BIOCLIM Modeling for Predicting Suitable Habitat for Endangered Tree Tapiscia sinensis (Tapisciaceae) in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Environmental Factors
2.3. Models Analysis
3. Results
3.1. Geographical Distribution Pattern
3.2. Restrictive Climatic Factors
3.3. Current and Future Potential Distribution
3.4. Model Accuracy
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anderson, J.T.; Song, B.-H. Plant adaptation to climate change—Where are we? J. Syst. Evol. 2020, 58, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xiong, Z.; Yan, X.; Dai, X.; Wang, L.; Li, Y. Geographical distribution pattern of species diversity of the genus Populus L. China Acta Ecol. Sin. 2018, 38, 282–290. [Google Scholar] [CrossRef]
- Meza-Joya, F.L.; Morgan-Richards, M.; Koot, E.M.; Trewick, S.A. Global warming leads to habitat loss and genetic erosion of alpine biodiversity. J. Biogeogr. 2023, 50, 961–975. [Google Scholar] [CrossRef]
- Abdelaal, M.; Fois, M.; Fenu, G.; Bacchetta, G. Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép. in Egypt. Ecol. Inform. 2019, 50, 68–75. [Google Scholar] [CrossRef]
- Domisch, S.; Friedrichs, M.; Hein, T.; Borgwardt, F.; Wetzig, A.; Jähnig, S.C.; Langhans, S.D. Spatially explicit species distribution models: A missed opportunity in conservation planning? Divers. Distrib. 2019, 25, 758–769. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Mellert, K.H.; Fensterer, V.; Küchenhoff, H.; Reger, B.; Kölling, C.; Klemmt, H.J.; Ewald, J. Hypothesis-driven species distribution models for tree species in the Bavarian Alps. J. Veg. Sci. 2011, 22, 635–646. [Google Scholar] [CrossRef]
- Pecchi, M.; Marchi, M.; Burton, V.; Giannetti, F.; Moriondo, M.; Bernetti, I.; Bindi, M.; Chirici, G. Species distribution modelling to support forest management. A literature review. Ecol. Model. 2019, 411, 108817. [Google Scholar] [CrossRef]
- Newbold, T. Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Prog. Phys. Geogr. Earth Environ. 2010, 34, 3–22. [Google Scholar] [CrossRef]
- Syfert, M.M.; Smith, M.J.; Coomes, D.A. The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE 2013, 8, e55158. [Google Scholar] [CrossRef]
- Soilhi, Z.; Sayari, N.; Benalouache, N.; Mekki, M. Predicting current and future distributions of Mentha pulegium L. in Tunisia under climate change conditions, using the MaxEnt model. Ecol. Inform. 2022, 68, 101533. [Google Scholar] [CrossRef]
- Serra-Diaz, J.M.; Enquist, B.J.; Maitner, B.; Merow, C.; Svenning, J.-C. Big data of tree species distributions: How big and how good? For. Ecosyst. 2018, 4, 30. [Google Scholar] [CrossRef]
- Bradie, J.; Leung, B. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. J. Biogeogr. 2017, 44, 1344–1361. [Google Scholar] [CrossRef]
- Carpenter, G.; Gillison, A.N.; Winter, J. DOMAIN: A flexible modelling procedure for mapping potential distributions of plants and animals. Biodivers. Conserv. 1993, 2, 667–680. [Google Scholar] [CrossRef]
- Lehmann, A.; Overton, J.M.; Leathwick, J.R. GRASP: Generalized regression analysis and spatial prediction. Ecol. Model. 2002, 157, 189–207. [Google Scholar] [CrossRef]
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F. bioclim: The first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers. Distrib. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Wisz, M.S.; Hijmans, R.J.; Li, J.; Peterson, A.T.; Graham, C.H.; Guisan, A.; Group, N.P.S.D.W. Effects of sample size on the performance of species distribution models. Divers. Distrib. 2008, 14, 763–773. [Google Scholar] [CrossRef]
