Korean Pines Demonstrate Cold Resilience through Non-Structural Carbohydrate Concentrations despite Light Deprivation during the Growing Season
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Sampling
2.3. Measurement of Carbohydrate Concentrations
2.4. Data Analysis
3. Results
3.1. Variations in Total Carbon and NSC in Needles
3.2. Variations in Total Carbon and NSC in Needles Considering Light and Age
3.3. Variations in Total Carbon and NSC in Twigs
4. Discussion
4.1. Light Affects Variations in Total Carbon and NSC in Needles Less Than Season Does
4.2. Variations in Total Carbon and NSC Respond to Cold and Future Growth
4.3. Light Conditions during the Growing Season Have Little Effect on Cold Tolerance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez-Vilalta, J.; Sala, A.; Asensio, D.; Galiano, L.; Hoch, G.; Palacio, S.; Piper, F.I.; Lloret, F. Dynamics of non-structural carbohydrates in terrestrial plants: A global synthesis. Ecol. Monogr. 2016, 86, 495–516. [Google Scholar] [CrossRef]
- Tang, W.; Guo, H.; Baskin, C.C.; Xiong, W.; Yang, C.; Li, Z.; Song, H.; Wang, T.; Yin, J.; Wu, X.; et al. Effect of Light Intensity on Morphology, Photosynthesis and Carbon Metabolism of Alfalfa (Medicago sativa) Seedlings. Plants 2022, 11, 1688. [Google Scholar] [CrossRef] [PubMed]
- Kameniarová, M.; Černý, M.; Novák, J.; Ondrisková, V.; Hrušková, L.; Berka, M.; Vankova, R.; Brzobohatý, B. Light Quality Modulates Plant Cold Response and Freezing Tolerance. Front. Plant Sci. 2022, 13, 887103. [Google Scholar] [CrossRef]
- Bourion, V.; Lejeune-Hénaut, I.; Munier-Jolain, N.; Salon, C. Cold acclimation of winter and spring peas: Carbon partitioning as affected by light intensity. Eur. J. Agron. 2003, 19, 535–548. [Google Scholar] [CrossRef]
- Oberschelp, G.P.J.; Morales, L.L.; Montecchiarini, M.L.; Harrand, L.; Podestá, F.E.; Margarit, E. Harder, better, faster, stronger: Frost tolerance of Eucalyptus benthamii under cold acclimation. Plant Physiol. Biochem. 2022, 186, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling, and impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [PubMed]
- Parmesan, C. Ecological and Evolutionary Responses to Recent Climate Change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef]
- Yuan, D.; Zhu, L.; Cherubini, P.; Li, Z.; Zhang, Y.; Wang, X. Species-specific indication of 13 tree species growth on climate warming in temperate forest community of northeast China. Ecol. Indic. 2021, 133, 108389. [Google Scholar] [CrossRef]
- Blumstein, M.; Sala, A.; Weston, D.J.; Holbrook, N.M.; Hopkins, R. Plant carbohydrate storage: Intra- and inter-specific trade-offs reveal a major life history trait. New Phytol. 2022, 235, 2211–2222. [Google Scholar] [CrossRef]
- Dietze, M.C.; Sala, A.; Carbone, M.S.; Czimczik, C.I.; Mantooth, J.A.; Richardson, A.D.; Vargas, R. Nonstructural carbon in woody plants. Annu. Rev. Plant Biol. 2014, 65, 667–687. [Google Scholar] [CrossRef]
- MacNeill, G.J.; Mehrpouyan, S.; Minow, M.A.A.; Patterson, J.A.; Tetlow, I.J.; Emes, M.J. Starch as a source, starch as a sink: The bifunctional role of starch in carbon allocation. J. Exp. Bot. 2017, 68, 4433–4453. [Google Scholar] [CrossRef] [PubMed]
- Wendell, P.; Cropper, J.; Gholz, H.L. Simulation of the carbon dynamics of a Florida slash pine plantation. Ecol. Model. 1993, 66, 231–249. [Google Scholar]
- Signori-Mueller, C.; Oliveira, R.S.; Barros, F.d.V.; Tavares, J.V.; Gilpin, M.; Carvalho Diniz, F.; Marca Zevallos, M.J.; Salas Yupayccana, C.A.; Acosta, M.; Bacca, J.; et al. Non-structural carbohydrates mediate seasonal water stress across Amazon forests. Nat. Commun. 2021, 12, 2310. [Google Scholar] [CrossRef] [PubMed]
