Periodic Flooding Decoupled the Relations of Soil C, N, P, and K Ecological Stoichiometry in a Coastal Shelterbelt Forest of Eastern China
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Experimental Design, Sample Collection and Chemical Analysis
2.3. Data Analysis
3. Results
3.1. Effects of Periodic Flooding on SOC and Soil N, P, and K Contents
3.2. Effects of Periodic Flooding on Soil C:N:P:K Stoichiometries
3.3. Effect of Periodic Flooding on Correlations of Soil C, N, P, and K Stoichiometries
3.4. Soil C, N, P, and K Stoichiometries as Affected by Periodic Flooding
4. Discussion
4.1. Effects of Periodic Flooding on Soil C, N, P, and K Contents
4.2. Effects of Periodic Flooding on Soil C:N:P:K Stoichiometries
4.3. Effects of Periodic Flooding on Correlations of Soil C, N, P, and K Stoichiometries
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, H.; Knapp, L.S.P.; Yu, M.; Wang, G.G. Solidago canadensis invasion destabilizes the understory plant community and soil properties of coastal shelterbelt forests of subtropical China. Plant Soil 2022, 484, 65–77. [Google Scholar] [CrossRef]
- Fernandes, A.; Rollinson, C.R.; Kearney, W.S.; Dietze, M.C.; Fagherazzi, S. Declining radial growth response of coastal forests to hurricanes and nor’easters. J. Geophys. Res. Biogeosci. 2018, 123, 832–849. [Google Scholar] [CrossRef]
- Shan, Q.; Zhang, J.; Sun, S.; Chen, G.; Zhang, H.; Shen, L. Construction of coastline shelterbelts and assessment of their environmental effects in Yuyao, China. Land Degrad. Dev. 2018, 29, 2428–2437. [Google Scholar] [CrossRef]
- Schumacher, R.S.; Hill, A.J.; Klein, M.; Nelson, J.A.; Erickson, M.J.; Trojniak, S.M.; Herman, G.R. From Random Forests to Flood Forecasts: A Research to Operations Success Story. Bull. Am. Meteorol. Soc. 2021, 102, E1742–E1755. [Google Scholar] [CrossRef]
- Yin, X.; Zhou, L.-T.; Liu, K.; Han, Y.; Du, Z. Record-breaking flood over the Yangtze River in early summer 2020: Role of the north Indian Ocean and north tropical Atlantic SST. Theor. Appl. Clim. 2022, 150, 1173–1186. [Google Scholar] [CrossRef]
- Patel, K.F.; Fansler, S.J.; Campbell, T.P.; Bond-Lamberty, B.; Smith, A.P.; RoyChowdhury, T.; McCue, L.A.; Varga, T.; Bailey, V.L. Soil texture and environmental conditions influence the biogeochemical responses of soils to drought and flooding. Commun. Earth Environ. 2021, 2, 127. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Xu, L.; Zhu, J.; Dai, G.; He, N. C:N:P stoichiometry in terrestrial ecosystems in China. Sci. Total Environ. 2021, 795, 148849. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, A.R.; Nie, C.; Hill, P.W.; Chadwick, D.R.; Jones, D.L. Extreme flood events at higher temperatures exacerbate the loss of soil functionality and trace gas emissions in grassland. Soil Biol. Biochem. 2019, 130, 227–236. [Google Scholar] [CrossRef]
- LaCroix, R.E.; Tfaily, M.M.; McCreight, M.; Jones, M.E.; Spokas, L.; Keiluweit, M. Shifting mineral and redox controls on carbon cycling in seasonally flooded mineral soils. Biogeosciences 2019, 16, 2573–2589. [Google Scholar] [CrossRef]
- Jian, Z.J. Response of Soil Physical and Chemical Properties and Plant Communities to Water Level Change in the Water Level Fluctuation Zone of Canyon Landform Area of the Three Gorges Reservoir. Ph.D. Thesis, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China, 2017. [Google Scholar]
