Evaluation of Wood Anatomical Properties from 18 Tree Species in the Subtropical Region of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Measurements of Wood Anatomical Properties
2.3. Data Analyses
3. Results
3.1. Wood Anatomical Properties of Different Tree Species
3.2. Wood Microstructure
3.3. Correlation between Wood Anatomical Properties of Broad-Leaf Trees
3.4. Assessment of 14 Broad-Leaf Trees
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Qi, J.C.; Cheng, B.D.; Yu, C.; Liang, S.; Wiedmann, T.O.; Liu, Y.; Zhong, Q.M. Planetary boundaries for forests and their national exceedance. Environ. Sci. Technol. 2021, 55, 15423–15434. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.B.; Slik, J.W.F.; Zhang, J.L.; Cao, K.F. Spatial patterns of wood traits in China are controlled by phylogeny and the environment. Glob. Ecol. Biogeogr. 2011, 20, 241–250. [Google Scholar] [CrossRef]
- Chappin, M.M.H.; Cambre, B.; Vermeulen, P.A.M.; Lozano, R. Internalizing sustainable practices: A configurational approach on sustainable forest management of the Dutch wood trade and timber industry. J. Clean. Prod. 2015, 107, 760–774. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.; Yu, C.; Qi, J.; Yang, C.; Cheng, B.; Liang, S. Global timber harvest footprints of nations and virtual timber trade flows. J. Clean. Prod. 2020, 250, 119503.1–119503.11. [Google Scholar] [CrossRef]
- Xiang, W.; Liu, S.; Lei, X.; Frank, S.C.; Tian, D.; Wang, G.; Deng, X.W. Secondary forest floristic composition, structure, and spatial pattern in subtropical China. J. For. Res. 2013, 18, 111–120. [Google Scholar] [CrossRef]
- Jiang, Z. Current situation and future development: The forest products industry in China. For. Prod. J. 2007, 57, 7–8. [Google Scholar]
- Wang, Y.P.; Zhang, R.; Zhou, Z.Z. Radial variation of wood anatomical properties determines the demarcation of juvenile-mature wood in Schima superba. Forests 2021, 12, 512. [Google Scholar] [CrossRef]
- Cardoso, S.; Sousa, V.B.; Quilhó, T.; Pereira, H. Anatomical variation of teakwood from unmanaged mature plantations in East Timor. J. Wood Sci. 2015, 61, 326–333. [Google Scholar] [CrossRef]
- Wang, H.H.; Drummond, J.G.; Reath, S.M.; Hunt, K.; Watson, P.A. An improved fibril angle measurement method for wood fibres. Wood Sci. Technol. 2001, 34, 493–503. [Google Scholar] [CrossRef]
- Bonham, V.A.; Barnett, J.R. Fibre length and microfibril angle in silver birch (Betula pendula roth). Holzforschung 2001, 55, 159–162. [Google Scholar] [CrossRef]
- Abdullah, N.; Tabet, T.A.; Aziz, F. Regression models on the age-affecting and microfibril angle of Acacia mangium. J. Indian Acad. Wood Sci. 2010, 7, 49–53. [Google Scholar] [CrossRef]
- Cheng, J.Q. Wood Science; China Forestry Publishing House: Beijing, China, 1985; pp. 55–56. [Google Scholar]
- Cotterill, P.P.; Dean, C.A. Successful Tree Breeding with Index Selection; CSIRO, Division of Forestry and Forest Products: Victoria, Australia, 1990; pp. 53–56. [Google Scholar]