- Furze, M.E.; Huggett, B.A.; Aubrecht, D.M.; Stolz, C.D.; Carbone, M.S.; Richardson, A.D. Whole-tree nonstructural carbohydrate storage and seasonal dynamics in five temperate species. New Phytol. 2019, 221, 1466–1477. [Google Scholar] [CrossRef]
- Roxas, A.A.; Orozco, J.; Guzman-Delgado, P.; Zwieniecki, M.A. Spring phenology is affected by fall non-structural carbohydrate concentration and winter sugar redistribution in three Mediterranean nut tree species. Tree Physiol. 2021, 41, 1425–1438. [Google Scholar] [CrossRef] [PubMed]
- Thalmann, M.; Santelia, D. Starch as a determinant of plant fitness under abiotic stress. New Phytol. 2017, 214, 943–951. [Google Scholar] [CrossRef]
- Sulpice, R.; Flis, A.; Ivakov, A.A.; Apelt, F.; Krohn, N.; Encke, B.; Abel, C.; Feil, R.; Lunn, J.E.; Stitt, M. Arabidopsis Coordinates the Diurnal Regulation of Carbon Allocation and Growth across a Wide Range of Photoperiods. Mol. Plant 2014, 7, 137–155. [Google Scholar] [CrossRef]
- Xu, D.; Yan, H. A study of the impacts of climate change on the geographic distribution of Pinus koraiensis in China. Environ. Int. 2001, 21, 201–205. [Google Scholar] [CrossRef]
- Feng, F.-J.; Han, S.-J.; Wang, H.-M. Genetic diversity and genetic differentiation of natural Pinus koraiensis population. J. For. Res. 2006, 17, 21–24. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Cai, K.; Zhang, Q.; Jiang, L.; Li, H.; Lv, Y.; Qu, G.; Zhao, X. Comparative Transcriptomic and Metabolic Analyses Reveal the Coordinated Mechanisms in Pinus koraiensis under Different Light Stress Conditions. Int. J. Mol. Sci. 2022, 23, 9556. [Google Scholar] [CrossRef]
- Yu, D.; Zhou, L.; Zhou, W.; Ding, H.; Wang, Q.; Wang, Y.; Wu, X.; Dai, L. Forest Management in Northeast China: History, Problems, and Challenges. Environ. Manag. 2011, 48, 1122–1135. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhou, X.; Ding, B.; Hu, Z.; Zhu, N.; Wang, Y.; Zhao, H.; Ju, Y.; Jin, Y. Research on natural secondary forest in Heilongjiang Province: The management approach of planting conifers and conservating deciduous trees. J. Northeast For. Univ. 1984, 12, 1–12, (In Chinese with English abstract). [Google Scholar]
- Yang, K.; Zhu, J.; Gu, J.; Yu, L.; Wang, Z. Changes in soil phosphorus fractions after 9 years of continuous nitrogen addition in a Larix gmelinii plantation. Ann. For. Sci. 2014, 72, 435–442. [Google Scholar] [CrossRef]
- Cong, J. Effect of opening degree regulation on soil physical and chemical properties in a mixed plantation forest of Korean Pine. For. Eng. 2016, 32, 1–6, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Shen, H.; Cong, J.; Zhang, P.; Zhang, Q.; Fan, S.; Yang, W.; Liu, S. Effect of opening degree regulation on diameter and height increment and aboveground biomass of Korean pine trees planted under secondary forest. Chin. J. Appl. Ecol. 2011, 22, 2781–2791. [Google Scholar] [CrossRef]
- Hansen, J.; Møller, I. Percolation of Starch and Soluble Carbohydrates from Plant Tissue for Quantitative Determination with Anthrone. Anal. Biochem. 1975, 68, 87–94. [Google Scholar] [CrossRef]
- Zhou, G.; Liu, Q.; Xu, Z.; Du, W.; Yu, J.; Meng, S.; Zhou, H.; Qin, L.; Shah, S. How can the shade intolerant Korean pine survive under dense deciduous canopy? For. Ecol. Manag. 2020, 457, 117735. [Google Scholar] [CrossRef]
