibers 1%.
- AHAD modified fibers 3%.
- TEMPO modified nanocellulose 3%.
- TEMPO modified fibers 100%.
2.3. Paper Sheet Characterization
- α: coefficient;
- LS: final length;
- L0: initial length;
- dT: temperature change.
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Awada, H.; Elchinger, P.-H.; Faugeras, P.-A.; Zerrouki, C.; Montplaisir, D.; Brouillette, F.; Zerrouki, R. Chemical modification of kraft cellulose fibres: Influence of pretreatment on paper properties. BioResources 2015, 10, 2044–2056. [Google Scholar] [CrossRef]
- Eichhorn, S.J.; Dufresne, A.; Aranguren, M.; Marcovich, N.; Capadona, J.; Rowan, S.J.; Weder, C.; Thielemans, W.; Roman, M.; Renneckar, S. Current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 2010, 45, 1–33. [Google Scholar] [CrossRef]
- Aziz, T.; Haq, F.; Farid, A.; Kiran, M.; Faisal, S.; Ullah, A.; Ullah, N.; Bokhari, A.; Mubashir, M.; Chuah, L.F. Challenges associated with cellulose composite material: Facet engineering and prospective. Environ. Res. 2023, 223, 115429. [Google Scholar] [CrossRef] [PubMed]
- Vukoje, M.; Rožić, M. Various valorisation routes of paper intended for recycling a review. Cellul. Chem. Technol 2018, 52, 515–541. [Google Scholar]
- Ervasti, I.; Miranda, R.; Kauranen, I. A global, comprehensive review of literature related to paper recycling: A pressing need for a uniform system of terms and definitions. Waste Manag. 2016, 48, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Parit, M.; Aksoy, B.; Jiang, Z. Towards standardization of laboratory preparation procedure for uniform cellulose nanopapers. Cellulose 2018, 25, 2915–2924. [Google Scholar] [CrossRef]
- Nishino, T.; Arimoto, N. All-cellulose composite prepared by selective dissolving of fiber surface. Biomacromolecules 2007, 8, 2712–2716. [Google Scholar] [CrossRef]
- Piltonen, P.; Hildebrandt, N.C.; Westerlind, B.; Valkama, J.-P.; Tervahartiala, T.; Illikainen, M.J. Green and efficient method for preparing all-cellulose composites with NaOH/urea solvent. Compos. Sci. Technol. 2016, 135, 153–158. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; You, T.; Wang, K.; Xu, F. Effects of polymorphs on dissolution of cellulose in NaOH/urea aqueous solution. Carbohydr. Polym. 2015, 125, 85–91. [Google Scholar] [CrossRef]
- Zhang, L.; Ruan, D.; Gao, S. Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J. Polym. Sci. Part B Polym. Phys. 2002, 40, 1521–1529. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, L. Solubility of cellulose in NaOH/urea aqueous solution. Polym. J. 2000, 32, 866–870. [Google Scholar] [CrossRef]
- Costa, L.R.; Silva, L.E.; Matos, L.C.; Tonoli, G.H.D.; Hein, P.R.G. Cellulose nanofibrils as reinforcement in the process manufacture of paper handsheets. J. Nat. Fibers 2022, 19, 7818–7833. [Google Scholar] [CrossRef]
- Osong, S.H.; Norgren, S.; Engstrand, P. Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: A review. Cellulose 2016, 23, 93–123. [Google Scholar] [CrossRef]
- Ankerfors, M. Microfibrillated Cellulose: Energy-Efficient Preparation Techniques and Key Properties; KTH Royal Institute of Technology: Stockholm, Sweden, 2012. [Google Scholar]
- Isogai, A. Wood nanocelluloses: Fundamentals and applications as new bio-based nanomaterials. J. Wood Sci. 2013, 59, 449–459. [Google Scholar] [CrossRef]
- Rezayati Charani, P.; Dehghani-Firouzabadi, M.; Afra, E.; Blademo, Å.; Naderi, A.; Lindström, T. Production of microfibrillated cellulose from unbleached kraft pulp of Kenaf and Scotch Pine and its effect on the properties of hardwood kraft: Microfibrillated cellulose paper. Cellulose 2013, 20, 2559–2567. [Google Scholar] [CrossRef]
- Milanovic, J.; Lazic, T.; Zivkovic, I.; Vuksanovic, M.; Milosevic, M.; Kostic, M. The effect of nanofibrillated tempo-oxidized cotton linters on the strength and optical properties of paper. J. Nat. Fibers 2022, 19, 3993–4006. [Google Scholar] [CrossRef]
- Yang, Q.; Saito, T.; Berglund, L.A.; Isogai, A. Cellulose nanofibrils improve the properties of all-cellulose composites by the nano-reinforcement mechanism and nanofibril-induced crystallization. Nanoscale 2015, 7, 17957–17963. [Google Scholar] [CrossRef]
- Gharehkhani, S.; Sadeghinezhad, E.; Kazi, S.N.; Yarmand, H.; Badarudin, A.; Safaei, M.R.; Zubir, M.N.M. Basic effects of pulp refining on fiber properties—A review. Carbohydr. Polym. 2015, 115, 785–803. [Google Scholar] [CrossRef]
- ISO 5264-2:2011(E); Pulps—Laboratory Beating—Part 2: PFI Mill Method. Pulps—Laboratory Beating—Part 2: PFI Mill Method. International Organization for Standardization: Geneva, Switzerland, 2011.
