Nematofauna of the Natural Park “Devil’s Town”
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Collection, Nematode Extraction and Nematode Morphological Characterization
2.2. Nematode DNA Extraction and Phylogeny
2.3. Chemical Analyses of Soil Samples
3. Results and Discussion
3.1. Chemical Analyses of Soil Samples
3.2. Nematode Characterization
3.3. Phylogenetic Analyses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rampelotto, P.H. Extremophiles and Extreme Environments. Life 2013, 3, 482–485. [Google Scholar] [CrossRef]
- Van Den Hoogen, J.; Geisen, S.; Routh, D.; Ferris, H.; Traunspurger, W.; Wardle, D.A.; de Goede, R.G.M.; Adams, B.J.; Ahmad, W.; Andriuzzi, W.S. Soil nematode abundance and functional group composition at a global scale. Nature 2019, 572, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Doran, J.W.; Safley, M. Defining and assessing soil health and sustainable productivity. In Biological Indicators of Soil Health, 1st ed.; Pankhurst, C.E., Doube, B.M., Gupta, V.V.S.R., Eds.; CABI International: Oxon, UK, 1997; pp. 1–28. [Google Scholar]
- Pavao-Zuckerman, M.A.; Coleman, D.C. Urbanization alters the functional composition, but not taxonomic diversity, of the soil nematode community. Appl. Soil Ecol. 2007, 35, 329–339. [Google Scholar] [CrossRef]
- Zhang, X.K.; Liang, W.J.; Jiang, D.M.; Liu, Z.M.; Jiang, S.W. Soil nematode community structure in a Chinese sand dune system. Helminthologia 2007, 44, 204–209. [Google Scholar] [CrossRef]
- Quist, C.W.; Gort, G.; Mulder, C.; Wilbers, R.H.P.; Termorshuizen, A.J.; Bakker, J.; Helder, J. Feeding preference as a main determinant of microscale patchiness among terrestrial nematodes. Mol. Ecol. Resour. 2017, 17, 1257–1270. [Google Scholar] [CrossRef]
- Čerevková, A.; Renčo, M.; Miklisová, D.; Gömöryová, E. Soil nematode communities in managed and natural temperate forest. Diversity 2021, 13, 327. [Google Scholar] [CrossRef]
- Mejía-Madrid, H.H.; Sánchez-Moreno, S. Natural ecosystem heterogeneity diversity and functioning of nematode communities in a semi-desert ecosystem in Mexico. Appl. Soil Ecol. 2022, 176, 104477. [Google Scholar] [CrossRef]
- Fiscus, D.A.; Neher, D.A. Distinguishing sensitivity of free-living soil nematode genera to physical and chemical disturbances. Ecol. Appl. 2002, 12, 565–575. [Google Scholar] [CrossRef]
- Yeates, G.W. Nematodes as soil indicators: Functional and biodiversity aspects. Biol. Fertil. Soils 2003, 37, 199–210. [Google Scholar] [CrossRef]
- Räty, M.; Huhta, V. Earthworms and pH affect communities of nematodes and enchytraeids in forest soil. Biol. Fertil. Soils 2003, 38, 52–58. [Google Scholar] [CrossRef]
- Sanches-Moreno, S.; Minoshima, H.; Ferris, H.; Jackson, L.E. Linking soil properties and nematode community composition: Effects of soil management on soil food webs. Nematology 2006, 8, 703–715. [Google Scholar] [CrossRef]
- Millward, R.N.; Grant, A. Pollution-induced tolerance to copper of nematode communities in the severely contaminated restronguet creek and adjacent estuaries, Cornwall, United Kingdom. Environ. Toxicol. Chem. 2000, 19, 454–461. [Google Scholar] [CrossRef]
- Shao, Y.; Zhang, W.; Shen, J.; Zhou, L.; Xia, H.; Shu, W.; Ferris, H.; Fu, S. Nematodes as indicators of soil recovery in tailings of a lead/zinc mine. Soil Biol. Biochem. 2008, 40, 2040–2046. [Google Scholar] [CrossRef]
- Šalamún, P.; Renčo, M.; Miklisová, D.; Hanzelová, V. Nematode community structure in the vicinity of a metallurgical factory. Environ. Monit. Assess. 2011, 183, 451–464. [Google Scholar] [CrossRef]
