The Influence of Exogenous Nitrogen Input on the Characteristics of Phytolith-Occluded Carbon in the Kandelia obovata Soil System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tidal Simulation Experiments
2.2. Culture Medium, Kandelia Obovata Seedling Cultivation, and Nitrogen Fertilizer Treatment
2.3. Extraction and Calculation of Phytoliths
2.4. Statistical Analysis
3. Results
3.1. Effect of Nitrogen Input on PhytOC Characteristics in Kandelia Obovata
3.2. Effects of Mangroves and Exogenous Nitrogen Input on the Characteristics of PhytOC in Coastal Wetland Soil
3.2.1. Effects of Mangroves and Exogenous Nitrogen Input on Phytoliths Content in Coastal Wetland Soil
3.2.2. Effects of Mangroves and Exogenous Nitrogen Input on Occluded Carbon Content of Phytoliths in Coastal Wetland Soil
3.2.3. Effects of Mangroves and Exogenous Nitrogen Input on PhytOC Content of Soil in Coastal Wetland Soil
3.3. Correlation Analysis between Soil PhytOC and Other Factors
3.3.1. Correlation Analysis between Mangrove Plants, Nitrogen Concentration, and Soil PhytOC in Coastal Wetlands
3.3.2. Correlation Analysis between Soil PhytOC, the Soil Environment, and Plant Factors in the Planting Group
3.3.3. Correlation Analysis between Soil PhytOC and Other Indicators in the Non-Plant Group
4. Discussions
4.1. The PhytOC Sequestration Capability of Kandelia obovata and Soil Phytoliths
4.2. Variation of Soil Plant PhytOC Sequestration Capability in Coastal Wetlands with Regards to Nitrogen Deposition
4.3. Correlations between a Range of Indices in Response to Nitrogen Deposition
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Liu, S.; Tian, P. Carbon quality and soil microbial property control the latitudinal pattern in temperature sensitivity of soil microbial respiration across Chinese forest ecosystems. Glob. Change Biol. 2018, 24, 2841–2849. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Zimmer, M.; Ahmed, I.; Donato, D.; Kanzaki, M.; Xu, M. Co-benefits of protecting mangroves for biodiversity conservation and carbon storage. Nat. Commun. 2021, 12, 3875. [Google Scholar] [CrossRef] [PubMed]
- Sasmito, S.D.; Kuzyakov, Y.; Lubis, A.A.; Murdiyarso, D.; Hutley, L.B.; Bachri, S.; Friess, D.A.; Martius, C.; Borchard, N. Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems. Catena 2020, 187, 104414. [Google Scholar] [CrossRef]
- Wu, Y.; Chung, A.; Tam, N.; Pi, N.; Wong, M.H. Constructed mangrove wetland as secondary treatment system for municipal wastewater. Ecol. Eng. 2008, 34, 137–146. [Google Scholar] [CrossRef]
- Simpson, L.T.; Feller, I.C.; Chapman, S.K. Effects of competition and nutrient enrichemnt on Avicennia germinans in the salt marsh-mangrove ecotone. Aquat. Bot. 2013, 104, 55–59. [Google Scholar] [CrossRef]
- Terrer, C.; Phillips, R.P.; Hungate, B.A.; Rosende, J.; Pett-Ridge, J.; Craig, M.E.; van Groenigen, K.J.; Keenan, T.F.; Sulman, B.N.; Stocker, B.D. A trade-off between plant and soil carbon storage under elevated CO2. Nature 2021, 591, 599–603. [Google Scholar] [CrossRef]
- Alongi, D.M. Nitrogen cycling and mass balance in the world’s mangrove forests. Nitrogen 2020, 1, 167–189. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P. Enhanced nitrogen deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Zhang, Y.; Mao, D.; Wang, C. Monitoring loss and recovery of mangrove forests during 42 years: The achievements of mangrove conservation in China. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 535–545. [Google Scholar] [CrossRef]