- Committee, I.H. IAWA list of microscopic features for hardwood identification. IAWA J. 2004, 10, 176–219. [Google Scholar]
- Yu, M.; Liu, K.; Zhou, L.; Zhao, L. Testing three proposed DNA barcodes for the wood identification of Dalbergia odorifera T. Chen and Dalbergia tonkinensis Prain. Holzforschung 2016, 70, 127–136. [Google Scholar] [CrossRef]
- Zhang, D.B.; Zhou, C.M.; Wu, X.L. Study on wood physical and mechanical properties of Altingia gracilipessl. Hunan For. Sci. Technol. 2018, 5, 86–89. [Google Scholar]
- Ye, X.; Zhang, M.; Jiang, Y.; Fan, H.; Liu, B. The complete chloroplast genome of Altingia chinensis (Hamamelidaceae). Mitochondrial DNA B 2020, 5, 1808–1809. [Google Scholar] [CrossRef]
- Buajan, S.; Liu, J.F.; He, Z.S.; Feng, X.P.; Muhammad, A. Effects of gap size and locations on the regeneration of Castanopsis kawakamii in a subtropical natural forest, China. J. Trop. For. Sci. 2018, 30, 39–48. [Google Scholar]
- Wang, R.; Hu, D.; Zheng, H.; Yan, S.; Wei, R.P. Genotype × environmental interaction by AMMI and GGE biplot analysis for the provenances of Michelia chapensis in South China. J. For. Res. 2016, 27, 659–664. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, L.; Zhu, Y.; Liu, S. Anatomical features and its radial variations among different Catalpa bungei clones. Forests 2020, 11, 824. [Google Scholar] [CrossRef]
- Fang, S.Z.; Yang, W.Z.; Fu, X.X. Variation of microfibril angle and its correlation to wood properties in poplars. J. For. Res. 2004, 15, 261–267. [Google Scholar]
- Palermo, G.P.D.M.; Latorraca, J.V.D.F.; De Carvalho, A.M.; Calonego, F.W.; Severo, E.T.D. Anatomical properties of Eucalyptus grandis wood and transition age between the juvenile and mature woods. Eur. J. Wood Wood Prod. 2015, 73, 775–780. [Google Scholar] [CrossRef]
- Xu, Y.M. Wood Science; China Forestry Publishing House: Beijing, China, 2006; pp. 60–61. [Google Scholar]
- Poorter, L.; Mcdonald, I.; Alfredo, A.; Fichtler, E.; Juan-Carlos, L.; Marielos, P.-C.; Sterck, F.; Villegas, Z.; Sass-Klaassen, U. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol. 2010, 185, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.Z.; Yang, W.Z. Interclonal and within-tree variation in wood properties of poplar clones. J. For. Res. 2003, 14, 263–268. [Google Scholar]
- Pacheco, A.; Camarero, J.J.; Carrer, M. Linking wood anatomy and xylogenesis allows pinpointing of climate and drought influences on growth of coexisting conifers in continental Mediterranean climate. Tree Physiol. 2015, 36, 502–512. [Google Scholar] [CrossRef] [PubMed]
- Jäger, A.; Bader, T.; Hofstetter, K.; Eberhardsteiner, J. The relation between indentation modulus, microfibril angle, and elastic properties of wood cell walls. Compos. Part A Appl. Sci. Manuf. 2011, 42, 677–685. [Google Scholar] [CrossRef]
