Trends and Hotspots in Riparian Restoration Research: A Global Bibliometric Analysis during 1990–2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Processing
2.2. Data Analyses and Visualization
3. Results and Discussion
3.1. Publication Characteristics
3.2. Publication Contributions
3.3. Trends of Research Topics
4. Conclusions
- (1)
- The number of annual articles related to riparian restoration research trended upward in general over the past 33 years, primarily because the importance of vegetation restoration for the functioning and health of riparian ecosystems is being increasingly emphasized. The average number of citations for publications shows a continuous decreasing trend, which is mainly due to the limitation of citation peaks for newly published articles. Riparian restoration research encompasses a broad spectrum of research areas, but environmental science, ecology, biodiversity conservation, engineering, and forestry are dominant.
- (2)
- Articles in the field of riparian restoration are highly dispersed across different journals. In terms of the number of publications and citations, Restoration Ecology was the most influential journal contributing to the field of riparian restoration. Lorenz A. W. and Nilsson C. have a higher number of papers and Kondolf G.M. has the highest number of total citations. The United States stands as the preeminent research nation in the domain of riparian restoration, closely pursued by Brazil, Australia, China, and Germany.
- (3)
- Vegetation, management, river, dynamics, and biodiversity are the research topics that have received the most attention from scientists in riparian restoration research. Vegetation has received a lot of attention in the period 1990–2022 because it is the basis for ecological restoration. Before the 21st century, scientists focused mainly on ecosystems and rivers, after 2001 research focused on management topics, and after 2011 on biodiversity and conservation topics.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gregory, S.V.; Swanson, F.J.; Mckee, W.A.; Cummins, K.W. An ecosystem perspective of riparian zones. Bioscience 1991, 41, 540–551. [Google Scholar] [CrossRef]
- Rood, S.B.; Scott, M.L.; Dixon, M.; González, E.; Marks, C.O.; Shafroth, P.B.; Volke, M.A. Ecological interfaces between land and flowing water: Themes and trends in riparian research and management. Wetlands 2020, 40, 1801–1811. [Google Scholar] [CrossRef]
- Hoppenreijs, J.H.T.; Eckstein, R.L.; Lind, L. Pressures on boreal riparian vegetation: A literature review. Front. Ecol. Evol. 2022, 9, 806130. [Google Scholar] [CrossRef]
- Thieme, M.L.; Tickner, D.; Grill, G.; Carvallo, J.P.; Goichot, M.; Hartmann, J.; Higgins, J.; Lehner, B.; Mulligan, M.; Nilsson, C.; et al. Navigating trade-offs between dams and river conservation. Glob. Sustain. 2021, 4, e17. [Google Scholar] [CrossRef]
- Wu, H.P.; Chen, J.; Xu, J.J.; Zeng, G.M.; Sang, L.H.; Liu, Q.; Yin, Z.J.; Dai, J.; Yin, D.C.; Lang, J.; et al. Effects of dam construction on biodiversity: A review. J. Clean. Prod. 2019, 221, 480–489. [Google Scholar] [CrossRef]
- Silverman, N.L.; Allred, B.W.; Donnelly, J.P.; Chapman, T.B.; Maestas, J.D.; Wheaton, J.M.; White, J.; Naugle, D.E. Low-tech riparian and wet meadow restoration increases vegetation productivity and resilience across semiarid rangelands. Restor. Ecol. 2018, 16, 12869. [Google Scholar] [CrossRef]
- Zheng, J.; Arif, M.; He, X.; Liu, X.; Li, C. Distinguishing the mechanisms driving multifaceted plant diversity in subtropical reservoir riparian zones. Front. Plant Sci. 2023, 14, 1138368. [Google Scholar] [CrossRef]
- Gonzalez, E.; Felipe-Lucia, M.R.; Bourgeois, B.; Boz, B.; Nilsson, C.; Palmer, G.; Sher, A.A. Integrative conservation of riparian zones. Biol. Conserv. 2017, 211, 20–29. [Google Scholar] [CrossRef]