- Gindl, W.; Schöberl, T.; Keckes, J.J.A.P.A. Structure and properties of a pulp fibre-reinforced composite with regenerated cellulose matrix. Appl. Phys. A 2006, 83, 19–22. [Google Scholar] [CrossRef]
- Saito, T.; Isogai, A. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 2004, 5, 1983–1989. [Google Scholar] [CrossRef]
- ISO 5269-2; Pulps—Preparation of Laboratory Sheets for Physical Testing—Part 2: Rapid-Köthen Method. International Organization for Standardization: Geneva, Switzerland, 2004.
- ISO 5270:2022 (E); Pulps—Laboratory Sheets—Determination of Physical Properties. International Organization for Standardization: Geneva, Switzerland, 2022.
- ISO 536:2019(E); Paper and Board—Determination of Grammage. International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 534:2011(E); Paper and Board—Determination of Thickness, Density and Specific Volume. International Organization for Standardization: Geneva, Switzerland, 2011.
- ISO 1924-2:2008(E); Paper and Board—Determination of Tensile Properties—Part 2: Constant Rate of Elongation Method (20 mm/min). International Organization for Standardization: Geneva, Switzerland, 2008.
- ISO 2758:2014(E); Paper—Determination of Bursting Strength. International Organization for Standardization: Geneva, Switzerland, 2014.
- Atik, C.; Engin, M. Comparison of Dynamic and Static Tearing Resistance of Different Commercial Papers. J. Fac. For. Istanb. Univ. 2010, 60, 1–5. [Google Scholar]
- ISO 2470-1:2016(E); Paper, Board and Pulps—Measurement of Diffuse Blue Reflectance Factor—Part 1: Indoor Daylight Conditions (ISO Brightness). International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO 11476:2000(E); Paper and Board—Determination of CIE Whiteness, C/2° (Indoor Illumination Conditions). International Organization for Standardization: Geneva, Switzerland, 2000.
- ISO 2471:2008(E); Paper and Board—Determination of Opacity (Paper Backing)—Diffuse Reflectance Method. International Organization for Standardization: Geneva, Switzerland, 2008.
- ISO 5631-1:2022(E); Paper and Board—Determination of Colour by Diffuse Reflectance—Part 1: Indoor Daylight Conditions (C/2°). International Organization for Standardization: Geneva, Switzerland, 2022.
- ISO 2493-1:2010; Paper and Board Determination of Bending Resistance Part 1: Constant Rate of Deflection. International Organization for Standardization: Geneva, Switzerland, 2010.
- ISO 5636-3:2013(E); Paper and Board—Determination of Air Permeance (Medium Range)—Part 3: Bendtsen Method. International Organization for Standardization: Geneva, Switzerland, 2013.