- Wang, X.Q.; Li, X.Z.; Ren, H.Q. Variation of microfibril angle and density in moso bamboo (Phyllostachys pubescens). J. Trop. For. Sci. 2010, 22, 88–96. [Google Scholar]
- Wang, Y.R.; Liu, C.W.; Zhao, R.J.; McCord, J.; Rials, T.; Wang, S.Q. Anatomical characteristics, microfibril angle and micromechanical properties of cottonwood (Populus deltoides) and its hybrids. Biomass Bioenerg. 2016, 93, 72–77. [Google Scholar] [CrossRef]
- Deng, B.; Fang, S.Z.; Yang, W.X.; Tian, Y.; Shang, X.L. Provenance variation in growth and wood properties of juvenile Cyclocarya paliurus. New Forest. 2014, 45, 625–639. [Google Scholar] [CrossRef]
- Wang, Q.H.; Li, Y.Q.; Yuan, X.L.; Wang, Y. The complete chloroplast genome sequence of Taiwania flousiana. Mitochondrial DNA B 2020, 5, 1040–1041. [Google Scholar] [CrossRef]
- Ma, L.Y.; Meng, Q.L.; Jiang, X.M.; Ge, Z.D.; Cao, Z.X.; Wei, Y.P.; Guo, J. Spatial organization and connectivity of wood rays in Pinus massoniana xylem based on high-resolution μCT-assisted network analysis. Planta 2023, 258, 28. [Google Scholar] [CrossRef]
- Meng, Q.; Fu, F.; Wang, J.; He, T.; Jiang, X.; Zhang, Y.; Yin, Y.; Li, N.; Guo, J. Ray traits of juvenile wood and mature wood: Pinus massonia and Cunninghamia lanceolata. Forests 2021, 12, 1277. [Google Scholar] [CrossRef]
- Nocetti, M.; Rozenberg, P.; Chaix, G.; Macchioni, N. Provenance effect on the ring structure of teak (Tectona grandis L.f.) wood by X-ray microdensitometry. Ann. For. Sci. 2011, 68, 1375–1383. [Google Scholar] [CrossRef]
- White, T.L.; Adams, W.T.; Neale, D.B. Forest Genetics; Science Press: Beijing, China, 2013; pp. 115–119. [Google Scholar]
- Yang, Z.; Xia, H.; Tan, J.; Feng, Y.H.; Huang, Y.L. Selection of superior families of Pinus massoniana in southern China for large-diameter construction timber. J. For. Res. 2020, 31, 475–484. [Google Scholar] [CrossRef]
No. | Tree Species | Family | Age | The Number of Individual Plants | Diameter at Breast Height (cm) |
---|---|---|---|---|---|
1 | Dalbergia assamica Benth. | Fabaceae | 50 | 5 | 32.80 ± 3.50 |
2 | Altingia chinensis (Champ.) Oliver ex Hance | Hamamelidaceae | 39 | 10 | 21.67 ± 3.36 |
3 | Castanopsis kawakamii Hayata | Fagaceae | 35 | 5 | 20.34 ± 3.43 |
4 | Michelia macclurei Dandy | Magnoliaceae | 40 | 5 | 25.42 ± 3.02 |
5 | Michelia fallaxa Dandy | Magnoliaceae | 37 | 5 | 20.40 ± 1.85 |
6 | Cinnamomum camphora (L.) Presl | Lauraceae | 35 | 5 | 28.13 ± 2.35 |
7 | Manglietia fordiana Oliv. | Magnoliaceae | 38 | 5 | 23.00 ± 9.63 |
8 | Nyssa sinensis Oliv. | Nyssaceae | 42 | 5 | 17.82 ± 4.95 |
9 | Mytilaria laosensis Lec. | Hamamelidaceae | 36 | 5 | 27.58 ± 3.58 |
10 | Michelia foveolata Merr. Ex Dandy | Magnoliaceae | 37 | 5 | 14.72 ± 2.64 |
11 | Phoebe bournei (Hemsl.) Yang | Lauraceae | 31 | 5 | 23.78 ± 5.18 |
12 | Parakmeria lotungensis (Chun et C. Tsoong) Law | Magnoliaceae | 36 | 5 | 20.48 ± 2.69 |
13 | Michelia chapensis Dandy | Magnoliaceae | 37 | 5 | 17.94 ± 2.12 |