- Gong, Y.; Ye, C.; Zhang, Q. Effects of flooding outweigh those of vegetation restoration on key processes of carbon and nitrogen cycling in a degraded riparian zone. Catena 2023, 220, 106610. [Google Scholar] [CrossRef]
- Rubin, J.A.; Görres, J.H. The effects of mycorrhizae on phosphorus mitigation and pollinator habitat restoration within riparian buffers on unceded land. Restor. Ecol. 2022, 31, 13671. [Google Scholar] [CrossRef]
- Yang, J.; Li, E.H.; Yang, C.; Xia, Y.; Zhou, R. Effects of south-to-north water diversion project cascade dams on riparian vegetation along the middle and lower reaches of the hanjiang river, China. Front. Plant Sci. 2022, 13, 849010. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Talukdar, S.; Ghosh, R. Damming effect on habitat quality of riparian corridor. Ecol. Indic. 2020, 114, 106300. [Google Scholar] [CrossRef]
- Turunen, J.; Elbrecht, V.; Steinke, D.; Aroviita, J. Riparian forests can mitigate warming and ecological degradation of agricultural headwater streams. Freshw. Biol. 2021, 66, 785–798. [Google Scholar] [CrossRef]
- Gonzalez, E.; Sher, A.A.; Tabacchi, E.; Masip, A.; Poulin, M. Restoration of riparian vegetation: A global review of implementation and evaluation approaches in the international, peer-reviewed literature. J. Environ. Manag. 2015, 158, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Arif, M.; Zhang, S.; Yuan, Z.; Zhang, L.; Dong, Z.; Tan, X.; Charles, W.; Li, C. The convergence of species composition along the drawdown zone of the three gorges dam reservoir, China: Implications for restoration. Environ. Sci. Pollut. Res. 2021, 28, 42609–42621. [Google Scholar] [CrossRef]
- Miranda, R.; Bartrons, M.; Brucet, S.; Benejam, L. Long-term monitoring on a new channelized stream section: Changes in mesohabitat, composition, and size structure of fish assemblages. Restor. Ecol. 2023, 14, e13995. [Google Scholar] [CrossRef]
- Allek, A.; Viany Prieto, P.; Korys, K.A.; Rodrigues, A.F.; Latawiec, A.E.; Crouzeilles, R. How does forest restoration affect the recovery of soil quality? A global meta-analysis for tropical and temperate regions. Restor. Ecol. 2022, 31, e13747. [Google Scholar] [CrossRef]
- Zupo, T.; Lazzarotto Freitas, J.; Almeida dos Reis, D.; Ferreira de Siqueira, M. Trends and knowledge gaps on ecological restoration research in the brazilian atlantic forest. Restor. Ecol. 2022, 30, e13645. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Q.; Cui, F. Scientific research on ecosystem services and human well-being: A bibliometric analysis. Ecol. Indic. 2021, 125, 107449. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y. Research trends and areas of focus on the Chinese loess plateau: A bibliometric analysis during 1991–2018. Catena 2020, 194, 104798. [Google Scholar] [CrossRef]
- Liu, K.; Guan, X.; Li, G.; Duan, M.; Li, Y.; Hong, Y.; Lin, M.; Fu, R.; Yu, F. Publication characteristics, topic trends and knowledge domains of karst ecological restoration: A bibliometric and knowledge mapping analysis from 1991 to 2021. Plant Soil 2022, 475, 169–189. [Google Scholar] [CrossRef]
- Gao, J.; Hu, W. A bibliometric analysis of lake restoration with submerged macrophytes. Water 2023, 15, 2411. [Google Scholar] [CrossRef]
- de Souza, D.C. Forest restoration by direct seeding: A global bibliometric analysis. Restor. Ecol. 2022, 30, e13631. [Google Scholar] [CrossRef]
- Fernandes, A.A.; Adams, C.; de Araujo, L.G.; Romanelli, J.P.; Santos, J.P.B.; Rodrigues, R.R. Forest landscape restoration and local stakeholders: A global bibliometric mapping analysis. Sustainability 2022, 14, 16165. [Google Scholar] [CrossRef]