- Zhu, J.; Qi, J.; Fang, Y.; Xiao, X.; Li, J.; Lan, J.; Tang, C. Characterization of Sugar Contents and Sucrose Metabolizing Enzymes in Developing Leaves of Hevea brasiliensis. Front. Plant Sci. 2018, 9, 58. [Google Scholar] [CrossRef]
- Nakai, H.; Yasutake, D.; Kimura, K.; Kengo; Hidaka, K.; Eguchi, T.; Hirota, T.; Okayasu, T.; Ozaki, Y.; Kitano, M. Dynamics of carbon export from leaves as translocation affected by the coordination of carbohydrate availability in field strawberry. Environ. Exp. Bot. 2022, 196, 104806. [Google Scholar] [CrossRef]
- Newell, E.A.; Mulkey, S.S.; Wright, J.S. Seasonal patterns of carbohydrate storage in four tropical tree species. Oecologia 2002, 131, 333–342. [Google Scholar] [CrossRef]
- Brini, F.; Mseddi, K.; Brestic, M.; Landi, M. Hormone-mediated plant responses to light quality and quantity. Environ. Exp. Bot. 2022, 202, 105026. [Google Scholar] [CrossRef]
- Hartmann, H.; Trumbore, S. Understanding the roles of nonstructural carbohydrates in forest trees—From what we can measure to what we want to know. New Phytol. 2016, 211, 386–403. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhu, J.; Li, M.; Zhang, G.; Yan, Q. Different light acclimation strategies of two coexisting tree species seedlings in a temperate secondary forest along five natural light levels. For. Ecol. Manag. 2013, 306, 234–242. [Google Scholar] [CrossRef]
- Xie, H.; Yu, M.; Cheng, X. Leaf non-structural carbohydrate allocation and C:N:P stoichiometry in response to light acclimation in seedlings of two subtropical shade-tolerant tree species. Plant Physiol. Biochem. 2018, 124, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Terziev, N.; Boutelje, J.; Larsson, K. Seasonal fluctuations of low-molecular-weight sugars, starch and nitrogen in sapwood of Pinus sylvestris L. Scand. J. For. Res. 1997, 12, 216–224. [Google Scholar] [CrossRef]
- Grossman, J.J. Phenological physiology: Seasonal patterns of plant stress tolerance in a changing climate. New Phytol. 2022, 237, 1508–1524. [Google Scholar] [CrossRef]
- Weiser, C.J. Cold resistance and injury in woody plants. Science 1970, 169, 1269–1278. [Google Scholar] [CrossRef]
- Oleksyn, J.; Zytkowiak, R.; Karolewski, P.; Reich, P.B.; Tjoelker, M.G. Genetic and environmental control of seasonal carbohydrate dynamics in trees of diverse Pinus sylvestris populations. Tree Physiol. 2000, 20, 837–847. [Google Scholar] [CrossRef]
- Yoshioka, H.; Nagai, K.; Aoba, K.; Fukumoto, M. Seasonal changes of carbohydrates metabolism in apple trees. Sci. Hortic. 1988, 36, 219–227. [Google Scholar] [CrossRef]
- Öquist, G.; Huner, N.P. Photosynthesis of overwintering evergreen plants. Annu. Rev. Plant Biol. 2003, 54, 329–355. [Google Scholar] [CrossRef]
- Blumstein, M.; Gersony, J.; Martinez-Vilalta, J.; Sala, A. Global variation in nonstructural carbohydrate stores in response to climate. Glob. Chang. Biol. 2022, 29, 1854–1869. [Google Scholar] [CrossRef]
- Graham, D.; Patterson, B.D. Responses of plants to low, nonfreezing temperatures: Proteins, metabolism, and acclimation. Ann. Rev. Plant Physiol. 1982, 33, 347–372. [Google Scholar] [CrossRef]
- Dobbelstein, E.; Fink, D.; Oner-Sieben, S.; Czempik, L.; Lohaus, G. Seasonal changes of sucrose transporter expression and sugar partitioning in common European tree species. Tree Physiol. 2019, 39, 284–299. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.; Höll, W. Food reserves of scots pine (Pinus sylvestris L.): II. Seasonal changes and radial distribution of carbohydrate and fat reserves in pine wood. Trees 1992, 6, 147–155. [Google Scholar] [CrossRef]