- Chowdhury, R.; Sutradhar, T.; Begam, M.M.; Mukherjee, C.; Chatterjee, K.; Basak, S.K.; Ray, K. Effects of nutrient limitation, salinity increase, and associated stressors on mangrove forest cover, structure, and zonation across Indian Sundarbans. Hydrobiologia 2019, 842, 191–217. [Google Scholar] [CrossRef]
- Zhang, R.; Jia, M.; Wang, Z.; Zhou, Y.; Mao, D.; Ren, C.; Zhao, C.; Liu, X. Tracking annual dynamics of mangrove forests in mangrove National Nature Reserves of China based on time series Sentinel-2 imagery during 2016–2020. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102918. [Google Scholar] [CrossRef]
- Chen, F.; You, H.; Tan, F.; Han, J.; Yu, X.; You, W.; He, D. Methane contributions of different components of kandelia candel–soil system under nitrogen supplementation. Forests 2022, 13, 318. [Google Scholar]
- You, H. Effects of N addition on carbon and nitrogen stoichiometry and homeostasis characteristics of the Kandelia obovata plants-soil-microbial biomass system. Chin. J. Ecol. 2022, 41, 1909–1915. [Google Scholar]
- Li, W.; Tan, L.; Zhang, N.; Chen, H.; Fan, X.; Peng, M.; Ye, M.; Yan, G.; Peng, H.; Nikolic, N. Phytolith-occluded carbon in residues and economic benefits under rice/single-season Zizania latifolia rotation. Sci. Total Environ. 2022, 836, 155504. [Google Scholar] [CrossRef]
- Zhang, X.; Song, Z.; Hao, Q.; Yu, C.; Liu, H.; Chen, C.; Müller, K.; Wang, H. Storage of soil phytoliths and phytolith-occluded carbon along a precipitation gradient in grasslands of northern China. Geoderma 2020, 364, 114200. [Google Scholar] [CrossRef]
- Tan, L.; Fan, X.; Yan, G.; Peng, M.; Zhang, N.; Ye, M.; Gao, Z.; Song, A.; Nikolic, M.; Liang, Y. Sequestration potential of phytolith occluded carbon in China’s paddy rice (Oryza sativa L.) systems. Sci. Total Environ. 2021, 774, 145696. [Google Scholar] [CrossRef]
- Liu, L.; Song, Z.; Yu, C.; Yu, G.; Ellam, R.M.; Liu, H.; Singh, B.P.; Wang, H. Silicon effects on biomass carbon and phytolith-occluded carbon in grasslands under high-salinity conditions. Front. Plant Sci. 2020, 11, 657. [Google Scholar] [CrossRef]
- Nguyen, M.N.; Dultz, S.; Meharg, A.; Pham, Q.V.; Hoang, A.N.; Dam, T.T.; Nguyen, V.T.; Nguyen, K.M.; Nguyen, H.X.; Nguyen, N.T. Phytolith content in Vietnamese paddy soils in relation to soil properties. Geoderma 2019, 333, 200–213. [Google Scholar] [CrossRef]
- Li, W.; Tan, L.; Peng, M.; Chen, H.; Tan, C.; Zhao, E.; Zhang, L.; Peng, H.; Liang, Y. The spatial distribution of phytoliths and phytolith-occluded carbon in wheat (Triticum aestivum L.) ecosystem in China. Sci. Total Environ. 2022, 850, 158005. [Google Scholar] [CrossRef]
- Li, Z.; Song, Z.; Li, B. The production and accumulation of phytolith-occluded carbon in Baiyangdian reed wetland of China. Appl. Geochem. 2013, 37, 117–124. [Google Scholar] [CrossRef]
- Li, Z.; Song, Z.; Jiang, P. Biogeochemical sequestration of carbon within phytoliths of wetland plants: A case study of Xixi wetland, China. Chin. Sci. Bull. 2013, 58, 2480–2487. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Q.; Zhao, G.; Chen, X.; Tang, T.; Xiang, Y. Comparison of phytolith-occluded carbon in 51 main cultivated rice (Oryza sativa) cultivars of China. RSC Adv. 2017, 7, 54726–54733. [Google Scholar] [CrossRef]