- Lam-Gordillo, O.; Baring, R.; Dittmann, S. Ecosystem functioning and functional approaches on marine macrobenthic fauna: A research synthesis towards a global consensus. Ecol. Indic. 2020, 115, 106379. [Google Scholar] [CrossRef]
- Pedraza, S.; Clerici, N.; Zuluaga Gaviria, J.D.; Sanchez, A. Global research on riparian zones in the xxi century: A bibliometric analysis. Water 2021, 13, 1836. [Google Scholar] [CrossRef]
- Zhang, C.; Fang, Y.; Chen, X.; Congshan, T. Bibliometric analysis of trends in global sustainable livelihood research. Sustainability 2019, 11, 1150. [Google Scholar] [CrossRef]
- Guan, Y.; Kang, R.; Liu, J. Evolution of the field of ecological restoration over the last three decades: A bibliometric analysis. Restor. Ecol. 2019, 27, 647–660. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: Vosviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Lake, P.S.; Bond, N.; Reich, P. Linking ecological theory with stream restoration. Freshw. Biol. 2007, 52, 597–615. [Google Scholar] [CrossRef]
- Beechie, T.J.; Sear, D.A.; Olden, J.D.; Pess, G.R.; Buffington, J.M.; Moir, H.; Roni, P.; Pollock, M.M. Process-based principles for restoring river ecosystems. BioScience 2010, 60, 209–222. [Google Scholar] [CrossRef]
- Moreno-Mateos, D.; Power, M.E.; Comin, F.A.; Yockteng, R. Structural and functional loss in restored wetland ecosystems. PLoS Biol. 2012, 10, e1001247. [Google Scholar] [CrossRef] [PubMed]
- Olden, J.D.; Naiman, R.J. Incorporating thermal regimes into environmental flows assessments: Modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biol. 2009, 55, 86–107. [Google Scholar] [CrossRef]
- Osborne, L.L.; Kovacic, D.A. Riparian vegetated buffer strips in water-quality restoration and stream management. Freshwater Biol. 2006, 29, 243–258. [Google Scholar] [CrossRef]
- Palmer, M.A.; Bernhardt, E.S.; Allan, J.D.; Lake, P.S.; Alexander, G.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.N.; Follstad Shah, J.; et al. Standards for ecologically successful river restoration. J. Appl. Ecol. 2005, 42, 208–217. [Google Scholar] [CrossRef]
- Richter, B.D.; Thomas, G.A. Restoring environmental flows by modifying dam operations. Ecol. Soc. 2007, 12, 12–37. [Google Scholar] [CrossRef]
- Stanford, J.A.; Ward, J.V.; Liss, W.J.; Frissell, C.A.; Williams, R.N.; Lichatowich, J.A.; Coutant, C.C. A general protocol for restoration of regulated rivers. Regul. Rivers Res. Manag. 1996, 12, 391–413. [Google Scholar] [CrossRef]
- Tickner, D.; Opperman, J.J.; Abell, R.; Acreman, M.; Arthington, A.H.; Bunn, S.E.; Cooke, S.J.; Dalton, J.; Darwall, W.; Edwards, G.; et al. Bending the curve of global freshwater biodiversity loss: An emergency recovery plan. Bioscience 2020, 70, 330–342. [Google Scholar] [CrossRef]
- Walsh, C.J.; Fletcher, T.D.; Ladson, A.R. Stream restoration in urban catchments through redesigning stormwater systems: Looking to the catchment to save the stream. J. N. AM. Bentholsoc. 2005, 24, 690–705. [Google Scholar] [CrossRef]
- Wohl, E.; Angermeier, P.L.; Bledsoe, B.; Kondolf, G.M.; MacDonnell, L.; Merritt, D.M.; Palmer, M.A.; Poff, N.L.; Tarboton, D. River restoration. Water Resour. Res. 2005, 41, W10301. [Google Scholar] [CrossRef]
- Lorenz, A.W.; Jahnig, S.C.; Hering, D. Re-meandering german lowland streams: Qualitative and quantitative effects of restoration measures on hydromorphology and macroinvertebrates. Environ. Manag. 2009, 44, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Hughes, F.M.R.; Adams, W.M.; Muller, E.; Nilsson, C.; Richards, K.S.; Barsoum, N.; Decamps, H.; Foussadier, R.; Girel, J.; Guilloy, H. The importance of different scale processes for the restoration of floodplain woodlands. Regul. Rivers Rese. Manag. 2001, 17, 325–345. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Micheli, E.R. Evaluating stream restoration projects. Environ. Manag. 1995, 19, 1–15. [Google Scholar] [CrossRef]