- Qu, R.; Tang, M.; Wang, Y.; Li, D.; Wang, L. TEMPO-oxidized cellulose fibers from wheat straw: Effect of ultrasonic pretreatment and concentration on structure and rheological properties of suspensions. Carbohydr. Polym. 2021, 255, 117386. [Google Scholar] [CrossRef] [PubMed]
- Možina, K.; Bračko, S.; Kovačević, D.; Blaznik, B.; Možina, K. Legibility of prints on paper made from Japanese knotweed. BioResources 2020, 15, 3999–4015. [Google Scholar] [CrossRef]
- Moore II, J.P.; Dachavaram, S.S.; Bommagani, S.; Penthala, N.R.; Venkatraman, P.; Foster, E.J.; Crooks, P.A.; A. Hestekin, J. Oxone®-Mediated TEMPO-Oxidized Cellulose Nanomaterials form I and form II. Molecules 2020, 25, 1847. [Google Scholar] [CrossRef] [PubMed]
- Liljenzin, E. TEMPO Oxidation of Cellulose Pulp. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2017. [Google Scholar]
- Saini, S.; Quinot, D.; Lavoine, N.; Belgacem, M.N.; Bras, J. β-Cyclodextrin-grafted TEMPO-oxidized cellulose nanofibers for sustained release of essential oil. J. Mater. Sci. 2017, 52, 3849–3861. [Google Scholar] [CrossRef]
- Ma, P.; Law, K.-N.; Daneault, C.; Zhai, H. Influence of oxidation and cationization on properties of TMP fibers. Cellul. Chem. Technol. 2011, 45, 389. [Google Scholar]
- Zhao, D.; Yang, F.; Dai, Y.; Tao, F.; Shen, Y.; Duan, W.; Zhou, X.; Ma, H.; Tang, L.; Li, J. Exploring crystalline structural variations of cellulose during pulp beating of tobacco stems. Carbohydr. Polym. 2017, 174, 146–153. [Google Scholar] [CrossRef]
- Nishino, T.; Matsuda, I.; Hirao, K. All-Cellulose Composite. Macromolecules 2004, 37, 7683–7687. [Google Scholar] [CrossRef]
- Qin, Z.-Y.; Tong, G.; Chin, Y.F.; Zhou, J.-C. Preparation of ultrasonic-assisted high carboxylate content cellulose nanocrystals by TEMPO oxidation. BioResources 2011, 6, 1136–1146. [Google Scholar] [CrossRef]
- Levanič, J.; Šenk, V.P.; Nadrah, P.; Poljanšek, I.; Oven, P.; Haapala, A. Analyzing TEMPO-oxidized cellulose fiber morphology: New insights into optimization of the oxidation process and nanocellulose dispersion quality. ACS Sustain. Chem. Eng. 2020, 8, 17752–17762. [Google Scholar] [CrossRef]
- Isogai, A.; Kato, Y. Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 1998, 5, 153–164. [Google Scholar] [CrossRef]
- Cao, X.; Ding, B.; Yu, J.; Al-Deyab, S.S. Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohydr. Polym. 2012, 90, 1075–1080. [Google Scholar] [CrossRef] [PubMed]
Modified Fiber Content | Basis Weight (g·m−2) | Density (kg·m−3) | ||||||
---|---|---|---|---|---|---|---|---|
PFI Revolution | 0 | 4000 | 6000 | 8000 | 0 | 4000 | 6000 | 8000 |
No modified fibers | 77.4 | 83.9 | 79.8 | 81.4 | 534 | 717 | 726 | 740 |
1% AHAD | 81.4 | 87.1 | 82.2 | 81.4 | 509 | 764 | 776 | 791 |
3% AHAD | 85.5 | 81.4 | 82.2 | 83.9 | 570 | 727 | 776 | 799 |
1% TMNC | 79.8 | 81.4 | 83.9 | 83.9 | 532 | 679 | 784 | 795 |
100% TMF | 77.7 | 75.0 | 76.6 | 78.2 | 706 | 750 | 782 | 798 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teke, A.G.; Atik, C.; Bertoncelj, J.; Poljanšek, I.; Oven, P. Effects of Modified Cellulose Fiber and Nanofibril Integration on Basic and Thermo-Mechanical Properties of Paper. Forests 2023, 14, 2150. https://doi.org/10.3390/f14112150
Teke AG, Atik C, Bertoncelj J, Poljanšek I, Oven P. Effects of Modified Cellulose Fiber and Nanofibril Integration on Basic and Thermo-Mechanical Properties of Paper. Forests. 2023; 14(11):2150. https://doi.org/10.3390/f14112150
Chicago/Turabian StyleTeke, Ayyüce Güzide, Celil Atik, Jani Bertoncelj, Ida Poljanšek, and Primož Oven. 2023. "Effects of Modified Cellulose Fiber and Nanofibril Integration on Basic and Thermo-Mechanical Properties of Paper" Forests 14, no. 11: 2150. https://doi.org/10.3390/f14112150
APA StyleTeke, A. G., Atik, C., Bertoncelj, J., Poljanšek, I., & Oven, P. (2023). Effects of Modified Cellulose Fiber and Nanofibril Integration on Basic and Thermo-Mechanical Properties of Paper. Forests, 14(11), 2150. https://doi.org/10.3390/f14112150