Driving Factors of Chinese Pine Population Distribution in the Ridge Habitats of the Southern Slope of the Mid-Qinling Mountains, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Field Sampling
2.3. Measurement of Soil Properties
2.4. Calculations and Statistical Analyses
3. Results
3.1. Environment and Vegetation Characteristics
3.1.1. Environment Characteristics
3.1.2. Vegetation Characteristics
3.2. Niche and Competitive Characteristics
3.3. Pinus Tabuliformis Population DBH Structure in Different Habitats
3.4. Density and Growth of Seedlings in Different Habitats
3.5. Effects of Environmental Factors on Number and Growth Dynamics of Pinus Tabuliformis Seedlings
4. Discussion
4.1. Driving Factors of Pinus Tabuliformis Population Distribution in Ridge Habitats
4.2. Relationship between the Regeneration Dynamics and Environmental Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ehrlén, J.; Morris, W.F. Predicting changes in the distribution and abundance of species under environmental change. Ecol. Lett. 2015, 18, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Boulangeat, I.; Gravel, D.; Thuiller, W. Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. Ecol. Lett. 2012, 15, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Welk, A.; Welk, E.; Baudis, M.; Böckelmann, J.; Bruelheide, H. Plant species’ range type determines local responses to biotic interactions and land use. Ecology 2019, 100, e02890. [Google Scholar] [CrossRef]
- Soberon, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 2007, 10, 1115–1123. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Zheng, Z.; Gong, D. Elevational patterns of species richness and their underlying mechanism. Chin. J. Ecol. 2017, 36, 14. [Google Scholar] [CrossRef]
- Vellend, M.; Verheyen, K.; Flinn, K.M.; Jacquemyn, H.; Kolb, A.; Van Calster, H.; Peterken, G.; Graae, B.J.; Bellemare, J.; Honnay, O.; et al. Homogenization of forest plant communities and weakening of species-environment relationships via agricultural land use. J. Ecol. 2007, 95, 565–573. [Google Scholar] [CrossRef]
- Figueiredo, F.O.G.; Zuquim, G.; Tuomisto, H.; Moulatlet, G.M.; Balslev, H.; Costa, F.R.C. Beyond climate control on species range: The importance of soil data to predict distribution of Amazonian plant species. J. Biogeogr. 2018, 45, 190–200. [Google Scholar] [CrossRef]
- Chauvier, Y.; Thuiller, W.; Brun, P.; Lavergne, S.; Descombes, P.; Karger, D.N.; Renaud, J.; Zimmermann, N.E. Influence of climate, soil, and land cover on plant species distribution in the European Alps. Ecol. Monogr. 2021, 91, e01433. [Google Scholar] [CrossRef]
- Zhu, Y.; Mi, X.C.; Ma, K.P. A mechainism of plant species coexisistence: The negative density-dependent hypothesis. Biodivers. Sci. 2009, 17, 594–604. [Google Scholar] [CrossRef]
- Adler, P.B.; Smull, D.; Beard, K.H.; Choi, R.T.; Furniss, T.; Kulmatiski, A.; Meiners, J.M.; Tredennick, A.T.; Veblen, K.E. Competition and coexistence in plant communities: Intraspecific competition is stronger than interspecific competition. Ecol. Lett. 2018, 21, 1319–1329. [Google Scholar] [CrossRef]
- Louthan, A.M.; Doak, D.F.; Angert, A.L. Where and When do Species Interactions Set Range Limits? Trends Ecol. Evol. 2015, 30, 780–792. [Google Scholar] [CrossRef] [PubMed]