- Song, Z.; Liu, H.; Li, B.; Yang, X. The production of phytolith-occluded carbon in China’s forests: Implications to biogeochemical carbon sequestration. Glob. Change Biol. 2013, 19, 2907–2915. [Google Scholar] [CrossRef] [PubMed]
- Rehman, I.U.; Rashid, I. Role of silicon in phytolith-occluded carbon (PhytOC) sequestration. Vegetos 2023, 6, 1–11. [Google Scholar] [CrossRef]
- Chen, N.; Hong, H.; Huang, Q.; Wu, J. Atmospheric nitrogen deposition and its long-term dynamics in a southeast China coastal area. J. Environ. Manag. 2011, 92, 1663–1667. [Google Scholar] [CrossRef] [PubMed]
- Buster, M.; Simpfendorfer, S.; Guppy, C.; Sissons, M.; Flavel, R.J. Interactions of Fusarium crown rot of wheat with nitrogen. Plants 2023, 12, 533. [Google Scholar] [CrossRef]
- Parr, J.F.; Dolic, V.; Lancaster, G.; Boyd, W.E. A microwave digestion method for the extraction of phytoliths from herbarium specimens. Rev. Palaeobot. Palynol. 2001, 116, 203–212. [Google Scholar] [CrossRef]
- Li, X.; Vogeler, I.; Schwendenmann, L. Conversion from tussock grassland to pine forest: Effect on soil phytoliths and phytolith-occluded carbon (PhytOC). J. Soils Sediments 2019, 19, 1260–1271. [Google Scholar] [CrossRef]
- Sauer, D.; Saccone, L.; Conley, D.J.; Herrmann, L.; Sommer, M. Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry 2006, 80, 89–108. [Google Scholar] [CrossRef]
- Yang, J.; Wu, J.; Jiang, P.; Xu, Q.; Zhao, P.; He, S. A study of phytolith-occluded carbon stock in monopodial bamboo in China. Sci. Rep. 2015, 5, 13292. [Google Scholar] [CrossRef]
- Guan, S. Soil Enzyme and Its Research Method; China Agricultural Publishing House: Beijing, China, 1986. [Google Scholar]
- Lu, R. Soil Agrochemical Analysis Method; China Agricultural Publishing House: Beijing, China, 1999. [Google Scholar]
- Zhu, H.; Lu, C.; Gao, M.; Huang, R.; Lü, S.; Wang, Z. Distribution of PhytoOC in soils under four different types of forest in Jinyun Mountain. Acta Pedol. Sin. 2020, 57, 359–369. [Google Scholar]
- Parr, J.F.; Sullivan, L.A. Phytolith occluded carbon and silica variability in wheat cultivars. Plant Soil. 2011, 342, 165–171. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, Z.; Xu, X.; Liu, H.; Wu, X.; Li, Z.; Guo, F.; Pan, W. Nitrogen application increases phytolith carbon sequestration in degraded grasslands of North China. Ecol. Res. 2016, 31, 117–123. [Google Scholar] [CrossRef]
- Huang, C.; Wang, L.; Gong, X.; Huang, Z.; Zhou, M.; Li, J.; Wu, J.; Chang, S.X.; Jiang, P. Silicon fertilizer and biochar effects on plant and soil PhytOC concentration and soil PhytOC stability and fractionation in subtropical bamboo plantations. Sci. Total Environ. 2020, 715, 136846. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Sheng, M.; Yuan, F.; Yin, J. Effect of land cover change on total SOC and soil PhytOC accumulation in the karst subtropical forest ecosystem, SW China. J. Soils Sediments 2021, 21, 2566–2577. [Google Scholar] [CrossRef]
- Wang, D.; Wang, A.-B.; Long, G.-F.; Li, Y.; Pu, Y.-L.; Zhang, S.-R.; Jia, Y.-X.; Ye, C. Research advances of phytolith and phytolith-occluded-carbon in wetland ecosystems. Chin. J. Ecol. 2017, 36, 3602. [Google Scholar]
- Lin, W.; Ying, Y.; Jiang, P.; Huang, Z.; Wu, J.; Meng, C. Study on phytolith-occluded organic carbon in soil of subtropical forest of southern Zhejiang. Acta Pedol. Sin. 2015, 52, 1365–1373. [Google Scholar]