- Zhao, J.; Neher, D.A. Soil nematode genera that predict specific types of disturbance. Appl. Soil Ecol. 2013, 64, 135–141. [Google Scholar] [CrossRef]
- Shih, P.Y.; Lee, J.S.; Shinya, R.; Kanzaki, N.; da Silva, A.P.; Badroos, J.M.; Goetz, E.; Sapir, A.; Sternberg, P.W. Newly identified nematodes from Mono Lake exhibit extreme arsenic resistance. Curr. Biol. 2019, 29, 3339–3344.e4. [Google Scholar] [CrossRef]
- Bonaglia, S.; Hedberg, J.; Marzocchi, U.; Iburg, S.; Glud, R.N.; Francisco, J.A.; Nascimento, F.J. Meiofauna improve oxygenation and accelerate sulfide removal in the seasonally hypoxic seabed. Mar. Environ. Res. 2020, 159, 104968. [Google Scholar] [CrossRef]
- Korthals, G.W.; Bongers, M.; Fokkema, A.; Dueck, T.A.; Lexmond, T.M. Joint Toxicity of Copper and Zinc to a Terrestrial Nematode Community in an Acid Sandy Soil. Ecotoxicology 2000, 9, 219–228. [Google Scholar] [CrossRef]
- Coyne, D.L.; Nicol, J.M.; Claudius-Cole, B. Practical Plant Nematology: A Field and Laboratory Guide, 3rd ed.; SP-IPM Secretariat International Institute of Tropical Agriculture (IITA): Ibadan, Nigeria, 2018; pp. 25–29. [Google Scholar]
- Tintori, S.C.; Sloat, S.A.; Rockman, M.V. Rapid isolation of wild nematodes by Baermann funnel. J. Vis. Exp. 2022, 179, e63287. [Google Scholar] [CrossRef]
- Subbotin, S.A.; Sturhan, D.; Chizhov, V.N.; Vovlas, N.; Baldwin, J.G. Phylogenetic analysis of Tylenchida Thorne, 1949 as inferred from D2 and D3 expansion fragments of the 28S rRNA gene sequences. Nematology 2006, 8, 455–474. [Google Scholar] [CrossRef]
- Gunidon, S.; Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003, 52, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Huelsenbeck, J.P.; Ronquist, F. Bayesian analysis of molecular evolution using MrBayes. In Statistical Methods in Molecular Evolution: Statistics for Biology and Health; Springer: New York, NY, USA, 2005; pp. 183–226. [Google Scholar] [CrossRef]
- Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 2007, 24, 1596–1599. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [PubMed]
- ISO 11265; Soil Quality—Determination of the Specific Electrical Conductivity. International Organization for Standardization: Geneva, Switzerland, 1994.
- ISO 10390; Soil, Treated Biowaste and Sludge—Determination of pH. International Organization for Standardization: Geneva, Switzerland, 2021.
- ISO 11465; Soil Quality—Determination of Dry Matter and Water Content on a Mass Basis—Gravimetric Method. International Organization for Standardization: Geneva, Switzerland, 1993.
- EN 15935; Soil, Waste, Treated Biowaste and Sludge. Determination of Loss on Ignition. European Committee for Standardization: Brussels, Belgium, 2021.
- ISO 11261; Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 1995.
- ISO/TS 14256-1; Soil Quality—Determination of Nitrate, Nitrite and Ammonium in Field-Moist Soils by Extraction with Potassium Chloride Solution—Part 1: Manual Method. International Organization for Standardization: Geneva, Switzerland, 2003.
- ISO 22036; Soil Quality—Determination of Trace Elements in Extracts of Soil by Inductively Coupled Plasma—Atomic Emission Spectrometry (ICP-AES). International Organization for Standardization: Geneva, Switzerland, 2008.
- U.S. EPA. Method 3052 (SW-846)-Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices, Revision 3; United States Environmental Protection Agency: Washington, DC, USA, 2004.
