Fertility Variation and Effective Population Size across Varying Acorn Yields in Turkey Oak (Quercus cerris L.): Implications for Seed Source Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stand and Tree Selections
2.2. Data Collection and Analysis
2.3. Fertility Variation and Effective Population Size
2.4. Parental Balance Curve
3. Results and Discussion
3.1. Acorn Production, Growth Characteristics, and Their Relations
3.2. Fertility Variation, Effective Number of Parents, Gene Diversity, and Parental Balance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OGM. Forest Inventory of Turkey. Directorate General of Forestry of Turkey, Ankara 2023. Available online: https://www.ogm.gov.tr (accessed on 1 May 2023).
- Yaltırık, F. Guide for Turkish Oaks; Yenilik Press: Istanbul, Turkey, 1984. [Google Scholar]
- Ansin, R.; Ozkan, Z.C. Spermatophytha of Woody Taxa; Karadeniz Technical University press: Trabzon, Turkey, 2006. [Google Scholar]
- OGM. Nursery Practices. 1986. Available online: https://www.agm.gov.tr (accessed on 10 May 2023).
- Johnson, O. Collins Tree Guide; HarperCollins Publishers: New York, NY, USA, 2004. [Google Scholar]
- de Rigo, D.; Enescu, C.; Durrant, T.; Caudullo, G. Quercus cerris in Europe: Distribution, Habitat, Usage and Threats; Publication Office of the European Union: Luxembourg, 2016.
- Hedrick, U.P. Sturtevant’s Edible Plants of the World. Geneva; New York Agricultural Experiment Station Press: New York, NY, USA, 1919. [Google Scholar]
- Vinha, A.F.; Barreira, J.C.M.; Costa, A.S.G.; Oliveira, M.B.P.P. A new age for Quercus spp. fruits: Review on nutritional and phytochemical composition and related biological activities of acorns. Compr. Rev. Food Sci. Food Saf. 2016, 15, 947–981. [Google Scholar] [CrossRef] [PubMed]
- Saatçioglu, F. Silviculture-II (Silviculture Techniques); Istanbul University Forestry Faculty Press: Istanbul, Turkey, 1978. [Google Scholar]
- Eriksson, G.; Lindgren, D.; Jonsson, A. Flowering in a clone trial of Picea abies. Stud. For. Sueccica 1973, 110, 4–45. [Google Scholar]
- Noh, J.; Kim, Y.; Lee, J.; Cho, S.; Choung, Y. Annual and spatial variabilities in the acorn production of Quercus mongolica. J. Ecol. Environ. 2020, 44, 26. [Google Scholar] [CrossRef]
- Čermák, J.; Tognetti, R.; Nadezhdina, N.; Raschi, A. Stand structure and foliage distribution in Quercus pubescens and Quercus cerris forests in Tuscany (central Italy). For. Ecol. Manag. 2008, 255, 1810–1819. [Google Scholar] [CrossRef]
- Kim, H.T.; Kang, J.W.; Lee, W.Y.; Han, S.U.; Park, E.J. Estimation of acorn production capacity using growth characteristics of Quercus acutissima in a clonal seed orchard. For. Sci. Technol. 2016, 12, 51–54. [Google Scholar] [CrossRef]
- Schmidtling, R.C. The inheritance of precocity and its relationship with growth in loblolly pine. Silvae Genet. 1981, 30, 188–192. [Google Scholar]
- Nikkanen, T.; Velling, P. Correlations between flowering and some vegetative characteristics of grafts of Pinus sylvestris. For. Ecol. Manag. 1987, 19, 35–40. [Google Scholar] [CrossRef]
- Yurukov, S.; Zhelev, P. The Woody flora of Bulgaria: A review. Schweiz. Z. Fur Forstwes. 2001, 152, 52–60. [Google Scholar] [CrossRef]
- Praciak, A. The CABI Encyclopedia of Forest Trees; Cabi: Niederbuchsiten, Switzerland, 2013. [Google Scholar]
- ORTOHUM. Seed Production Areas. 2021. Available online: https://www.ortohum.gov.tr (accessed on 8 May 2023).