14 | Michelia odora (Chun) Nooteboom and B. L. Chen | Magnoliaceae | 38 | 35 | 23.71 ± 10.08 |
15 | Chamaecyparis pisifera cv. plumosa | Cupressaceae | 34 | 5 | 26.00 ± 3.15 |
16 | Fokienia hodginsii (Dunn) A. Henry et Thomas | Cupressaceae | 40 | 10 | 25.52 ± 4.59 |
17 | Taiwania cryptomerioides Hayata | Cupressaceae | 36 | 5 | 25.38 ± 4.03 |
18 | Cupressus lusitanica ‘zhongshanbai’ | Cupressaceae | 39 | 5 | 19.50 ± 1.94 |
Trees | Wood Basic Density (g·cm−3) | Cell Wall (μm) | Fiber/Tracheid Length (μm) | Fiber/Tracheid Width (μm) | Fiber/Tracheid Length-Width Ratio | Fiber Proportion (%) | Vessel Length (μm) | Vessel Width (μm) | Vessel Length-Width Ratio | Vessel Proportion (%) | Vessel/Tracheid Lumen Area (μm2) | Microfibril Angle (°) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Broad-leaf trees | Dalbergia assamica | 0.8786 ± 0.12 | 5.93 ± 0.69 | 971.91 ± 198.4 | 22.43 ± 1.77 | 45.27 ± 9.57 | 72.70 ± 3.04 | 235.83 ± 10.73 | 109.11 ± 64.70 | 3.55 ± 2.88 | 4.36 ± 2.06 | 16139.80 ± 7392.22 | 12.18 ± 1.21 |
Altingia chinensis | 0.6812 ± 0.07 | 15.88 ± 1.54 | 1616.24 ± 313.13 | 26.80 ± 2.18 | 62.53 ± 13.12 | 57.34 ± 4.36 | 955.32 ± 316.33 | 67.38 ± 6.15 | 14.85 ± 5.44 | 20.97 ± 4.33 | 1917.27 ± 494.67 | 12.53 ± 5.16 | |
Castanopsis kawakamii | 0.6520 ± 0.04 | 6.70 ± 1.01 | 866.17 ± 74.72 | 22.37 ± 2.83 | 40.88 ± 6.33 | 72.65 ± 1.35 | 672.68 ± 175.93 | 80.24 ± 23.69 | 9.83 ± 3.84 | 11.05 ± 1.85 | 1821.71 ± 429.38 | 11.68 ± 2.54 | |
Michelia macclurei | 0.6190 ± 0.07 | 7.57 ± 1.03 | 1384.05 ± 75.58 | 25.57 ± 1.76 | 56.28 ± 4.19 | 57.67 ± 5.30 | 786.87 ± 43.77 | 77.23 ± 7.69 | 10.74 ± 1.19 | 21.44 ± 3.82 | 2310.69 ± 424.95 | 13.74 ± 1.39 | |
Michelia fallaxa | 0.6074 ± 0.08 | 8.97 ± 2.02 | 1338.66 ± 231.37 | 25.79 ± 2.97 | 53.47 ± 8.85 | 56.07 ± 2.35 | 752.45 ± 83.25 | 73.91 ± 7.84 | 10.63 ± 1.02 | 19.87 ± 3.92 | 1670.17 ± 533.61 | 13.38 ± 1.99 | |
Cinnamomum camphora | 0.5542 ± 0.17 | 5.47 ± 0.88 | 1209.72 ± 195.83 | 27.39 ± 1.60 | 45.45 ± 4.92 | 58.89 ± 4.20 | 500.56 ± 50.49 | 141.66 ± 20.44 | 3.84 ± 0.57 | 11.96 ± 1.69 | 9399.97 ± 6631.43 | 14.20 ± 3.46 | |
Manglietia fordiana | 0.5536 ± 0.02 | 8.64 ± 1.89 | 1216.01 ± 212.04 | 25.58 ± 0.91 | 49.38 ± 9.51 | 63.26 ± 4.49 | 805.98 ± 166.78 | 67.91 ± 8.21 | 12.63 ± 3.74 | 14.95 ± 3.70 | 1257.35 ± 468.77 | 14.57 ± 2.00 | |
Nyssa sinensis | 0.5460 ± 0.10 | 6.77 ± 1.24 | 1320.54 ± 398.51 | 25.07 ± 3.95 | 54.03 ± 8.30 | 60.98 ± 8.79 | 822.98 ± 254.27 | 85.94 ± 9.44 | 9.76 ± 2.15 | 23.70 ± 7.48 | 2685.52 ± 990.36 | 11.42 ± 4.58 | |
Mytilaria laosensis | 0.5282 ± 0.03 | 11.37 ± 2.78 | 1581.30 ± 277.17 | 30.76 ± 6.25 | 54.44 ± 11.53 | 55.47 ± 3.43 | 1330.12 ± 278.26 | 75.94 ± 7.30 | 18.27 ± 3.51 | 25.67 ± 2.06 | 2362.18 ± 391.10 | 11.63 ± 1.29 | |
Michelia foveolata | 0.5222 ± 0.03 | 7.67 ± 1.24 | 1189.92 ± 233.97 | 26.08 ± 2.82 | 46.43 ± 5.91 | 65.97 ± 2.93 | 732.02 ± 71.08 | 72.09 ± 6.88 | 10.53 ± 2.02 | 15.38 ± 3.39 | 1926.22 ± 860.69 | 14.96 ± 1.87 | |