- He, S.Q.; Huang, Z.T.; Wu, J.S.; Yang, J.; Jiang, P.K. Evolution pattern of phytolith-occluded carbon in typical forest-soil ecosystems in tropics and subtropics, China. Chin. J. Appl. Ecol. 2016, 27, 697–704. [Google Scholar]
- Huang, R.; He, J.; Wang, N.; Christakos, G.; Gu, J.; Song, L.; Luo, J.; Agusti, S.; Duarte, C.M.; Wu, J. Carbon sequestration potential of transplanted mangroves and exotic saltmarsh plants in the sediments of subtropical wetlands. Sci. Total Environ. 2023, 904, 166185. [Google Scholar] [CrossRef]
- Ji, Z.; Yang, X.; Song, Z.; Liu, H.; Liu, X.; Qiu, S.; Li, J.; Guo, F.; Wu, Y.; Zhang, X. Silicon distribution in meadow steppe and typical steppe of northern China and its implications for phytolith carbon sequestration. Grass Forage Sci. 2018, 73, 482–492. [Google Scholar] [CrossRef]
- Liu, L.; Chang, S.X.; Huang, C.; Zhi, Y.; Jie, Y.; Yu, X.; Jiang, P. Enhancement of phytolith-occluded carbon accumulation of Moso bamboo response to temperatures elevation and different fertilization. Front. Plant Sci. 2023, 14, 1144961. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.-X.; Jie, D.-M.; Li, D.-H.; Chen, J.; Chen, Y.-F.; Chen, N.-K.; Bahayila, H.; Wang, F. Phytolith-occluded organic carbon sequestration of typical communities in Songnen grassland. Chin. J. Ecol. 2020, 39, 1938. [Google Scholar]
- Song, A.; Ning, D.; Fan, F.; Li, Z.; Provance-Bowley, M.; Liang, Y. The potential for carbon bio-sequestration in China’s paddy rice (Oryza sativa L.) as impacted by slag-based silicate fertilizer. Sci. Rep. 2015, 5, 17354. [Google Scholar] [CrossRef]
- Sun, K.; Wu, J.; Sheng, W.; Jiang, P.K.; Zhang, Y.; Ge, J. Potential of Phytolith-Occluded Organic Carbon Sequestration in Masson Pine Stands at Different Ages in Subtropical China. Sci. Silvae Sin. 2020, 56, 10–18. [Google Scholar]
- Ying, Y.; Xiang, T.; Lin, W. Phytolith-occluded carbon in litters of different stands in the subtropics of China. Sci. Silvae Sin. 2015, 51, 1–7. [Google Scholar]
- Wang, L.; Sheng, M. Phytolith occluded organic carbon in Fagopyrum (Polygonaceae) plants: Insights on the carbon sink potential of cultivated buckwheat planting. Front. Plant Sci. 2022, 13, 1014980. [Google Scholar] [CrossRef]
- Qi, L.; Sun, T.; Guo, X.; Guo, Y.; Li, F.Y. Phytolith-occluded carbon sequestration potential in three major steppe types along a precipitation gradient in Northern China. Ecol. Evol. 2021, 11, 1446–1456. [Google Scholar] [CrossRef]
- Lv, W.; Zhou, G.; Chen, G.; Zhou, Y.; Ge, Z.; Niu, Z.; Xu, L.; Shi, Y. Effects of different management practices on the increase in phytolith-occluded carbon in Moso bamboo forests. Front. Plant Sci. 2020, 11, 591852. [Google Scholar] [CrossRef]
- Song, Z.; Wu, Y.; Yang, Y.; Zhang, X.; Van Zwieten, L.; Bolan, N.; Li, Z.; Liu, H.; Hao, Q.; Yu, C. High potential of stable carbon sequestration in phytoliths of China’s grasslands. Glob. Change Biol. 2022, 28, 2736–2750. [Google Scholar] [CrossRef]
- Zuo, X.; Lu, H.; Gu, Z. Distribution of soil phytolith-occluded carbon in the Chinese Loess Plateau and its implications for silica–carbon cycles. Plant Soil 2014, 374, 223–232. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Q.; Tang, T.; Chen, X.; Luo, X. Silicon fertilizer application promotes phytolith accumulation in rice plants. Front. Plant Sci. 2019, 10, 425. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zhong, L.; Jie, D.; Wang, J.; Li, D.; Gao, G.; Chen, J.; Chen, Y.; Halian, B.; Wang, F. Characteristics of phytolith-occluded organic carbon sequestration in typical plant communities in the Songnen grassland, China. Ecol. Eng. 2021, 173, 106442. [Google Scholar] [CrossRef]