- Bila, A.D.; Lindgren, D.; Mullin, T.J. Fertility variation and its effect on diversity over generations in a Teak plantation (Tectona grandis L.f.). Silvae Genet. 1999, 48, 109–114. [Google Scholar]
- El-Kassaby, Y.A.; Barclay, H.J. Costs of reproduction in Douglas-fir. Can. J. Bot. 1992, 70, 1429–1432. [Google Scholar] [CrossRef]
- Kang, K.S.; Bila, A.D.; Harju, A.M.; Lindgren, D. Estimation of fertility variation in forest tree populations. For. Int. J. For. Res. 2003, 76, 329–344. [Google Scholar] [CrossRef]
- Xie, C.Y.; Knowles, P. Male fertility variation in an open-pollinated plantation of Norway spruce (Piceaabies). Can. J. of For. Res. 1992, 22, 1463–1468. [Google Scholar] [CrossRef]
- Varghese, M.; Nicodemus, A.; Nagarajan, B.; Lindgren, D. Impact of fertility variation on gene diversity and drift in two clonal seed orchards of teak (Tectona grandis linn. F.). New For. 2006, 31, 497–512. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, X.; Gao, L.; Gadow, K.v. Gender, neighboring competition and habitat effects on the stem growth in dioecious Fraxinus mandshurica trees in a northern temperate forest. Ann. For. Sci. 2009, 66, 812. [Google Scholar] [CrossRef]
- Lindgren, D.; Prescher, F. Optimal clone number for seed orchards with tested clones. Silvae Genet. 2005, 54, 80–92. [Google Scholar] [CrossRef]
- Kang, K.S.; Lindgren, D. Fertility variation and its effect on the relatedness of seeds in Pinus densiflora, Pinus thunbergii and Pinus koraiensis clonal seed orchards. Silvae Genet. 1998, 47, 196–201. [Google Scholar]
- Bila, A.D. Fertility Variation and Its Effects on Gene Diversity in Forest Tree Populations; Swedish University of Agricultural Sciences: Umeå, Sweden, 2000. [Google Scholar]
- Kang, K.S.; Lindgren, D. Fertility variation among clones of Korean pine (Pinus koraiensis S. et Z.) and its implications on seed orchard management. For. Genet. 1999, 6, 191–200. [Google Scholar]
- Wang, F.; Zhang, S.; Zhu, P.; Chen, L.; Zhu, Y.; Yang, C.; Liu, R.; Li, F.; Huang, X.; Yang, H. The effects of fertility and synchronization variation on seed production in two Chinese fir clonal seed orchards. Sci. Rep. 2023, 13, 627. [Google Scholar] [CrossRef]
- Prescher, F.; Lindgren, D.; Almqvist, C.; Kroon, J.; Lestander, T.A.; Mullin, T.J. Female fertility variation in mature Pinus sylvestris clonal seed orchards. Scand. J. For. Res. 2007, 22. [Google Scholar] [CrossRef]
- Kang, K.S.; Kim, C.S.; El-Kassaby, Y.A. Clonal variation in acorn production and its effect on the effective population size in a Quercus acutissima seed orchard. Silvae Genet. 2010, 59, 170–175. [Google Scholar] [CrossRef]
- Qiu, T.; Sharma, S.; Woodall, C.W.; Clark, J.S. Niche shifts from trees to fecundity to recruitment that determine species response to climate change. Front. Ecol. Evol. 2021, 9. [Google Scholar] [CrossRef]
- Kamalakannan, R.; Varghese, M.; Suraj, P.G.; Arutselvan, T. Options for converting a clone trial of Eucalyptus camaldulensis into a clonal seed orchard considering gain, fertility and effective clone number. J. For. Res. 2016, 27, 51–57. [Google Scholar] [CrossRef]
- Bila, A.D.; Lindgren, D. Fertility variation in Millettia stuhlmannii, Brachystegia spiciformis, Brachystegia bohemii and Leucaena leucocephala and its effects on relatedness in seeds. For. Genet. 1998, 5, 119–129. [Google Scholar]
- Park, J.M.; Kwon, S.H.; Lee, H.J.; Na, S.J.; El-Kassaby, Y.A.; Kang, K.S. Integrating fecundity variation and genetic relatedness in estimating the gene diversity of seed crops: Pinus koraiensis seed orchard as an example. Can. J. For. Res. 2017, 47, 366–370. [Google Scholar] [CrossRef]
- Stenberg, P.; Kuuluvainen, T.; Kellomäki, S.; Grace, J.C.; Jokela, E.J.; Gholz, H.L. Crown structure, light interception and productivity of Pine trees and stands. Ecol. Bull. 1994, 43, 20–34. Available online: https://www.jstor.org/stable/20113129 (accessed on 9 September 2023).