Phoebe bournei | 0.5138 ± 0.05 | 6.83 ± 1.85 | 1014.95 ± 142.4 | 20.95 ± 5.13 | 51.69 ± 9.05 | 74.16 ± 1.89 | 488.55 ± 65.30 | 95.59 ± 28.63 | 5.60 ± 1.33 | 9.40 ± 1.56 | 2679.74 ± 1721.04 | 14.04 ± 2.96 | |
Parakmeria lotungensis | 0.4684 ± 0.08 | 7.48 ± 1.00 | 1333.98 ± 245.85 | 28.66 ± 4.85 | 47.62 ± 4.07 | 65.80 ± 3.61 | 667.01 ± 56.64 | 68.94 ± 8.68 | 10.19 ± 1.86 | 17.28 ± 4.03 | 1544.59 ± 410.55 | 14.15 ± 3.28 | |
Michelia chapensis | 0.4392 ± 0.02 | 8.14 ± 1.13 | 1152.34 ± 225.2 | 27.00 ± 5.67 | 44.02 ± 3.56 | 57.35 ± 2.18 | 711.73 ± 85.44 | 82.33 ± 11.80 | 8.97 ± 0.95 | 27.43 ± 2.30 | 2988.26 ± 787.18 | 13.72 ± 1.45 | |
Michelia odora | 0.4372 ± 0.06 | 8.14 ± 1.80 | 1209.94 ± 196.11 | 27.58 ± 3.54 | 45.91 ± 7.41 | 61.90 ± 4.37 | 724.24 ± 120.98 | 78.17 ± 16.26 | 9.92 ± 2.16 | 18.64 ± 4.27 | 1998.57 ± 641.67 | 13.34 ± 4.04 | |
Coniferous trees | Chamaecyparis pisifera | 0.4698 ± 0.09 | 7.23 ± 2.11 | 1643.78 ± 406.21 | 31.62 ± 3.23 | 53.68 ± 8.66 | - | - | - | - | - | 324.27 ± 206.63 | 20.71 ± 6.21 |
Fokienia hodginsii | 0.4321 ± 0.09 | 7.36 ± 2.25 | 1891.18 ± 691.94 | 35.51 ± 7.55 | 55.77 ± 13.48 | - | - | - | - | - | 478.12 ± 248.84 | 19.26 ± 7.53 | |
Taiwania cryptomerioides | 0.3578 ± 0.11 | 8.99 ± 2.47 | 1944.15 ± 1206.24 | 44.58 ± 8.08 | 45.00 ± 22.00 | - | - | - | - | - | 306.39 ± 167.21 | 12.09 ± 3.46 | |
Cupressus lusitanica | 0.3554 ± 0.03 | 13.61 ± 5.00 | 1519.01 ± 402.17 | 24.81 ± 4.40 | 64.35 ± 7.06 | - | - | - | - | - | 1954.48 ± 782.88 | 32.74 ± 6.11 |
Trees | Type of Vessel Pore Combination | Type of Vessel Pore Arrangement | Wood Ray Type | Longitudinal Parenchyma Type | Wood Ray Spacing (μm) | The Number of Wood Rays |
---|---|---|---|---|---|---|
Dalbergia assamica | solitary pore or multiple pore | dispersing type | double row | solitary | 80.07 ± 25.02 | 62.44 |
Altingia chinensis | solitary pore | dispersing type | uniseriate wood ray | solitary | 88.06 ± 18.32 | 56.78 |
Castanopsis kawakamii | solitary pore or multiple pore | apsacline | uniseriate wood ray | solitary | 50.65 ± 15.28 | 98.71 |
Michelia macclurei | multiple pore | dispersing type | multiseriate ray | solitary | 160.64 ± 58.38 | 31.13 |
Michelia fallaxa | multiple pore | dispersing type | double row | solitary | 117.99 ± 39.43 | 42.38 |
Cinnamomum camphora | pore cluster | dispersing type | double row | solitary | 148.09 ± 37.05 | 33.76 |
Manglietia fordiana | multiple pore | dispersing type | double row | solitary | 107.89 ± 44.05 | 46.34 |
Nyssa sinensis | multiple pore | dispersing type | double row | solitary | 130.29 ± 21.20 | 38.38 |
Mytilaria laosensis | solitary pore or multiple pore | radial type | double row | solitary | 129.91 ± 33.36 | 38.49 |
Michelia foveolata | multiple pore or pore cluster | dispersing type | double row | solitary | 129.8 ± 51.16 | 38.52 |