- Kim, T.; Kim, J.; Bae, Y.J.; Park, J.-K. First Record of Acrobeloides nanus (Cephalobidae: Rhabditida: Nematoda) from Korea. Anim. Syst. Evol. Divers. 2016, 32, 258–265. [Google Scholar] [CrossRef]
- Bird, A.F.; Ryder, M.H. Feeding of the Nematode Acrobeloides nanus on Bacteria. J. Nematol. 1993, 25, 493–499. [Google Scholar]
- Bongers, T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 1990, 83, 14–19. [Google Scholar] [CrossRef]
- Bendoy, C.P.; Tumang, V.M.C.; Moneva, C.S.O.; Albutra, Q.B.; Ganzon, M.A.M. Effects of Cadmium on the Interactions between Bacterivorous Nematode Species Acrobeloides nanus and Bursilla monhystera. J. Multidiscip. Stud. 2014, 3, 48–59. [Google Scholar] [CrossRef]
- Goodey, T. Soil and Freshwater Nematodes, 1st ed.; Goodey, J.B., Ed.; John Wiley & Sons Inc.: New York, NY, USA, 1963; pp. 1–544. [Google Scholar]
- Yeates, G.W.; Bongers, T.; De Goede, R.G.M.; Freckman, D.W.; Georgieva, S.S. Feeding habits in soil nematode families and genera—An outline for soil ecologists. J. Nematol. 1993, 25, 315–331. [Google Scholar]
- Wood, F.H. Nematode feeding relationships: Feeding relationships of soil-dwelling nematodes. Soil Biol. Biochem. 1973, 5, 593–601. [Google Scholar] [CrossRef]
- Nedelchev, S.; Elshishka, M.; Lazarova, S.; Radoslavov, G.; Hristov, P.; Peneva, V. Calcaridorylaimus castaneae sp. n. (Nematoda, Dorylaimidae) from Bulgaria with an identification key to the species of the genus. ZooKeys 2014, 410, 41–61. [Google Scholar] [CrossRef]
- Bongers, T. De Nematoden van Nederland; Koninklijke Nederlandse Natuurhistorische Vereniging: Utrecht, The Netherlands, 1994; pp. 1–408. [Google Scholar]
- Lü, Y.; Chen, X.; Xue, W.F.; Zhang, W.D. Short-term Effects of Cadmium and Mercury on Soil Nematode Communities in a Pot Experiment. Helminthologia 2020, 57, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Heininger, P.; Höss, S.; Claus, E.; Pelzer, J.; Traunspurger, W. Nematode communities in contaminated river sediments. Environ. Pollut. 2007, 146, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Clavero-Camacho, I.; Palomares-Rius, J.E.; Cantalapiedra-Navarrete, C.; León-Ropero, G.; Martín-Barbarroja, J.; Archidona-Yuste, A.; Castillo, P. Integrative Taxonomy Reveals Hidden Cryptic Diversity within Pin Nematodes of the Genus Paratylenchus (Nematoda: Tylenchulidae). Plants 2021, 10, 1454. [Google Scholar] [CrossRef] [PubMed]
- Ekschmitt, K.; Korthals, G.W. Nematodes as Sentinels of Heavy Metals and Organic Toxicants in the Soil. J. Nematol. 2006, 38, 13–19. [Google Scholar]
- Brown, K.E.; Wasley, J.; King, C.K. Sensitivity to Copper and Development of Culturing and Toxicity Test Procedures for the Antarctic Terrestrial Nematode Plectus murrayi. Environ. Toxicol. Chem. 2020, 39, 482–491. [Google Scholar] [CrossRef]
- Ladygina, N.; Johansson, T.; Canbäck, B.; Tunlid, A.; Hedlund, K. Diversity of bacteria associated with grassland soil nematodes of different feeding groups. FEMS Microbiol. Ecol. 2009, 69, 53–61. [Google Scholar] [CrossRef]