- Anonymous. Meteorology of Turkey; General Directorate of Meteorology and Climatology of Turkey: Ankara, Turkey, 2023. Available online: https://www.mgm.gov.tr (accessed on 9 September 2023).
- West, E.; Arnold, L.E. The Native Trees of Florida; University of Florida Press: Gainesville, FL, USA, 1956. [Google Scholar]
- SAS Inst. Inc. SAS/STAT User’s Guide, Release 6.03, ed.; SAS Inst. Inc.: Cary, NC, USA, 1988. [Google Scholar]
- Griffin, A.R. Clonal variation in radiata pine seed orchards. I: Some flowering, cone and seed production traits. Aust. For. Res. 1983, 12, 295–302. Available online: http://jkv.50megs.com/afr.html (accessed on 10 May 2023).
- El-Kassaby, Y.A.; Reynolds, S. Reproductive phenology, parental balance and supplemental mass pollination in a Sitka spruce seed orchard. For. Ecol. Manag. 1990, 31, 45–54. [Google Scholar] [CrossRef]
- Govaerts, R.; Frodin, D.G. World Checklist and Bibliography of Fagales: Betulaceae, Corylaceae, Fagaceae and Ticodendraceae; Royal Botanic Gardens Kew: Richmond, UK, 1998. [Google Scholar]
- Otárola, M.F.; Sazima, M.; Solferini, V.N. Tree size and its relationship with flowering phenology and reproductive output in Wild Nutmeg trees. Ecol. Evol. 2013, 3, 3536–3544. [Google Scholar] [CrossRef]
- Healy, W.M.; Lewis, A.M.; Boose, E.F. Variation of red oak acorn production. For. Ecol. Manag. 1999, 116, 1–11. [Google Scholar] [CrossRef]
- Farmer, R.E., Jr. Variation in seed yield of White oak. For. Sci. 1981, 27, 377–380. [Google Scholar]
- Lindgren, K.; Ekberg, I.; Eriksson, G. External Factors Influencing Female Flowering in Picea abies (L.). Karst. Stud. Forest. Suecia 1977, 142, 46. [Google Scholar]
- Sharp, W.M.; Sprague, V.G. Flowering and fruiting in the White oaks. Pistillate Flowering, Acorn Development, Weather, and Yields. Ecology 1967, 48, 243–251. [Google Scholar] [CrossRef]
- Gysel, L.W. Measurement of acorn crops. For. Sci. 1956, 2, 305–313. [Google Scholar]
- Wilcock, C.; Neiland, R. Pollination failure in plants: Why it happens and when it matters. Trends Plant Sci. 2002, 7, 270–277. [Google Scholar] [CrossRef]
- Lawson, D.A.; Rands, S.A. The effects of rainfall on plant–pollinator interactions. Arthropod-Plant Interact. 2019, 13, 561–569. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, C.; Work, T.; Candau, J.N.; DesRochers, A.; Kneeshaw, D. Application of machine-learning methods in forest ecology: Recent progress and future challenges. Environ. Rev. 2018, 26, 339–350. [Google Scholar] [CrossRef]
- Hannerz, M.; Aitken, S.; Ericsson, T.; Ying, C. Inheritance of strobili production and genetic correlation with growth in lodgepole pine. Int. J. For. Genet. 2001, 8, 323–329. [Google Scholar]
- Rose, A.K.; Greenberg, C.H.; Fearer, T.M. Acorn production prediction models for five common oak species of the eastern United States. J. Wildl. Manag. 2011, 76, 750–758. [Google Scholar] [CrossRef]
- Greenberg, C.H. Individual variation in acorn production by five species of southern Appalachian oaks. For. Ecol. Manag. 2000, 132, 199–210. [Google Scholar] [CrossRef]