- Natale, E.; Zalba, S.M.; Reinoso, H. Presence—Absence versus invasive status data for modelling potential distribution of invasive plants: Saltcedar in Argentina. Écoscience 2013, 20, 161–171. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Graham, C.H. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Chang. Biol. 2006, 12, 2272–2281. [Google Scholar] [CrossRef]
- Duan, R.-Y.; Kong, X.-Q.; Huang, M.-Y.; Fan, W.-Y.; Wang, Z.-G. The predictive performance and stability of six species distribution models. PLoS ONE 2014, 9, e112764. [Google Scholar] [CrossRef]
- Xu, T.; Hutchinson, M.F. New developments and applications in the ANUCLIM spatial climatic and bioclimatic modelling package. Environ. Model. Softw. 2013, 40, 267–279. [Google Scholar] [CrossRef]
- Luoto, M.; Pöyry, J.; Heikkinen, R.K.; Saarinen, K. Uncertainty of bioclimate envelope models based on the geographical distribution of species. Glob. Ecol. Biogeogr. 2005, 14, 575–584. [Google Scholar] [CrossRef]
- Kumar, P. Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: Limitations and challenges. Biodivers. Conserv. 2012, 21, 1251–1266. [Google Scholar] [CrossRef]
- Rees, M.; Paull, D.J.; Carthew, S.M. Factors influencing the distribution of the yellow-bellied glider (Petaurus australis australis) in Victoria, Australia. Wildl. Res. 2007, 34, 228–233. [Google Scholar] [CrossRef]
- Ward, D.F. Modelling the potential geographic distribution of invasive ant species in New Zealand. Biol. Invasions 2007, 9, 723–735. [Google Scholar] [CrossRef]
- Palkar, R.S.; Janarthanam, M.K.; Sellappan, K. Prediction of potential distribution and climatic factors influencing Garcinia indica in the western Ghats of India using ecological niche modeling. Natl. Acad. Sci. Lett. 2020, 43, 585–591. [Google Scholar] [CrossRef]
- Zhou, X.-J.; Ren, X.-L.; Liu, W.-Z. Genetic diversity of SSR markers in wild populations of Tapiscia sinensis, an endangered tree species. Biochem. Syst. Ecol. 2016, 69, 1–5. [Google Scholar] [CrossRef]
- Zong, S.; Yang, Z.; Tao, J. A study on the ecological characteristics of Tapiscia sinensis. Chin. J. Plant Ecol. 1985, 9, 192–201. [Google Scholar]
- Xin, G.-L.; Liu, J.-Q.; Liu, J.; Ren, X.-L.; Du, X.-M.; Liu, W.-Z. Anatomy and RNA-Seq reveal important gene pathways regulating sex differentiation in a functionally Androdioecious tree, Tapiscia sinensis. BMC Plant Biol. 2019, 19, 554. [Google Scholar] [CrossRef]
- Lü, W.; Liu, W. Pollination biology in androdioecious species Tapiscia sinensis (Staphyleaceae). Chin. Bull. Bot. 2010, 45, 713–722. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Fritsch, P.W.; Tian, H.; Yang, A.; Yao, X. Phylogeography and genetic structure of a Tertiary relict tree species, Tapiscia sinensis (Tapisciaceae): Implications for conservation. Ann. Bot. 2015, 116, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.-J.; Wang, Y.-Y.; Xu, Y.-N.; Yan, R.-S.; Zhao, P.; Liu, W.-Z. De Novo characterization of flower bud transcriptomes and the development of EST-SSR markers for the endangered tree Tapiscia sinensis. Int. J. Mol. Sci. 2015, 16, 12855–12870. [Google Scholar] [CrossRef] [PubMed]
- Xie, C. A review of research advances in rare and endangered plant Tapiscia sinensis. Subtrop. Plant Sci. 2006, 35, 71–74. [Google Scholar] [CrossRef]
- Suryani, F.; Bakhtra, D.D.A.; Fajrina, A. Cytotoxic activity of endophytic fungus against HeLa Cells (cervical cancer cells): A article review. Asian J. Pharm. Res. Dev. 2022, 10, 25–28. [Google Scholar] [CrossRef]
- Administration, F.a.G.; Affairs, M.o.A.a.R. The National Key Protected Wild Plants Catalogue. Available online: https://www.gov.cn/zhengce/zhengceku/2021-09/09/content_5636409.htm (accessed on 17 October 2023).