- Pan, W.; Song, Z.; Liu, H.; Müeller, K.; Yang, X.; Zhang, X.; Li, Z.; Liu, X.; Qiu, S.; Hao, Q. Impact of grassland degradation on soil phytolith carbon sequestration in Inner Mongolian steppe of China. Geoderma 2017, 308, 86–92. [Google Scholar] [CrossRef]
- Yang, X.; Song, Z.; Qin, Z.; Wu, L.; Yin, L.; Van Zwieten, L.; Song, A.; Ran, X.; Yu, C.; Wang, H. Phytolith-rich straw application and groundwater table management over 36 years affect the soil-plant silicon cycle of a paddy field. Plant Soil 2020, 454, 343–358. [Google Scholar] [CrossRef]
- Xu, R.; He, H.; Guo, H.; Zhu, F.; Wang, S.; Dai, C.; Zheng, X.; Xie, D.; Li, H.; Wang, C. Characteristics of silicon and phytolith distribution in bamboo (Ferrocalamus strictus): Variations between different organs and ages. Rev. Palaeobot. Palynol. 2023, 311, 104817. [Google Scholar] [CrossRef]
- Song, Z.; Liu, H.; Si, Y.; Yin, Y. The production of phytoliths in China’s grasslands: Implications to the biogeochemical sequestration of atmospheric CO2. Glob. Change Biol. 2012, 18, 3647–3653. [Google Scholar] [CrossRef]
Volumetric Weight (g·cm−3) | TC Content (%) | TN Content (%) | NH4+–N (mg·kg−1) | NO3–N (mg·kg−1) |
---|---|---|---|---|
0.63 ± 0.03 | 1.89 ± 0.13 | 0.13 ± 0.0025 | 3.24 ± 0.34 | 2.71 ± 0.12 |
Index | Planting Group | Non-Plant Group |
---|---|---|
Phytolith content | −5.69 | 2.66 |
Occluded carbon content of phytoliths | −26.02 | −29.14 |
PhytOC content of soil | −29.79 | −28.54 |
Nitrogen Concentration | Occluded Carbon Content in Phytoliths | PhytOC Content of Soil |
---|---|---|
N1 | −11.93 | −33.63 |
N2 | 44.08 | −0.67 |
N3 | 52.00 | 38.40 |
N4 | 88.26 | 56.78 |
Index | Occluded Carbon Content of Phytoliths | PhytOC Content of Soil | Phytoliths Content |
---|---|---|---|
Mangrove plant | 0.533 ** | 0.162 | −0.718 ** |
Nitrogen concentration | −0.642 ** | −0.578 ** | 0.270 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, H.; Zheng, L.; You, W.; Tan, F.; Wang, F.; Cao, Y.; Le, T.; Lin, J.; Lv, J. The Influence of Exogenous Nitrogen Input on the Characteristics of Phytolith-Occluded Carbon in the Kandelia obovata Soil System. Forests 2023, 14, 2202. https://doi.org/10.3390/f14112202
You H, Zheng L, You W, Tan F, Wang F, Cao Y, Le T, Lin J, Lv J. The Influence of Exogenous Nitrogen Input on the Characteristics of Phytolith-Occluded Carbon in the Kandelia obovata Soil System. Forests. 2023; 14(11):2202. https://doi.org/10.3390/f14112202
Chicago/Turabian StyleYou, Huiming, Lidi Zheng, Weibin You, Fanglin Tan, Fangyi Wang, Yan Cao, Tongchao Le, Jie Lin, and Jiangrong Lv. 2023. "The Influence of Exogenous Nitrogen Input on the Characteristics of Phytolith-Occluded Carbon in the Kandelia obovata Soil System" Forests 14, no. 11: 2202. https://doi.org/10.3390/f14112202
APA StyleYou, H., Zheng, L., You, W., Tan, F., Wang, F., Cao, Y., Le, T., Lin, J., & Lv, J. (2023). The Influence of Exogenous Nitrogen Input on the Characteristics of Phytolith-Occluded Carbon in the Kandelia obovata Soil System. Forests, 14(11), 2202. https://doi.org/10.3390/f14112202