- Godsoe, W.; Murray, R.; Plank, M.J. The effect of competition on species’ distributions depends on coexistence, rather than scale alone. Ecography 2015, 38, 1071–1079. [Google Scholar] [CrossRef]
- Wisz, M.S.; Pottier, J.; Kissling, W.D.; Pellissier, L.; Lenoir, J.; Damgaard, C.F.; Dormann, C.F.; Forchhammer, M.C.; Grytnes, J.A.; Guisan, A.; et al. The role of biotic interactions in shaping distributions and realised assemblages of species: Implications for species distribution modelling. Biol. Rev. 2013, 88, 15–30. [Google Scholar] [CrossRef]
- Wiens, J.J. The niche, biogeography and species interactions. Philos. Trans. R. Soc. B-Biol. Sci. 2011, 366, 2336–2350. [Google Scholar] [CrossRef] [PubMed]
- Soberon, J.M. Niche and area of distribution modeling: A population ecology perspective. Ecography 2010, 3, 159–167. [Google Scholar] [CrossRef]
- Lortie, C.J.; Brooker, R.W.; Choler, P.; Kikvidze, Z.; Michalet, R.; Pugnaire, F.I.; Callaway, R.M. Rethinking plant community theory. Oikos 2004, 10, 433–438. [Google Scholar] [CrossRef]
- Aschehoug, E.T.; Brooker, R.; Atwater, D.Z.; Maron, J.L.; Callaway, R.M. The Mechanisms and Consequences of Interspecific Competition Among Plants. Annu. Rev. Ecol. Evol. Syst. 2016, 47, 263–281. [Google Scholar] [CrossRef]
- Gao, W.Q.; Ni, Y.Y.; Xue, Z.M.; Wang, X.F.; Kang, F.F.; Hu, J.; Gao, Z.H.; Jiang, Z.P.; Liu, J.F. Population structure and regeneration dynamics of Quercus variabilis along latitudinal and longitudinal gradients. Ecosphere 2017, 8, e01737. [Google Scholar] [CrossRef]
- Bell, D.M.; Bradford, J.B.; Lauenroth, W.K. Early indicators of change: Divergent climate envelopes between tree life stages imply range shifts in the western United States. Glob. Ecol. Biogeogr. 2014, 23, 168–180. [Google Scholar] [CrossRef]
- Zhao, Y.; Qi, R.; Jiao, J.; Chen, X.L.; Cao, J.H.; Feng, Y.M.; Yang, M.M. Population structure and dynamic characteristics of Picea Purpurea at the Gahai-Zecha area. Acta Ecol. Sin. 2018, 38, 7447–7457. [Google Scholar] [CrossRef]
- Urbieta, I.R.; García, L.V.; Zavala, M.A. Mediterranean pine and oak distribution in southern Spain: Is there a mismatch between regeneration and adult distribution? J. Veg. Sci. 2011, 22, 18–31. [Google Scholar] [CrossRef]
- Poorter, L.; Bongers, F.; VanRompaey, R.S.A.R.; DeKlerk, M. Regeneration of canopy tree species at five sites in West African moist forest. For. Ecol. Manag. 1996, 84, 61–69. [Google Scholar] [CrossRef]
- Kumar, D.; Bhardwaj, D.R.; Sharma, P.; Bharti; Sankhyan, N.; Al-Ansari, N.; Linh, N.T.T. Population Dynamics of Juniperus macropoda Bossier Forest Ecosystem in Relation to Soil Physico-Chemical Characteristics in the Cold Desert of North-Western Himalaya. Forests 2022, 13, 1624. [Google Scholar] [CrossRef]
- Yin, Z.; Fan, X.H. Effects of herbs on tree seedlings in different succession stages of temperate forests in Changbai Mountain, China. Acta Ecol. Sin. 2020, 40, 2194–2204. [Google Scholar] [CrossRef]
- Li, W.Y.; Li, H.C.; Gan, X.H.; Zhang, X.M.; Fan, Z.L. Population structure and dynamics of the endangered tree Tetracentron sinense Oliver. Pak. J. Bot. 2020, 52, 613–619. [Google Scholar] [CrossRef]
- Kambo, D.; Danby, R.K. Danby, Factors influencing the establishment and growth of tree seedlings at Subarctic alpine treelines. Ecosphere 2018, 9, e02176. [Google Scholar] [CrossRef]