- Abebe, E.; Coomans, A. Freshwater nematodes of the Galápagos. Hydrobiologia 1995, 299, 1–51. [Google Scholar] [CrossRef]
- Asghari, R.; Eskandari, A.; Maafi, Z.T.; Alvarez-Ortega, S.; Zhao, Z.Q. Morphological and molecular characterisation of new and known species of Tripyla Bastian, 1865 (Triplonchida: Tripylidae) from northern Iran, with phylogenetic relationships, compendium and identification key. Nematology 2017, 19, 21–56. [Google Scholar] [CrossRef]
- Mindlin, S.; Kholodii, G.; Gorlenko, Z.; Minakhina, S.; Minakhin, L.; Kalyaeva, E.; Kopteva, A.; Petrova, M.; Yurieva, O.; Nikiforov, V. Mercury resistance transposons of Gram-negative environmental bacteria and their classification. Res. Microbiol. 2001, 152, 811–822. [Google Scholar] [CrossRef]
- Silver, S.; Misra, T.K. Plasmid-mediated heavy metal resistances. Annu. Rev. Microbiol. 1988, 42, 717–743. [Google Scholar] [CrossRef]
- Priyadarshini, E.; Priyadarshini, S.S.; Cousins, B.G.; Pradhan, N. Metal-Fungus interaction: Review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles. Chemosphere 2021, 274, 129976. [Google Scholar] [CrossRef] [PubMed]
Parameters ± SD | Soil under Vegetation (Soil No. 1) | Saxon Mine Soil (Soil No. 2) |
---|---|---|
pH | 4.20 ± 0.03 | 3.10 ± 0.01 |
el. conductivity (mS/m) | 7.30 ± 0.69 | 58.00 ± 0.15 |
organic matter (%) | 3.70 ± 0.34 | 26.90 ± 1.40 |
moisture (%) | 14.10 ± 0.20 | 89.70 ± 0.10 |
dry matter (%) | 85.90 ± 0.20 | 10.30 ± 0.10 |
Pb (mg/kg) | 196.00 ± 3.53 | 74.10 ± 1.85 |
Cd (mg/kg) | ND | 0.60 ± 0.03 |
Zn (mg/kg) | 25.70 ± 0.70 | 204.00 ± 4.69 |
Cu (mg/kg) | 51.60 ± 1.14 | 10.20 ± 0.14 |
Ni (mg/kg) | 6.60 ± 0.09 | 3.40 ± 0.05 |
Cr (mg/kg) | 6.40 ± 0.09 | 1.30 ± 0.02 |
Fe (%) | 2.70 ± 0.03 | 20.30 ± 0.49 |
Hg (mg/kg) | 0.50 ± 1.06 | 0.02 ± 0.01 |
As (mg/kg) | 20.80 ± 0.03 | 53.90 ± 2.37 |
N total (%) | 2.12 ± 0.20 | 2.60 ± 0.18 |
N total organic (%) | 1.60 ± 0.18 | 2.04 ± 0.24 |
N total inorganic (%) | 0.50 ± 0.04 | 0.60 ± 0.06 |
C total (%) | 2.10 ± 0.19 | 15.70 ± 0.82 |
P (mg/kg) | 431.00 ± 13.79 | 1495.00 ± 42.61 |
K (mg/kg) | 810.00 ± 23.65 | 488.00 ± 15.52 |
S (%) | 2.30 ± 0.04 | 4.10 ± 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oro, V.; Pisinov, B.; Trkulja, N.; Stanisavljevic, R.; Belosevic, S.; Tabakovic, M.; Sekulic, Z.Ž. Nematofauna of the Natural Park “Devil’s Town”. Forests 2023, 14, 2241. https://doi.org/10.3390/f14112241
Oro V, Pisinov B, Trkulja N, Stanisavljevic R, Belosevic S, Tabakovic M, Sekulic ZŽ. Nematofauna of the Natural Park “Devil’s Town”. Forests. 2023; 14(11):2241. https://doi.org/10.3390/f14112241
Chicago/Turabian StyleOro, Violeta, Boris Pisinov, Nenad Trkulja, Rade Stanisavljevic, Svetlana Belosevic, Marijenka Tabakovic, and Zoran Ž. Sekulic. 2023. "Nematofauna of the Natural Park “Devil’s Town”" Forests 14, no. 11: 2241. https://doi.org/10.3390/f14112241
APA StyleOro, V., Pisinov, B., Trkulja, N., Stanisavljevic, R., Belosevic, S., Tabakovic, M., & Sekulic, Z. Ž. (2023). Nematofauna of the Natural Park “Devil’s Town”. Forests, 14(11), 2241. https://doi.org/10.3390/f14112241