- Ye, F.; Ma, M.H.; Wu, S.J.; Jiang, Y.; Zhu, G.B.; Zhang, H.; Wang, Y. Soil properties and distribution in the riparian zone: The effects of fluctuations in water and anthropogenic disturbances. Eur. J. Soil Sci. 2019, 70, 664–673. [Google Scholar] [CrossRef]
- Akram, M.A.; Wang, X.; Hu, W.; Xiong, J.; Zhang, Y.; Deng, Y.; Ran, J.; Deng, J. Convergent Variations in the Leaf Traits of Desert Plants. Plants 2020, 9, 990. [Google Scholar] [CrossRef] [PubMed]
- Sterner, R.W.; Elser, J.J.; Vitousek, P. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere; Princeton University Press: Princeton, NJ, USA, 2017; p. 464. [Google Scholar]
- Li, Y.; Dong, X.; Yao, W.; Han, C.; Sun, S.; Zhao, C. C, N, P, K stoichiometric characteristics of the “leaf-root-litter-soil” system in dryland plantations. Ecol. Indic. 2022, 143, 109371. [Google Scholar] [CrossRef]
- Tian, L.; Zhao, L.; Wu, X.; Fang, H.; Zhao, Y.; Hu, G.; Yue, G.; Sheng, Y.; Wu, J.; Chen, J.; et al. Soil moisture and texture primarily control the soil nutrient stoichiometry across the Tibetan grassland. Sci. Total Environ. 2018, 622, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Wang, G.; Yan, Q.; Gao, T.; Zhu, J. Effects of gap size and within-gap position on seedling growth and biomass allocation: Is the gap partitioning hypothesis applicable to the temperate secondary forest ecosystems in Northeast China? For. Ecol. Manag. 2018, 429, 351–362. [Google Scholar] [CrossRef]
- Lawniczak, A.E.; Güsewell, S.; Verhoeven, J.T.A. Effect of N:K supply ratios on the performance of three grass species from herbaceous wetlands. Basic Appl. Ecol. 2009, 10, 715–725. [Google Scholar] [CrossRef]
- Tang, Z.; Xu, W.; Zhou, G.; Bai, Y.; Li, J.; Tang, X.; Chen, D.; Liu, Q.; Ma, W.; Xiong, G.; et al. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Biol. Sci. 2018, 115, 4033–4038. [Google Scholar] [CrossRef]
- Lu, Q.; Fan, H.; Yan, B.; Zhao, D.; Wei, X. Soil C, N, and P and C:N:P stoichiometry associated with environmental factors in two typical alpine grasslands in northern Tibet. J. Soils Sediments 2023, 23, 3735–3747. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Potassium: A neglected nutrient in global change. Glob. Ecol. Biogeogr. 2015, 24, 261–275. [Google Scholar] [CrossRef]
- Alfaro, M.A.; Jarvis, S.C.; Gregory, P.J. Factors affecting potassium leaching in different soils. Soil Use Manag. 2004, 20, 182–189. [Google Scholar] [CrossRef]
- Correndo, A.A.; Rubio, G.; García, F.O.; Ciampitti, I.A. Subsoil-potassium depletion accounts for the nutrient budget in high-potassium agricultural soils. Sci. Rep. 2021, 11, 11597. [Google Scholar] [CrossRef]
- Liu, R.S.; Wang, D.M. C:N:P stoichiometric characteristics and seasonal dynamics of leaf-root-litter-soil in plantations on the loess plateau. Ecol. Indic. 2021, 127, 107772. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Li, Y.; Peñuelas, J.; Zhao, Y.; Sardans, J.; Tetzlaff, D.; Liu, J.; Liu, X.; Yuan, H.; et al. Soil ecological stoichiometry synchronously regulates stream nitrogen and phosphorus concentrations and ratios. Cetena 2023, 231, 107357. [Google Scholar] [CrossRef]
- Ran, Y.; Wu, S.; Jiang, Y.; Qu, J.; Herath, I.K.; Huang, P. The legacy effects of soil types on carbon content are erased by extreme flooding stress in a water-level drawdown zone. Cetena 2023, 231, 107283. [Google Scholar] [CrossRef]