- Lombaerde, E.D.; Baeten, L.; Verheyen, L.; Perring, M.P.; Ma, S.; Landuyt, D. Understorey removal effects on tree regeneration in temperate forests: A meta nalysis. J. Appl. Ecol. 2020, 58, 9–20. [Google Scholar] [CrossRef]
- Rugemalila, D.M.; Cory, S.T.; Smith, W.K.; Anderson, T.M. The role of microsite sunlight environment on growth, architecture, and resource allocation in dominant Acacia tree seedlings, in Serengeti, East Africa. Plant Ecol. 2020, 221, 1187–1199. [Google Scholar] [CrossRef]
- Bolibok, L.; Janek, M.; Pawlak, B.; Dobrowolska, D. Spatial determinants of tree recruitment in mixed stands in southeastern Poland- silver fir’s interaction with lowland tree species. For. Ecol. Manag. 2023, 531, 120788. [Google Scholar] [CrossRef]
- Wu, G.; Feng, Z. Study on community characteristics and biomass of Pinus tabuliformis forest in China. Acta Ecol. Sin. 1994, 4, 415–422. [Google Scholar]
- Zhu, Z. Preliminary Study on Pinus tabuliformis forest in the Northern Slope of Qinling Mountains and Loess Plateau of Northern Shaanxi. Acta Bot. Boreali-Occident. Sin. 1987, 2, 73–82. [Google Scholar]
- Xu, H.C.; Sun, Z.F.; Guo, G.R.; Feng, L. Geographical distribution and provenance division of natural Pinus tabuliformis forest. Sci. Silvae Sin. 1981, 3, 258–270. [Google Scholar]
- Yin, W.K.; Hu, L.L.; Lu, X.; Gao, Y.; Kang, B. Species diversity of Pinus tabuliformis natural secondary forest community in Qinling Mountains. J. Northwest A F Univ. 2016, 44, 55–63. [Google Scholar]
- Tian, Y.L. Feature of Needle Functional Traits of Pinus tabuliformis and Their Response to Soil and Altitude in Qinling Mountains. Master’s Thesis, Northwest A&F University, Xianyang, China, 2021. [Google Scholar]
- Yu, F. Seed Dispersal Process and Natural Regeneration Pattern of Construct Species in the Pine-Oak Forests of the Qinling Mountains, China. Doctoral Thesis, Northwest A&F University, Xianyang, China, 2015. [Google Scholar]
- Li, Y.H.; Qi, G.Z.; Feng, R.R.; Liu, K. Responses of radial growth of Pinus tabuliformis to climate change at the northern slopes of Qinling Mountains, China. Chin. J. Appl. Ecol. 2022, 33, 2043–2050. [Google Scholar] [CrossRef]
- Wang, H.H. Seasonal Dynamics of Rhizospheric and Root Endophytic Microbe Communities of Pinus tabuliformis and Pinus armandii in Qinling Huoditang. Master’s Thesis, Northwest A&F University, Xianyang, China, 2016. [Google Scholar]
- Chai, Z.Z.; Wang, D.X. Environmental influences on the successful regeneration of pine-oak mixed forests in the Qinling Mountains, China. Scand. J. For. Res. 2015, 31, 368–381. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Shaheen, H.; Ullah, Z.; Khan, S.M.; Harper, D.M. Species composition and community structure of western Himalayan moist temperate forests in Kashmir. For. Ecol. Manag. 2012, 278, 138–145. [Google Scholar] [CrossRef]
- Kang, D.; Guo, Y.X.; Ren, C.J.; Zhao, F.Z.; Feng, Y.Z.; Han, X.H.; Yang, G.H. Population Structure and Spatial Pattern of Main Tree Species in Secondary Betula platyphylla Forest in Ziwuling Mountains, China. Sci. Rep. 2014, 4, 6873. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.Q. Niche theory and its application in forest ecology. Chin. J. Ecol. 1993, 4, 41–46. [Google Scholar]