- Kail, J.; Hering, D. Using large wood to restore streams in central europe: Potential use and likely effects. Landscape Ecol. 2005, 20, 755–772. [Google Scholar] [CrossRef]
- Dufour, S.; Piégay, H. From the myth of a lost paradise to targeted river restoration: Forget natural references and focus on human benefits. River Res. Appl. 2009, 25, 568–581. [Google Scholar] [CrossRef]
- Tockner, K.; Schiemer, F. Ecological aspects of the restoration strategy for a river-floodplain system on the danube river in austria. Glob. Ecol. Biogeogr. Lett. 1997, 6, 321–329. [Google Scholar] [CrossRef]
- Hyatt, T.L.; Waldo, T.Z.; Beechie, T.J. A watershed scale assessment of riparian forests, with implications for restoration. Restor. Ecol. 2004, 12, 175–183. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Groffman, P.M.; Mayer, P.M.; Striz, E.; Gold, A.J. Effects of stream restoration on denitrification in an urbanizing watershed. Ecol. Appl. 2008, 18, 789–804. [Google Scholar] [CrossRef]
- Bond, N.R.; Lake, P.S. Characterizing fish–habitat associations in streams as the first step in ecological restoration. Austral Ecol. 2003, 28, 611–621. [Google Scholar] [CrossRef]
- Nuttle, T.; Logan, M.N.; Parise, D.J.; Foltz, D.A.; Silvis, J.M.; Haibach, M.R. Restoration of macroinvertebrates, fish, and habitats in streams following mining subsidence: Replicated analysis across 18 mitigation sites. Restor. Ecol. 2017, 25, 820–831. [Google Scholar] [CrossRef]
- Liro, M. Dam reservoir backwater as a field-scale laboratory of human-induced changes in river biogeomorphology: A review focused on gravel-bed rivers. Sci. Total Environ. 2019, 651, 2899–2912. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Arif, M.; Zhang, S.; Yuan, Z.; Zhang, L.; Li, J.; Ding, D.; Li, C. Dam inundation simplifies the plant community composition. Sci. Total Environ. 2021, 801, 149827–149839. [Google Scholar] [CrossRef] [PubMed]
- Dufour, S.; Rodríguez-González, P.M.; Tammeorg, P.; Tammeorg, O.; Portela, A.P.; Pettit, N.; Franco, J.C.; Fernandes, M.R.; Clerici, N.; Bejarano, M.D.; et al. Global overview of ecosystem services provided by riparian vegetation. BioScience 2020, 70, 501–514. [Google Scholar]
- Giergiczny, M.; Valasiuk, S.; Kotowski, W.; Galera, H.; Jacobsen, J.B.; Sagebiel, J.; Wichtmann, W.; Jabłońska, E. Re-meander, rewet, rewild! Overwhelming public support for restoration of small rivers in the three baltic sea basin countries. Restor. Ecol. 2022, 30, e13575. [Google Scholar] [CrossRef]
Journal | Number of Articles | TLCS | TGCS |
---|---|---|---|
Restoration Ecology | 177 | 711 | 4500 |
Ecological Engineering | 127 | 436 | 3042 |
River Research and Applications | 90 | 339 | 2928 |
Environmental Management | 53 | 321 | 2520 |
Science of the Total Environment | 51 | 247 | 2494 |
Hydrobiologia | 50 | 217 | 1784 |
Journal of Applied Ecology | 38 | 215 | 1624 |
Freshwater Biology | 37 | 202 | 1608 |
Wetlands | 37 | 130 | 1479 |
Journal of Environmental Management | 32 | 98 | 1329 |
Ecological Applications | 30 | 97 | 1193 |
Author | Number of Articles | TGCS | Rank of TGCS | TLCS | Rank of TLCS | Start of Publication |
---|---|---|---|---|---|---|
Lorenz A. W. | 17 | 767 | 4 | 165 | 3 | 2009 [42] |
Nilsson C. | 16 | 554 | 9 | 125 | 5 | 2001 [43] |
Kondolf G. M. | 15 | 2274 | 1 | 384 | 1 | 1995 [44] |
Hering D. | 13 | 590 | 6 | 125 | 4 | 2005 [45] |
Piegay H. | 13 | 549 | 10 | 92 | 10 | 2009 [46] |
Tockner K. | 11 | 1512 | 2 | 124 | 6 | 1997 [47] |
Beechie T. J. | 11 | 625 | 5 | 106 | 7 | 2004 [48] |
Kaushal S. S. | 11 | 586 | 7 | 97 | 8 | 2008 [49] |