- Sousa-Silva, R.; Alves, P.; Honrado, J.; Lomba, A. Improving the assessment and reporting on rare and endangered species through species distribution models. Glob. Ecol. Conserv. 2014, 2, 226–237. [Google Scholar] [CrossRef]
- Wilson, C.D.; Roberts, D.; Reid, N. Applying species distribution modelling to identify areas of high conservation value for endangered species: A case study using Margaritifera margaritifera (L.). Biol. Conserv. 2011, 144, 821–829. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Guarino, L.; Cruz, M.; Rojas, E. Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet. Resour. Newsl. 2001, 127, 15–19. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Wang, B.; Jin, C.; Liu, J. Understanding future change of global monsoons projected by CMIP6 models. J. Clim. 2020, 33, 6471–6489. [Google Scholar] [CrossRef]
- Kiehl, J.T.; Hack, J.J.; Bonan, G.B.; Boville, B.A.; Williamson, D.L.; Rasch, P.J. The National Center for Atmospheric Research Community Climate Model: CCM3. J. Clim. 1998, 11, 1131–1149. [Google Scholar] [CrossRef]
- Mathur, M.; Mathur, P.; Purohit, H. Ecological niche modelling of a critically endangered species Commiphora wightii (Arn.) Bhandari using bioclimatic and non-bioclimatic variables. Ecol. Process. 2023, 12, 8. [Google Scholar] [CrossRef]
- Yi, Y.-j.; Cheng, X.; Yang, Z.-F.; Zhang, S.-H. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol. Eng. 2016, 92, 260–269. [Google Scholar] [CrossRef]
- Yoon, S.; Lee, W.-H. Methodological analysis of bioclimatic variable selection in species distribution modeling with application to agricultural pests (Metcalfa pruinosa and Spodoptera litura). Comput. Electron. Agric. 2021, 190, 106430. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A. Past: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1. [Google Scholar]
- Moya, W.; Jacome, G.; Yoo, C.K. Past, current, and future trends of red spiny lobster based on PCA with MaxEnt model in Galapagos Islands, Ecuador. Ecol. Evol. 2017, 7, 4881–4890. [Google Scholar] [CrossRef]
- Booth, T.H. Why understanding the pioneering and continuing contributions of BIOCLIM to species distribution modelling is important. Austral Ecol. 2018, 43, 852–860. [Google Scholar] [CrossRef]
- Gray, J. Quantum GIS: The open-source geographic information system. Linux J. 2008, 2008, 8. [Google Scholar]
- Fang, J.; Lechowicz, M.J. Climatic limits for the present distribution of beech (Fagus L.) species in the world. J. Biogeogr. 2006, 33, 1804–1819. [Google Scholar] [CrossRef]
- Ali, F.; Khan, N.; Khan, A.M.; Ali, K.; Abbas, F. Species distribution modelling of Monotheca buxifolia (Falc.) A. DC.: Present distribution and impacts of potential climate change. Heliyon 2023, 9, e13417. [Google Scholar] [CrossRef]
- Naimi, B.; Hamm, N.A.S.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G. Where is positional uncertainty a problem for species distribution modelling? Ecography 2014, 37, 191–203. [Google Scholar] [CrossRef]
- Austin, M.P. Spatial prediction of species distribution: An interface between ecological theory and statistical modelling. Ecol. Model. 2002, 157, 101–118. [Google Scholar] [CrossRef]
- Rao, K.; Zhang, X.; Yi, X.-J.; Li, Z.-S.; Wang, P.; Huang, G.-W.; Guo, X.-X. Interactive effects of environmental factors on phytoplankton communities and benthic nutrient interactions in a shallow lake and adjoining rivers in China. Sci. Total Environ. 2018, 619–620, 1661–1672. [Google Scholar] [CrossRef] [PubMed]
- Bykova, O.; Chuine, I.; Morin, X.; Higgins, S.I. Temperature dependence of the reproduction niche and its relevance for plant species distributions. J. Biogeogr. 2012, 39, 2191–2200. [Google Scholar] [CrossRef]
- Huan, Z.-q.; Geng, X.-m.; Xu, X.-r.; Liu, W.; Zhu, Z.-l.; Tang, M. Potential geographical distribution of Michelia martinii under different climate change scenarios based on MaxEnt model. J. Ecol. Rural Environ. 2023, 39, 1277–1287. [Google Scholar] [CrossRef]
- Jiang, A. Disscusion on the division of tropical and subtropical climatic zones in China. Acta Geogr. Sin. 1960, 26, 104–109. [Google Scholar]
- Zhang, L.; Han, Y.; Liu, S.; Meng, Y.; Liu, Y.; Kong, D. Study on the growth rhythm of Tapiscia siriensis at seedling stage. Guangdong Agric. Sci. 2018, 45, 47–51. [Google Scholar]
- Wiens, J.J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 2016, 14, e2001104. [Google Scholar] [CrossRef] [PubMed]