- Dang, H.S.; Zhang, K.R.; Zhang, Y.J.; Tong, X.Z.; Zhang, Q.F. Regeneration dynamics of subalpine fir (Abies fargesii) forest across the altitudinal range in the Shennongjia Mountains, central China. J. Plant Ecol. 2013, 6, 36–47. [Google Scholar] [CrossRef]
- Brubaker, L.B. Responses of tree populations to climatic-change. Plant Ecol. 1986, 67, 119–130. [Google Scholar] [CrossRef]
- Benson, E.J.; Hartnett, D.C. The role of seed and vegetative reproduction in plant recruitment and demography in tallgrass prairie. Plant Ecol. 2006, 187, 163–177. [Google Scholar] [CrossRef]
- Wang, T.; Liang, Y.; Ren, H.B.; Yu, D.; Ni, J.; Ma, K.P. Age structure of Picea schrenkiana forest along an altitudinal gradient in the central Tianshan Mountains, northwestern China. For. Ecol. Manag. 2004, 196, 267–274. [Google Scholar] [CrossRef]
- Holz, A.; Veblen, T.T. Tree regeneration responses to Chusquea montana bamboo die-off in a subalpine Nothofagus forest in the southern Andes. J. Veg. Sci. 2006, 17, 19–28. [Google Scholar] [CrossRef]
- Guo, Y.X.; Kang, B.; Li, G.; Wang, D.X.; Yang, G.H.; Wang, D.W. Species composition and point pattern analysis of standing trees in secondary Betula albo-sinensis forest in Xiaolongshan of west Qinling Mountains. Chin. J. Appl. Ecol. 2011, 22, 2574–2580. [Google Scholar] [CrossRef]
- Xue, W.Y.; Yang, B.; Zhang, W.H.; Yu, S.C. Spatial pattern and spatial association of Quercus acutissima at different developmental stages in the Qiaoshan Mountains. Acta Ecol. Sin. 2017, 37, 3375–3384. [Google Scholar]
- Wang, H.J.; Zhang, X.P.; Xu, X.M.; Wang, M.Q.; Tian, Q.L. Changes in species composition and structure during vegetation community succession in Ziwuling forest area. Bull. Soil Water Conserv. 2023, 43, 119–128. [Google Scholar]
- Lu, J.M.; Johnson, D.J.; Qiao, X.J.; Lu, Z.J.; Wang, Q.G.; Jiang, M.X. Density dependence and habitat preference shape seedling survival in a subtropical forest in central China. J. Plant Ecol. 2015, 8, 568–577. [Google Scholar] [CrossRef]
- Huang, Y. Community Structure, Population Structure and Dynamics of Chinese Pine (pinus tabuliformis) Distributed on Ridge in the Middle of Qinling Mountains. Master’s Thesis, Nrothwest A&F University, Xianyang, China, 2016. [Google Scholar]
- Chen, B.; He, Z.S.; Jiang, L.; Xie, Z.Y.; Li, Y.D.; Li, J.X.; Li, M.J.; Wei, C.S.; Xing, C.; Liu, J.F. Taxonomic and phylogenetic diversity of plants in a Castanopsis kawakamiinatural fores. Biodivers. Sci. 2021, 29, 439–448. [Google Scholar] [CrossRef]
- Kang, H.B.; Xue, Y.; Yan, C.L.; Lu, S.; Yang, H.; Zhu, J.Q.; Fu, Z.J.; Wang, D.X. Contrasting patterns of microbial nutrient limitations between rhizosphere and bulk soil during stump sprout restoration in a clear-cut oak forest. For. Ecol. Manag. 2022, 515, 10. [Google Scholar] [CrossRef]
- Xue, J.H. Forest Ecology; China Forestry Press: Beijing, China, 2006. [Google Scholar]
- Firm, D.; Nagel, T.A.; Diaci, J. Disturbance history and dynamics of an old-growth mixed species mountain forest in the Slovenian Alps. For. Ecol. Manag. 2009, 257, 1893–1901. [Google Scholar] [CrossRef]
- Jiang, L.; Wei, C.S.; He, Z.W.; Zhu, J.; Xing, C.; Wang, X.L.; Liu, J.F.; Shen, C.X.; Shi, Y.W. Functional trait variation of plant communities in canopy gaps of Castanopsis kawakamii natural forest. Chin. J. Plant Ecol. 2022, 46, 13. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, H.; Wang, D.; Zhao, Z. Spatial distribution and growth association of regeneration in gaps of Chinese pine (Pinus tabuliformis Carr.) plantation in northern China. For. Ecol. Manag. 2019, 432, 387–399. [Google Scholar] [CrossRef]