- Greenberg, C.H. Oak growth and acorn production in southern Appalachian mature forests and shelterwood with reserves regeneration harvests. For. Ecol. Manag. 2021, 481, 118691. [Google Scholar] [CrossRef]
- Bechtold, W.A. Crown-Diameter Prediction Models for 87 Species of stand-grown trees in the Eastern United States. South. J. Appl. For. 2003, 27, 269–278. [Google Scholar] [CrossRef]
- Plumptre, A.J. The importance of “seed trees” for the natural regeneration of selectively logged tropical forest. Commonw. For. Rev. 1995, 74, 253–258. [Google Scholar]
- Wojacki, J.; Eusemann, P.; Ahnert, D.; Pakull, B.; Liesebach, H. Genetic diversity in seeds produced in artificial Douglas-fir (Pseudotsuga menziesii) stands of different size. For. Ecol. Manag. 2019, 438, 18–24. [Google Scholar] [CrossRef]
- Ratnam, W.; Rajora, O.P.; Finkeldey, R.; Aravanopoulos, F.; Bouvet, J.M.; Vaillancourt, R.E.; Kanashiro, M.; Fady, B.; Tomita, M.; Vinson, C. Genetic effects of forest management practices: Global synthesis and perspectives. For. Ecol. Manag. 2014, 333, 52–65. [Google Scholar] [CrossRef]
- Bourrat, P. Genetic Relatedness. In Encyclopedia of Evolutionary Psychological Science; Shackelford, T.K., Weekes-Shackelford, V.A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–4. [Google Scholar]
Years/Months | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Maximum temperature (°C) | 21 | 15 | 17.5 | 17.6 | 28 | 33.3 | 31.9 | 35 | 37.5 | 31.7 | 24.6 | 23.9 | 14.5 |
22 | 14 | 12.3 | 16.4 | 26.7 | 30.1 | 29.7 | 33.8 | 34.2 | 31.6 | 31.4 | 20.8 | 14.6 | |
23 | 14.5 | 18.9 | 18.6 | 22 | 25.5 | - | - | - | - | - | - | - | |
Minimum temperature (°C) | 21 | −4.7 | −4.0 | −1.1 | 0.8 | 6.4 | 9.2 | 15.1 | 12.9 | 7.5 | 3.6 | 0 | −5.0 |
22 | −9.9 | −5.4 | −5.5 | 2.5 | 5.2 | 13.5 | 12.9 | 0 | 6.6 | 2.1 | 0 | −0.4 | |
23 | 2.4 | 7.4 | 0.3 | 2.9 | 4.1 | - | - | - | - | - | - | - | |
Average temperature (°C) | 21 | 5.6 | 6.2 | 6.8 | 12.9 | 19.2 | 19.9 | 25.7 | 25.5 | 19.8 | 14 | 10.8 | 6.2 |
22 | 2.1 | 3.5 | 3.4 | 14.2 | 16.8 | 21.9 | 24.7 | 25.1 | 20.5 | 15 | 10.2 | 7.6 | |
23 | 5.1 | 3.3 | 9.0 | 11 | 15.7 | - | - | - | - | - | - | - | |
Average humidity (%) | 21 | 78.5 | 69.1 | 66.5 | 59.1 | 52.2 | 64.2 | 49.7 | 47.6 | 57.5 | 62.6 | 70.9 | 79.1 |
22 | 75.7 | 81.1 | 65.1 | 51.4 | 59.4 | 61.2 | 49.4 | 59.2 | 55.4 | 64.9 | 71.1 | 81.4 | |
23 | 77.7 | 66.1 | 70.4 | 67.9 | 71.3 | - | - | - | - | - | - | - | |
Total rainfall (mm, kg/m2) | 21 | 182 | 50.6 | 60.8 | 10.0 | 7.0 | 90.0 | 6.4 | 0 | 15.8 | 15.6 | 64.4 | 185.8 |
22 | 168.8 | 322.4 | 127.8 | 23.2 | 17.8 | 14.8 | 3.8 | 18.8 | 24.2 | 8.8 | 43.2 | 72.0 | |
23 | 114.0 | 7.6 | 170.8 | 131.6 | 59.6 | - | - | - | - | - | - | - |
AN2 | AN1 | AN0 | Total | ||
---|---|---|---|---|---|
GAP | 803 | 158 | 407 | 456 | |
Ranges | 160–2700 | 72–374 | 164–812 | 72–2700 | |
CV% | 58.1 | 38.9 | 34.3 | 85.1 | |
PAP | 254 | 85 | 70 | 170 | |