- Birhane, E.; Asgedom, K.T.; Tadesse, T.; Hishe, H.; Abrha, H.; Noulèkoun, F. Vulnerability of baobab (Adansonia digitata L.) to human disturbances and climate change in western Tigray, Ethiopia: Conservation concerns and priorities. Glob. Ecol. Conserv. 2020, 22, e00943. [Google Scholar] [CrossRef]
- Christmas, M.J.; Breed, M.F.; Lowe, A.J. Constraints to and conservation implications for climate change adaptation in plants. Conserv. Genet. 2016, 17, 305–320. [Google Scholar] [CrossRef]
- Walther, G.-R.; Roques, A.; Hulme, P.E.; Sykes, M.T.; Pyšek, P.; Kühn, I.; Zobel, M.; Bacher, S.; Botta-Dukát, Z.; Bugmann, H.; et al. Alien species in a warmer world: Risks and opportunities. Trends Ecol. Evol. 2009, 24, 686–693. [Google Scholar] [CrossRef]
- Traill, L.W.; Lim, M.L.M.; Sodhi, N.S.; Bradshaw, C.J.A. Mechanisms driving change: Altered species interactions and ecosystem function through global warming. J. Anim. Ecol. 2010, 79, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Kang, H.; Zheng, H.; Feng, Y. An investigation on the sexual reproductive cycle in Tapiscia sinensis. J. Syst. Evol. 2008, 46, 175–182. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Liu, Z.; Wang, L.; Yang, S.; Liao, W. Study on the national rare and endangered key protected plants Tapiscia sinensis community in Taoyuandong National Nature Reserve, Hunan Province. Ecol. Sci. 2017, 36, 9–16. [Google Scholar] [CrossRef]
- Graham, C.H.; Ferrier, S.; Huettman, F.; Moritz, C.; Peterson, A.T. New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol. Evol. 2004, 19, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef] [PubMed]
- Beale, C.M.; Lennon, J.J. Incorporating uncertainty in predictive species distribution modelling. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 247–258. [Google Scholar] [CrossRef]
Code | Bioclimatic Variable | Unit | Code | Bioclimatic Variable | Unit |
---|---|---|---|---|---|
bio1 | Annual mean temperature | °C | bio11 | Mean temperature of coldest quarter | °C |
bio2 | Mean diurnal range | °C | bio12 | Annual precipitation | mm |
bio3 | Isothermality (Bio2/Bio7) (×100) | Index | bio13 | Precipitation of wettest month | mm |
bio4 | Temperature seasonality | Index | bio14 | Precipitation of driest month | mm |
bio5 | Max temperature of warmest month | °C | bio15 | Precipitation seasonality | Index |
bio6 | Min temperature of coldest month | °C | bio16 | Precipitation of wettest quarter | mm |
bio7 | Temperature annual range | °C | bio17 | Precipitation of driest quarter | mm |
bio8 | Mean temperature of wettest quarter | °C | bio18 | Precipitation of warmest quarter | mm |
bio9 | Mean temperature of driest quarter | °C | bio19 | Precipitation of coldest quarter | mm |
bio10 | Mean temperature of warmest quarter | °C |
Bioclimatic Variable | Minimum | Maximum | Mean ± SD | Coefficient of Variation | 95% Confidence Interval |
---|---|---|---|---|---|
bio3 Isothermality | 23.54 | 53.22 | 29.58 ± 5.89 | 19.92 | 28.50–30.66 |
bio4 Temperature seasonality | 341.12 | 916.92 | 749.93 ± 117.73 | 15.70 | 728.38–771.49 |
bio5 Max. temperature of warmest month | 18.20 | 34.40 | 31.21 ± 2.53 | 8.10 | 30.75–31.68 |
bio9 Mean temperature of driest quarter | −3.43 | 16.28 | 8.43 ± 3.43 | 40.62 | 7.81–9.06 |
bio11 Mean temperature of coldest quarter | −3.43 | 15.72 | 7.37 ± 2.95 | 40.00 | 6.83–7.91 |
bio15 Precipitation seasonality | 44.71 | 122.97 | 66.42 ± 15.11 | 22.75 | 63.65–69.19 |
Suitability Category | Current (104 km2) | Future (104 km2) | Area Change Ratio (%) |
Excellent | 12.44 | 6.37 | −48.77 |
Very high | 34.71 | 34.62 | −0.27 |
High | 37.91 | 34.80 | −8.22 |
Medium | 42.31 | 50.11 | 18.42 |
Low | 66.64 | 72.32 | 8.52 |
Unsuitable | 235.21 | 231.01 | −1.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, C.; Chen, L.; Li, M.; Jim, C.Y.; Liu, D. BIOCLIM Modeling for Predicting Suitable Habitat for Endangered Tree Tapiscia sinensis (Tapisciaceae) in China. Forests 2023, 14, 2275. https://doi.org/10.3390/f14112275
Xie C, Chen L, Li M, Jim CY, Liu D. BIOCLIM Modeling for Predicting Suitable Habitat for Endangered Tree Tapiscia sinensis (Tapisciaceae) in China. Forests. 2023; 14(11):2275. https://doi.org/10.3390/f14112275
Chicago/Turabian StyleXie, Chunping, Lin Chen, Meng Li, Chi Yung Jim, and Dawei Liu. 2023. "BIOCLIM Modeling for Predicting Suitable Habitat for Endangered Tree Tapiscia sinensis (Tapisciaceae) in China" Forests 14, no. 11: 2275. https://doi.org/10.3390/f14112275
APA StyleXie, C., Chen, L., Li, M., Jim, C. Y., & Liu, D. (2023). BIOCLIM Modeling for Predicting Suitable Habitat for Endangered Tree Tapiscia sinensis (Tapisciaceae) in China. Forests, 14(11), 2275. https://doi.org/10.3390/f14112275