- Viani, R.A.G.; Rodrigues, R.R.; Dawson, T.E.; Oliveira, R.S. Savanna soil fertility limits growth but not survival of tropical forest tree seedlings. Plant Soil 2011, 349, 341–353. [Google Scholar] [CrossRef]
- Liu, B.; Chen, W.; Chen, F.S.; Tang, R.Y.; Wang, X.D.; Chen, Y.Q.; Bu, W.S. Responses of seedling growth in subtropical secondary broad-leaved forest to nitrogen and phosphorus addition in Jiulian Mountain, China. Chin. J. Appl. Ecol. 2020, 31, 2533–2540. [Google Scholar] [CrossRef]
- Zhou, P.; Liu, G.B.; Hou, X.L. Study on Soil Physical and Nutrients Properties of Different Slope Aspects and Positions in Eroded Loess Hilly Region. J. Soil Water Conserv. 2008, 1, 7–12. [Google Scholar] [CrossRef]
- Taylor, A.H.; Zisheng, O. Tree replacement patterns in subalpine Abies-Betula forests, Wolong Natural Reserve, China. Vegetatio 1988, 78, 141–149. [Google Scholar] [CrossRef]
- Beals, K.K.; Scearce, A.E.; Swystun, A.T.; Schweitzer, J.A. Belowground mechanisms for oak regeneration: Interactions among fire, soil microbes, and plant community alter oak seedling growth. For. Ecol. Manag. 2022, 503, 119774. [Google Scholar] [CrossRef]
- Sangsupan, H.A.; Hibbs, D.E.; Withrow-Robinson, B.A.; Elliott, S. Effect of microsite light on survival and growth of understory natural regeneration during restoration of seasonally dry tropical forest in upland northern Thailand. For. Ecol. Manag. 2021, 489, 119061. [Google Scholar] [CrossRef]
- Wang, B.; Tian, X.L.; Cao, T.J. Uncertainty analysis of height predictions for young Pinus tabuliformis using a bayesian approach. Sci. Silvae Sin. 2020, 56, 73–86. [Google Scholar] [CrossRef]
- Tateno, R.; Takeda, H. Forest structure and tree species distribution in relation to topography-mediated heterogeneity of soil nitrogen and light at the forest floor. Ecol. Res. 2003, 18, 559–571. [Google Scholar] [CrossRef]
Age Stages | Range of DBH |
---|---|
Seedling and sapling | <5 cm |
Middle-aged tree | 5 cm ≤ DBH < 20 cm |
Adult tree | DBH ≥ 20 cm |
Characteristic | Slope | Ridge | Gap | |
---|---|---|---|---|
Biotic factors | LT | 4.3 ± 0.29 a | 3.1 ± 0.19 b | 3.3 ± 0.05 b |
CD | 0.53 ± 0.025 a | 0.45 ± 0.016 b | - | |
SH | 1.32 ± 0.058 | 1.24 ± 0.062 | 1.34 ± 0.05 | |
SC HH HC | 0.69 ± 0.126 a 25.56 ± 2.82 31.44 ± 3.08 | 0.38 ± 0.068 c 23.5 ± 2 24.68 ± 1.55 | 0.54 ± 0.02 b 29.6 ± 3.33 28. 64 ± 2 | |
Abiotic factors | SOC | 14.53 ± 1.74 c | 19.33 ± 1.27 b | 28.02 ± 1.38 a |
TN | 1.89 ± 0.14 b | 1.51 ± 0.08 c | 2.36 ± 0.51 a | |
TP | 1.23 ± 0.24 a | 0.5 ± 0.1 b | 1.9 ± 0.07 a | |
pH | 5.50 ± 0.08 a | 5.02 ± 0.07 b | 5.4 ± 0.06 a | |
EB/(%) | - | 30 | - |
Habitats | Tree | Shrub | Herb | |||
---|---|---|---|---|---|---|
Species Name | IV | Species Name | IV | Species Name | IV | |