- Volf, M.R.; Benites, V.M.; Azevedo, A.C.; Moraes, M.F.; Tiritan, C.S.; Rosolem, C.A. Soil mineralogy and K reserves in soils from the Araguaia River valley, Brazil. Geoderma Reg. 2023, 33, e00654. [Google Scholar] [CrossRef]
- Werner, F.; Mueller, C.W.; Thieme, J.; Gianoncelli, A.; Rivard, C.; Höschen, C.; Prietzel, J. Micro-scale heterogeneity of soil phosphorus depends on soil substrate and depth. Sci. Rep. 2017, 7, 3203. [Google Scholar] [CrossRef] [PubMed]
- Ran, Y.; Ma, M.; Liu, Y.; Zhu, K.; Yi, X.; Wang, X.; Wu, S.; Huang, P. Physicochemical determinants in stabilizing soil aggregates along a hydrological stress gradient on reservoir riparian habitats: Implications to soil restoration. Ecol. Eng. 2020, 143, 105664. [Google Scholar] [CrossRef]
- Srinivasarao, C.; Kundu, S.; Ramachandrappa, B.K.; Reddy, S.; Lal, R.; Venkateswarlu, B.; Sahrawat, K.L.; Naik, R.P. Potassium release characteristics, potassium balance, and fingermillet (Eleusine coracana G.) yield sustainability in a 27-year long experiment on an Alfisol in the semiarid tropical India. Plant Soil 2014, 374, 315–330. [Google Scholar] [CrossRef]
- Ran, Y.; Zhu, K.; Ma, M.; Wu, S.; Huang, P. Periodic flooding enhances the function of soil Fe/Al oxides in stabilizing particulate organic carbon in a water level drawdown zone. Soil Tillage Res. 2023, 231, 105740. [Google Scholar] [CrossRef]
- Nicholls, J.C.; Trimmer, M. Widespread occurrence of the anammox reaction in estuarine sediments. Aquat. Microb. Ecol. 2009, 55, 105–113. [Google Scholar] [CrossRef]
- Shen, Y.; Cheng, R.; Xiao, W.; Zeng, L.; Wang, L.; Sun, P.; Chen, T. Temporal dynamics of soil nutrients in the riparian zone: Effects of water fluctuations after construction of the Three Gorges Dam. Ecol. Indic. 2022, 139, 108865. [Google Scholar] [CrossRef]
- Jia, B.; Niu, Z.; Wu, Y.; Kuzyakov, Y.; Li, X.G. Waterlogging increases organic carbon decomposition in grassland soils. Soil Biol. Biochem. 2020, 148, 107927. [Google Scholar] [CrossRef]
- Li, X.; Ding, C.; Bu, H.; Han, L.; Ma, P.; Su, D. Effects of submergence frequency on soil C:N:P ecological stoichiometry in riparian zones of Hulunbuir steppe. Soils Sediments 2020, 20, 1480–1493. [Google Scholar] [CrossRef]
- Bao, B.; Huang, X.; Xu, H.; Xie, H.; Cheng, X. Patterns and Driving Mechanism of C, N, P Ecological Stoichiometry in Plant-Litter-Soil Systems of Monoculture and Mixed Coastal Forests in Southern Zhejiang Province of China. Forests 2023, 14, 1306. [Google Scholar] [CrossRef]
- Song, B.-L.; Yan, M.-J.; Hou, H.; Guan, J.-H.; Shi, W.-Y.; Li, G.-Q.; Du, S. Distribution of soil carbon and nitrogen in two typical forests in the semiarid region of the Loess Plateau, China. Catena 2016, 143, 159–166. [Google Scholar] [CrossRef]
- Cheng, X.R.; Xing, W.L.; Xiang, W. Depth-dependent patterns in the C:N:P stoichiometry of different soil components with reclamation time in coastal poplar plantations. Soil Tillage Res. 2022, 223, 105494. [Google Scholar] [CrossRef]
- Bing, H.; Wu, Y.; Zhou, J.; Sun, H.; Luo, J.; Wang, J.; Yu, D. Stoichiometric variation of carbon, nitrogen, and phosphorus in soils and its implication for nutrient limitation in alpine ecosystem of Eastern Tibetan Plateau. J. Soils Sediments 2016, 16, 405–416. [Google Scholar] [CrossRef]