Ranges | 54–880 | 32–270 | 26–426 | 26–880 | |
CV% | 73.2 | 45.1 | 58.1 | 83.1 |
H (m) | D0 (cm) | D1.30 (cm) | CD (m) | |||
---|---|---|---|---|---|---|
2022 | GAP | 18.2 | 93.3 | 73.3 | 14.5 | |
Ranges | 12.3–24.5 | 58.0–145.0 | 40.0–115.0 | 8.7–22.8 | ||
CV% | 12.7 | 21.9 | 24 | 21.6 | ||
PAP | 16.5 | 70.4 | 52.4 | 11.7 | ||
Ranges | 10.2–21.5 | 35.0–170.0 | 28.0–100.0 | 5.5–17.2 | ||
CV% | 13 | 24.2 | 23.8 | 23.3 | ||
2023 | GAP | 20.1 | 93.7 | 75.3 | 14.6 | |
Ranges | 12.5–25.2 | 60.0–132.0 | 43.0–118.0 | 9.5–18.7 | ||
CV% | 12.5 | 16.8 | 22.5 | 13.9 | ||
PAP | 17.6 | 73.3 | 56.4 | 12.4 | ||
Ranges | 7.7–25.1 | 37.0–135.0 | 28.0–102.0 | 7.7–19.5 | ||
CV% | 18.7 | 24 | 27.3 | 21.8 |
r | AN2 | H | D0 | D1.30 | CD | ||
---|---|---|---|---|---|---|---|
AN2 | - | 0.385 ** | 0.431 ** | 0.416 ** | 0.486 ** | ||
H | 0.389 ** | - | 0.575 ** | 0.613 ** | 0.638 ** | ||
2022 | D0 | 0.402 ** | 0.433 ** | - | 0.906 ** | 0.570 ** | |
D1.30 | 0.556 ** | 0.546 ** | 0.799 ** | - | 0.651 ** | ||
CD | 0.296 ** | 0.545 ** | 0.389 ** | 0.532 ** | - | ||
r | AN1 | AN0 | H | D0 | D1.30 | CD | |
AN1 | - | 0.658 ** | 0.327 ** | 0.453 ** | 0.436 ** | 0.405 ** | |
AN0 | 0.362 ** | - | 0.368 ** | 0.381 ** | 0.389 ** | 0.400 ** | |
2023 | H | 0.325 ** | 0.474 ** | - | 0.384 ** | 0.398 ** | 0.432 ** |
D0 | 0.492 ** | 0.466 ** | 0.612 ** | - | 0.936 ** | 0.612 ** | |
D1.30 | 0.445 ** | 0.498 ** | 0.583 ** | 0.901 ** | - | 0.604 ** | |
CD | 0.356 ** | 0.514 ** | 0.623 ** | 0.701 ** | 0.702 ** | - |
Ψ | Np | Nr (%) | GD | ||
---|---|---|---|---|---|
GAP | AN2 | 1.33 | 74.9 | 75 | 0.993 |
AN1 | 1.15 | 86.9 | 87 | 0.994 | |
AN0 | 1.12 | 89.6 | 90 | 0.994 | |
PAP | AN2 | 1.53 | 65.3 | 65 | 0.992 |
AN1 | 1.2 | 83.3 | 83 | 0.994 | |
AN0 | 1.33 | 74.9 | 75 | 0.993 | |
Total | AN2 | 1.72 | 116.4 | 58 | 0.996 |
AN1 | 1.27 | 158 | 79 | 0.997 | |
AN0 | 1.34 | 148.9 | 74 | 0.997 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilir, N.; Jeon, K.; Kim, Y.-J.; Kang, K.-S. Fertility Variation and Effective Population Size across Varying Acorn Yields in Turkey Oak (Quercus cerris L.): Implications for Seed Source Management. Forests 2023, 14, 2222. https://doi.org/10.3390/f14112222
Bilir N, Jeon K, Kim Y-J, Kang K-S. Fertility Variation and Effective Population Size across Varying Acorn Yields in Turkey Oak (Quercus cerris L.): Implications for Seed Source Management. Forests. 2023; 14(11):2222. https://doi.org/10.3390/f14112222
Chicago/Turabian StyleBilir, Nebi, Koeun Jeon, Ye-Ji Kim, and Kyu-Suk Kang. 2023. "Fertility Variation and Effective Population Size across Varying Acorn Yields in Turkey Oak (Quercus cerris L.): Implications for Seed Source Management" Forests 14, no. 11: 2222. https://doi.org/10.3390/f14112222
APA StyleBilir, N., Jeon, K., Kim, Y. -J., & Kang, K. -S. (2023). Fertility Variation and Effective Population Size across Varying Acorn Yields in Turkey Oak (Quercus cerris L.): Implications for Seed Source Management. Forests, 14(11), 2222. https://doi.org/10.3390/f14112222