Ridge | Pinus Tabuliformis Quercus aliena var.acutiserrata Pinus armandii Platycarya strobilacea Tsuga chinensis Quercus spinosa Castanea mollissima Quercus variabilis Carpinus turczaninowii Lindera glauca Albizia julibrissin Acer davidii Toxicodendron vernicifluum Juniperus formosana | 48.92 15.75 5.86 2.95 2.83 2.79 2.66 2.47 2.47 1.76 1.66 1.61 1.22 1.21 | Rhododendron simsii Hylodesmum podocarpum subsp. oxyphyllum Philadelphus pekinensis Cotoneaster acutifolius Fargesia qinlingensis Smilax discotis Corylus heterophylla Lindera glauca Spiraea salicifolia Lonicera fragrantissima var. lancifolia Rhus chinensis Rosa xanthine Elaeagnus pungens Cornus kousa subsp. chinensis Carpinus turczaninowii Euonymus phellomanus Smilax china Ilex pernyi Euonymus alatus | 12.53 11.41 9.85 8.79 8.47 8.42 7.13 3.71 3.54 3.21 2.76 2.49 1.84 1.84 1.67 1.64 1.41 1.34 1.33 | Carexrigescens Poa annua Pteridium aquilinum var. latiusculum Phlomoides umbrosa Polygonatum odoratum Arthraxon hispidus Epimedium brevicornu Artemisia argyi Anaphalis sinica Agrimonia pilosa Peucedanum praeruptorum | 44.65 23.12 8.32 5.81 4.53 3.55 2.99 2.19 1.92 1.75 1.16 |
Slope | Pinus tabuliformis Quercus aliena var. acutiserrata Pinus armandii Platycarya strobilacea Castanea mollissima Cornus kousa subsp.chinensis Toxicodendron vernicifluum Carpinus turczaninowii Acer davidii Albizia julibrissin Rhus chinensis Lindera glauca Corylus ferox var. thibetica Tilia tuan Populus purdomii | 45.73 12.91 5.15 4.04 3.60 3.36 3.02 2.42 2.39 2.26 1.44 1.39 1.37 1.16 1.05 | Viburnum betulifolium Litsea pungens Corylus heterophylla Smilax discotis Cornus kousa subsp.chinensis Hylodesmum podocarpum subsp.oxyphyllum Euonymus phellomanus Elaeagnus pungens Schisandra chinensis Lindera glauca Prunus polytricha Lonicera hispida Cotoneaster acutifolius Rubus L. Spiraea salicifolia Carpinus turczaninowii Smilax china Coriaria nepalensis Lonicera fragrantissima var. lancifolia Holboellia grandiflora Eleutherococcus leucorrhizus Rhus chinensis Campylotropis macrocarpa Symplocos paniculata | 14.77 7.51 7.10 6.34 4.87 4.16 3.67 3.54 3.43 3.24 2.91 2.78 2.66 2.47 2.04 2.00 1.64 1.56 1.50 1.46 1.34 1.26 1.17 1.15 | Carexrigescens Pteridium aquilinum var. latiusculum Poa annua Carex siderosticta Parathelypteris glanduligera Arthraxon hispidus Ophiopogon japonicus Rubia cordifolia Rodgersia aesculifolia Cymbidium goeringii Anaphalis sinica Aster tataricus Anemone tomentosa Hedera nepalensis var. sinensis Parthenocissus tricuspidata Phlomoides umbrosa Epimedium brevicornu | 33.98 16.35 8.27 6.15 5.23 4.20 2.85 2.60 2.38 2.37 2.03 2.00 1.98 1.52 1.35 1.35 1.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Song, Y.; Pang, Y.; Kang, H.; Xue, Y.; Wang, D. Driving Factors of Chinese Pine Population Distribution in the Ridge Habitats of the Southern Slope of the Mid-Qinling Mountains, China. Forests 2023, 14, 2252. https://doi.org/10.3390/f14112252
Yang H, Song Y, Pang Y, Kang H, Xue Y, Wang D. Driving Factors of Chinese Pine Population Distribution in the Ridge Habitats of the Southern Slope of the Mid-Qinling Mountains, China. Forests. 2023; 14(11):2252. https://doi.org/10.3390/f14112252
Chicago/Turabian StyleYang, Hang, Yahui Song, Yue Pang, Haibin Kang, Yue Xue, and Dexiang Wang. 2023. "Driving Factors of Chinese Pine Population Distribution in the Ridge Habitats of the Southern Slope of the Mid-Qinling Mountains, China" Forests 14, no. 11: 2252. https://doi.org/10.3390/f14112252
APA StyleYang, H., Song, Y., Pang, Y., Kang, H., Xue, Y., & Wang, D. (2023). Driving Factors of Chinese Pine Population Distribution in the Ridge Habitats of the Southern Slope of the Mid-Qinling Mountains, China. Forests, 14(11), 2252. https://doi.org/10.3390/f14112252