- Zhang, Q.X. A Preliminary Study on the Tree Species Selection of the Coastal Shelterbelt Forests in Xiangshan, Eastern China. Master Thesis, Shanghai Jiao Tong University, Shanghai, China, 2010. (In English with Chinese). [Google Scholar]
- Xie, H.; Tang, Y.; Yu, M.; Wang, G.G. The effects of afforestation tree species mixing on soil organic carbon stock, nutrients accumulation, and understory vegetation diversity on reclaimed coastal lands in Eastern China. Glob. Ecol. Conserv. 2021, 26, e01478. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-total. In Methods of Soil Analysis, Part 2, 2nd ed.; Page, A.L., Miller, R.H., Keeney, R.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Liu, S.; Wang, H. N, P, and K characteristics of different age groups of temperate coniferous tree species in northwestern China. J. For. Res. 2018, 29, 471–478. [Google Scholar] [CrossRef]
- Warman, P.R.; Termeer, W.C. Evaluation of sewage sludge, septic waste and sludge compost applications to corn and forage: Yields and N, P and K content of crops and soils. Bioresour. Technol. 2005, 96, 955–961. [Google Scholar] [CrossRef]
- Zhang, X.; Gai, X.; Yang, C.; Ying, J.; Li, W.; Du, X.; Zhong, Z.; Shao, Q.; Bian, F. Bian Effects of chicken farming on soil properties and root-associated bacterial communities in a bamboo (Phyllostachys praecox) ecosystem. Appl. Soil Ecol. 2021, 157, 103725. [Google Scholar] [CrossRef]
- Lu, R.K. Soil and Agro-Chemical Analytical Methods; China Agricultural Science and Technology Press: Beijing, China, 1999; Volume 7, pp. 147–168. [Google Scholar]
- Shen, R.; Yang, H.; Rinklebe, J.; Bolan, N.; Hu, Q.; Huang, X.; Wen, X.; Zheng, B.; Shi, L. Seasonal flooding wetland expansion would strongly affect soil and sediment organic carbon storage and carbon-nutrient stoichiometry. Sci. Total Environ. 2022, 828, 154427. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Fang, H.; Zhao, Y.; Smoak, J.M.; Li, W.; Shi, W.; Sheng, Y.; Zhao, L.; Ding, Y. A conceptual model of the controlling factors of soil organic carbon and nitrogen densities in a permafrost-affected region on the eastern Qinghai-Tibetan Plateau. J. Geophys. Res. Biogeosci. 2017, 122, 1705–1717. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Maestre, F.T.; Gallardo, A.; Bowker, M.A.; Wallenstein, M.D.; Quero, J.L.; Ochoa, V.; Gozalo, B.; García-Gómez, M.; Soliveres, S.; et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 2013, 502, 672–676. [Google Scholar] [CrossRef] [PubMed]
- Tiemann, L.K.; Billings, S.A. Changes in variability of soil moisture alter microbial community C and N resource use. Soil Biol. Biochem. 2011, 43, 1837–1847. [Google Scholar] [CrossRef]
- Exbrayat, J.-F.; Pitman, A.J.; Zhang, Q.; Abramowitz, G.; Wang, Y.-P. Examining soil carbon uncertainty in a global model: Response of microbial decomposition to temperature, moisture and nutrient limitation. Biogeosciences 2013, 10, 7095–7108. [Google Scholar] [CrossRef]
- Wang, W.; Wang, C.; Sardans, J.; Tong, C.; Jia, R.; Zeng, C.; Peñuelas, J. Flood regime affects soil stoichiometry and the distribution of the invasive plants in subtropical estuarine wetlands in China. Catena 2015, 128, 144–154. [Google Scholar] [CrossRef]
- Artinger, R.; Buckau, G.; Geyer, S.; Fritz, P.; Wolf, M.; Kim, J. Characterization of groundwater humic substances: Influence of sedimentary organic carbon. Appl. Geochem. 2000, 15, 97–116. [Google Scholar] [CrossRef]