Lake P. S. | 10 | 1494 | 3 | 232 | 2 | 2003 [50] |
Mayer P. M. | 10 | 568 | 8 | 94 | 9 | 2008 [49] |
Institute | Number of Articles | Rank of Articles | TGCS | Rank of TGCS | TLCS | Rank of TLCS |
---|---|---|---|---|---|---|
University of California Davis | 63 | 1 | 1149 | 13 | 145 | 14 |
United States Forest Service | 58 | 2 | 1517 | 8 | 157 | 13 |
Colorado State University | 51 | 3 | 1387 | 9 | 166 | 11 |
Oregon State University | 49 | 4 | 1121 | 16 | 99 | 19 |
University of Illinois | 47 | 5 | 1081 | 17 | 78 | 25 |
University of Maryland | 41 | 6 | 2749 | 1 | 411 | 1 |
Utah State University | 39 | 7 | 1140 | 14 | 188 | 10 |
University of California, Berkeley | 38 | 8 | 1795 | 6 | 218 | 7 |
University of Washington | 37 | 9 | 2486 | 2 | 145 | 15 |
University of Duisburg-Essen | 34 | 10 | 1136 | 15 | 235 | 5 |
Country | Number of Articles | Rank of Publications | TGCS | Rank of TGCS | TLCS | Rank of TLCS |
---|---|---|---|---|---|---|
USA | 880 | 1 | 28718 | 1 | 2729 | 1 |
Brazil | 153 | 2 | 1898 | 11 | 129 | 10 |
Australia | 143 | 3 | 6788 | 2 | 589 | 2 |
China | 136 | 4 | 2299 | 9 | 113 | 14 |
Germany | 109 | 5 | 4628 | 3 | 554 | 3 |
United Kingdom | 78 | 6 | 4542 | 4 | 347 | 6 |
Canada | 65 | 7 | 2790 | 7 | 99 | 16 |
France | 63 | 8 | 3328 | 6 | 421 | 4 |
Netherlands | 58 | 9 | 3623 | 5 | 358 | 5 |
Switzerland | 40 | 10 | 2690 | 8 | 322 | 7 |
1990–2000 | 2001–2011 | 2012–2022 | 1990–2022 | ||||
---|---|---|---|---|---|---|---|
Keywords | Frequency | Keywords | Frequency | Keywords | Frequency | Keywords | Frequency |
vegetation | 17 | vegetation | 80 | vegetation | 174 | vegetation | 271 |
ecosystems | 14 | management | 75 | management | 165 | management | 251 |
river | 13 | river | 63 | biodiversity | 130 | river | 186 |
dynamics | 12 | dynamics | 45 | conservation | 124 | dynamics | 171 |
perspective | 12 | ecosystems | 42 | diversity | 114 | biodiversity | 170 |
management | 11 | water | 42 | dynamics | 114 | conservation | 158 |
stream | 11 | biodiversity | 40 | river | 110 | diversity | 152 |
communities | 10 | growth | 40 | habitat | 94 | habitat | 142 |
riparian | 10 | habitat | 39 | river restoration | 85 | ecosystems | 137 |
disturbance | 9 | patterns | 39 | ecosystems | 81 | water | 128 |
habitat | 9 | communities | 38 | water | 81 | patterns | 120 |
California | 8 | diversity | 37 | ecology | 80 | ecology | 117 |
patterns | 7 | ecology | 35 | forest | 75 | communities | 114 |
quality | 7 | conservation | 32 | patterns | 74 | forest | 110 |
classification | 6 | disturbance | 32 | land use | 69 | growth | 106 |
flows | 6 | forest | 30 | communities | 66 | river restoration | 101 |
forest | 5 | land use | 29 | impacts | 65 | riparian vegetation | 99 |
phytoplankton | 5 | riparian | 26 | growth | 64 | land use | 98 |
USA | 5 | establishment | 25 | ecosystem services | 62 | impacts | 88 |
water | 5 | floodplain | 23 | climate change | 56 | stream | 79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Wang, L.; Li, C. Trends and Hotspots in Riparian Restoration Research: A Global Bibliometric Analysis during 1990–2022. Forests 2023, 14, 2205. https://doi.org/10.3390/f14112205
Zheng J, Wang L, Li C. Trends and Hotspots in Riparian Restoration Research: A Global Bibliometric Analysis during 1990–2022. Forests. 2023; 14(11):2205. https://doi.org/10.3390/f14112205
Chicago/Turabian StyleZheng, Jie, Lei Wang, and Changxiao Li. 2023. "Trends and Hotspots in Riparian Restoration Research: A Global Bibliometric Analysis during 1990–2022" Forests 14, no. 11: 2205. https://doi.org/10.3390/f14112205
APA StyleZheng, J., Wang, L., & Li, C. (2023). Trends and Hotspots in Riparian Restoration Research: A Global Bibliometric Analysis during 1990–2022. Forests, 14(11), 2205. https://doi.org/10.3390/f14112205