- Palacio, S.; Millard, P.; Maestro, M.; Montserrat-Marti, G. Non-structural carbohydrates and nitrogen dynamics in mediterranean sub-shrubs: An analysis of the functional role of overwintering leaves. Plant Biol. 2007, 9, 49–58. [Google Scholar] [CrossRef]
- Galant, A.L.; Kaufman, R.C.; Wilson, J.D. Glucose: Detection and analysis. Food Chem. 2015, 188, 149–160. [Google Scholar] [CrossRef]
- Chang, C.Y.; Unda, F.; Zubilewich, A.; Mansfield, S.D.; Ensminger, I. Sensitivity of cold acclimation to elevated autumn temperature in field-grown Pinus strobus seedlings. Front. Plant Sci. 2015, 6, 165. [Google Scholar] [CrossRef]
- Laanisto, L.; Niinemets, Ü. Polytolerance to abiotic stresses: How universal is the shade-drought tolerance trade-off in woody species? Glob. Ecol. Biogeogr. 2015, 24, 571–580. [Google Scholar] [CrossRef]
- Roeber, V.M.; Bajaj, I.; Rohde, M.; Schmulling, T.; Cortleven, A. Light acts as a stressor and influences abiotic and biotic stress responses in plants. Plant Cell Environ. 2021, 44, 645–664. [Google Scholar] [CrossRef]
- Flore, J.A.; Howell, G.S.; Sams, C.E. The effect of artificial shading on cold hardiness of peach and sour cherry. HortScience 1983, 18, 321–322. [Google Scholar] [CrossRef]
- Kurosaki, H.; Yumoto, S. Effects of Low Temperature and Shading during Flowering on the Yield Components in Soybeans. Plant Prod. Sci. 2003, 6, 17–23. [Google Scholar] [CrossRef]
- Janda, T.; Prerostová, S.; Vanková, R.; Darkó, É. Crosstalk between Light- and Temperature-Mediated Processes under Cold and Heat Stress Conditions in Plants. Int. J. Mol. Sci. 2021, 22, 8602. [Google Scholar] [CrossRef] [PubMed]
- Puglielli, G.; Hutchings, M.J.; Laanisto, L. The triangular space of abiotic stress tolerance in woody species: A unified trade-off model. New Phytol. 2021, 229, 1354–1362. [Google Scholar] [CrossRef] [PubMed]
PPFD (μmol/m2/s) | R/FR | |
---|---|---|
Under the canopy | 6.83 ± 0.75 | 0.28 ± 0.02 |
Under full light | 1440 ± 167.31 | 1 ± 0.08 |
Total Carbon | Glucose | Sucrose | Fructose | Starch | NSC | SS | SS/NSC | |
---|---|---|---|---|---|---|---|---|
DOY | 0.52 *** | 0.89 *** | 0.42 * | −0.72 *** | 0.6 *** | 0.83 *** | 0.9 *** | |
Total carbon | 0.48 ** | 0.44 * | 0.46 ** | 0.58 *** | ||||
Glucose | 0.41 * | 0.68 *** | −0.48 ** | 0.87 *** | 0.98 *** | 0.76 *** | ||
Sucrose | 0.58 *** | 0.57 *** | ||||||
Fructose | 0.82 *** | 0.73 *** | ||||||
Starch | −0.40 * | −0.88 *** | ||||||
NSC | 0.92 *** | 0.42 * | ||||||
SS | 0.73 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Ma, X.; Saha, S.; Wu, H.; Zhang, P.; Shen, H. Korean Pines Demonstrate Cold Resilience through Non-Structural Carbohydrate Concentrations despite Light Deprivation during the Growing Season. Forests 2023, 14, 2296. https://doi.org/10.3390/f14122296
Li B, Ma X, Saha S, Wu H, Zhang P, Shen H. Korean Pines Demonstrate Cold Resilience through Non-Structural Carbohydrate Concentrations despite Light Deprivation during the Growing Season. Forests. 2023; 14(12):2296. https://doi.org/10.3390/f14122296
Chicago/Turabian StyleLi, Bei, Xiao Ma, Sudipta Saha, Haibo Wu, Peng Zhang, and Hailong Shen. 2023. "Korean Pines Demonstrate Cold Resilience through Non-Structural Carbohydrate Concentrations despite Light Deprivation during the Growing Season" Forests 14, no. 12: 2296. https://doi.org/10.3390/f14122296
APA StyleLi, B., Ma, X., Saha, S., Wu, H., Zhang, P., & Shen, H. (2023). Korean Pines Demonstrate Cold Resilience through Non-Structural Carbohydrate Concentrations despite Light Deprivation during the Growing Season. Forests, 14(12), 2296. https://doi.org/10.3390/f14122296