- Sosulski, T.; Szara, E.; Szymańska, M.; Stępień, W.; Rutkowska, B.; Szulc, W. Soil N2O emissions under conventional tillage conditions and from forest soil. Soil Tillage Res. 2019, 190, 86–91. [Google Scholar] [CrossRef]
- Lee, H.; Fitzgerald, J.; Hewins, D.B.; McCulley, R.; Archer, S.; Rahn, T.; Throop, H. Soil moisture and soil-litter mixing effects on surface litter decomposition: A controlled environment assessment. Soil Biol. Biochem. 2014, 72, 123–132. [Google Scholar] [CrossRef]
- Chen, L.; Li, P.; Yang, Y. Dynamic patterns of nitrogen: Phosphorus ratios in forest soils of China under changing environment. J. Geophys. Res. 2016, 121, 2410–2427. [Google Scholar] [CrossRef]
- Walker, T.W.; Adams, A.F.R. Studies on soil organic matter: I. Influence of phosphorus content of parent materials on accumulations of carbon, nitrogen, sulfur, and organic phosphorus in grassland soils. Soil Sci. 1956, 85, 307–318. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, M.; Huang, Z.; Lin, T.; Vadeboncoeur, M.A.; Searle, E.B.; Chen, H.Y.H. Temporal changes in soil C-N-P stoichiometry over the past 60 years across subtropical China. Glob. Chang. Biol. 2018, 24, 1308–1320. [Google Scholar] [CrossRef] [PubMed]
- Korucu, T.; Shipitalo, M.J.; Kaspar, T.C. Rye cover crop increases earthworm populations and reduces losses of broadcast, fall-applied, fertilizers in surface runoff. Soil Tillage Res. 2018, 180, 99–106. [Google Scholar] [CrossRef]
- Johnston, A.E. Understanding Potassium and Its Use in Agriculture; European Fertilizer Manufacturers Association: Brussels, Belgium, 2003. [Google Scholar]
- Rogers, C.W.; Dari, B.; Hu, G.; Mikkelsen, R. Dry matter production, nutrient accumulation, and nutrient partitioning of barley. J. Plant Nutr. Soil Sci. 2019, 182, 367–373. [Google Scholar] [CrossRef]
- Sato, S.; Morgan, K.T.; Ozores-Hampton, M.; Simonne, E.H. Spatial and temporal distributions in sandy soils with seepage irrigation: II. Phosphorus and potassium. Soil Sci. Soc. Am. J. 2009, 73, 1053–1060. [Google Scholar] [CrossRef]
- Zhao, X.; Gao, S.; Lu, D.; Chen, X.; Wang, H.; Zhou, J. Evaluation of soil potassium-holding capacity based on waterlogging-simulation experiments. Agron. J. 2021, 113, 2872–2883. [Google Scholar] [CrossRef]
- Lu, D.; Dong, Y.; Chen, X.; Wang, H.; Zhou, J. Comparison of potential potassium leaching associated with organic and inorganic potassium sources in different arable soils in China. Pedosphere 2022, 32, 330–338. [Google Scholar] [CrossRef]
- Oliveira, R.H.; Rosolem, C.A.; Trigueiro, R.M. Importance of mass flow and diffusion on the potassium supply to cotton plants as affected by soil water and potassium. Rev. Bras. Cienc. Solo 2004, 28, 439–445. [Google Scholar] [CrossRef]
- Bell, M.J.; Ransom, M.D.; Thompson, M.L.; Hinsinger, P.; Florence, A.M.; Moody, P.W.; Guppy, C.N. Considering Soil Potassium Pools with Dissimilar Plant Availability. In Improving Potassium Recommendations for Agricultural Crops; Springer Nature: Berlin, Germany, 2021. [Google Scholar]
- Jones, R.L.; Hinesly, T.D. Potassium Losses in Runoff and Drainage Waters from Cropped, Large-scale Lysimeters. J. Environ. Qual. 1986, 15, 137–140. [Google Scholar] [CrossRef]
- Rosolem, C.A.; Sgariboldi, T.; Garcia, R.A.; Calonego, J.C. Potassium leaching as affected by soil texture and residual fertilization in tropical soils. Commun. Soil Sci. Plan. 2010, 41, 1934–1943. [Google Scholar] [CrossRef]
- Vourlitis, G.L. Chronic N enrichment and drought alter plant cover and community composition in a Mediterranean-type semi-arid shrubland. Oecologia 2017, 184, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Tong, R.; Tan, Q.; Mo, S.; Ma, C.; Chen, G. Flooding influences on the C, N and P stoichiometry in terrestrial ecosystems: A meta-analysis. Catena 2022, 215, 106287. [Google Scholar] [CrossRef]
- Tian, H.; Chen, G.; Zhang, C.; Melillo, J.M.; Hall, C.A.S. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 2010, 98, 139–151. [Google Scholar] [CrossRef]
- Simonsson, M.; Östlund, A.; Renfjäll, L.; Sigtryggsson, C.; Börjesson, G.; Kätterer, T. Pools and solubility of soil phosphorus as affected by liming in long-term agricultural field experiments. Geoderma 2018, 315, 208–219. [Google Scholar] [CrossRef]
- Shen, F.; Wu, J.; Fan, H.; Liu, W.; Guo, X.; Duan, H.; Hu, L.; Lei, X.; Wei, X. Soil N/P and C/P ratio regulate the responses of soil microbial community composition and enzyme activities in a long-term nitrogen loaded Chinese fir forest. Plant Soil 2019, 436, 91–107. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Liptzin, D. C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 2007, 85, 235–252. [Google Scholar] [CrossRef]
- Hartman, W.H.; Richardson, C.J. Differential nutrient limitation of soil microbial biomass and metabolic quotients (qCO2): Is there a biological stoichiometry of soil microbes. PLoS ONE 2018, 8, e5712. [Google Scholar] [CrossRef]
- Zhou, Y.; Boutton, T.W.; Ben, W.X. Soil C:N:P stoichiometry responds to vegetation change from grassland to woodland. Biogeochemistry 2018, 140, 341–347. [Google Scholar] [CrossRef]
- Bai, Y.; Wu, J.; Clark, C.M.; Pan, Q.; Zhang, L.; Chen, S.; Wang, Q.; Han, X. Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient. J. Appl. Ecol. 2012, 49, 1204–1215. [Google Scholar] [CrossRef]
- Chen, D.; Cheng, J.; Chu, P.; Hu, S.; Xie, Y.; Tuvshintogtokh, I.; Bai, Y. Regional-scale patterns of soil microbes and nematodes across grasslands on the Mongolian plateau: Relationships with climate, soil, and plants. Ecography 2015, 38, 622–631. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, B.; Chang, M.; Jin, S.; Li, X.; Xie, H. Periodic Flooding Decoupled the Relations of Soil C, N, P, and K Ecological Stoichiometry in a Coastal Shelterbelt Forest of Eastern China. Forests 2023, 14, 2270. https://doi.org/10.3390/f14112270
Bao B, Chang M, Jin S, Li X, Xie H. Periodic Flooding Decoupled the Relations of Soil C, N, P, and K Ecological Stoichiometry in a Coastal Shelterbelt Forest of Eastern China. Forests. 2023; 14(11):2270. https://doi.org/10.3390/f14112270
Chicago/Turabian StyleBao, Binghui, Mengyuan Chang, Songheng Jin, Xueqin Li, and Hongtao Xie. 2023. "Periodic Flooding Decoupled the Relations of Soil C, N, P, and K Ecological Stoichiometry in a Coastal Shelterbelt Forest of Eastern China" Forests 14, no. 11: 2270. https://doi.org/10.3390/f14112270
APA StyleBao, B., Chang, M., Jin, S., Li, X., & Xie, H. (2023). Periodic Flooding Decoupled the Relations of Soil C, N, P, and K Ecological Stoichiometry in a Coastal Shelterbelt Forest of Eastern China. Forests, 14(11), 2270. https://doi.org/10.3390/f14112270