Phoebe bournei | solitary pore | dispersing type | double row | solitary | 171.56 ± 68.16 | 29.14 |
Parakmeria lotungensis | pore cluster or multiple pore | dispersing type | double row | solitary | 125.82 ± 47.61 | 39.74 |
Michelia chapensis | pore cluster or multiple pore | radial type or dispersing type | double row | solitary | 191.1 ± 57.97 | 26.16 |
Michelia odora | multiple pore or pore cluster | dispersing type | double row | solitary | 119.33 ± 29.00 | 41.90 |
Chamaecyparis pisifera | - | - | - | - | 132.28 ± 56.36 | 37.80 |
Fokienia hodginsii | - | - | - | - | 157.5 ± 45.64 | 31.75 |
Taiwania cryptomerioides | - | - | - | - | 154.11 ± 60.86 | 32.44 |
Cupressus lusitanica | - | - | - | - | 235.49 ± 78.04 | 21.23 |
Traits | Wood Basic Density | Fiber Length | Fiber Width | Fiber Length-Width Ratio | Fiber Proportion | Vessel Length | Vessel Width | Vessel Length-Width Ratio | Vessel Proportion | Vessel Lumen Area | Cell Wall |
---|---|---|---|---|---|---|---|---|---|---|---|
Fiber length | −0.01 | ||||||||||
Fiber width | −0.27 ** | 0.54 ** | |||||||||
Fiber length-width ratio | 0.18 | 0.72 ** | −0.18 | ||||||||
Fiber proportion | 0.15 | −0.45 ** | −0.34 ** | −0.26 ** | |||||||
Vessel length | −0.18 | 0.67 ** | 0.40 ** | 0.46 ** | −0.48 ** | ||||||
Vessel width | 0.15 | −0.01 | 0.10 | −0.11 | 0.09 | −0.26 ** | |||||
Vessel length-width ratio | −0.08 | 0.54 ** | 0.21 * | 0.46 ** | −0.37 ** | 0.88 ** | −0.60 ** | ||||
Vessel proportion | −0.36 ** | 0.34 ** | 0.30 ** | 0.15 | −0.78 ** | 0.52 ** | −0.27 ** | 0.43 ** | |||
Vessel lumen area | 0.66 ** | −0.16 | −0.08 | −0.10 | 0.10 | −0.65 ** | 0.75 ** | −0.66 ** | −0.59 ** | ||
Cell wall | 0.04 | 0.74 ** | 0.22 | 0.71 ** | −0.20 | 0.68 ** | −0.54 ** | 0.76 ** | 0.18 | −0.19 | |
Microfibril angle | 0.01 | −0.14 | −0.04 | −0.13 | 0.07 | −0.19 | −0.10 | −0.06 | −0.13 | −0.16 | −0.20 |
No. | Tree Special | Wood Basic Density | Fiber Length | Fiber Width | Fiber Proportion | Vessel Proportion | Microfibril Angle | I |
---|---|---|---|---|---|---|---|---|
1 | Dalbergia assamica | 7.65 | 4.57 | 8.52 | 10.91 | 0.65 | 10.48 | 3.47 |
2 | Castanopsis kawakamii | 5.68 | 4.07 | 8.50 | 10.90 | 1.66 | 10.05 | 0.44 |
3 | Phoebe bournei | 4.48 | 4.77 | 7.96 | 11.12 | 1.41 | 12.08 | −1.08 |
4 | Altingia chinensis | 5.93 | 7.60 | 10.19 | 8.60 | 3.14 | 10.78 | −1.98 |
5 | Nyssa sinensis | 4.76 | 6.21 | 9.52 | 9.15 | 3.56 | 9.82 | −2.79 |
6 | Michelia macclurei | 5.39 | 6.51 | 9.72 | 8.65 | 3.22 | 11.81 | −4.20 |
7 | Michelia fallaxa | 5.29 | 6.29 | 9.80 | 8.41 | 2.98 | 11.51 | −4.30 |
8 | Manglietia fordiana | 4.82 | 5.72 | 9.72 | 9.49 | 2.24 | 12.53 | −4.47 |
9 | Michelia foveolata | 4.55 | 5.59 | 9.91 | 9.90 | 2.31 | 12.86 | −5.04 |
10 | Cinnamomum camphora | 4.83 | 5.69 | 10.41 | 8.83 | 1.79 | 12.21 | −5.07 |
11 | Mytilaria laosensis | 4.60 | 7.43 | 11.69 | 8.32 | 3.85 | 10.00 | −5.19 |
12 | Parakmeria lotungensis | 4.08 | 6.27 | 10.89 | 9.87 | 2.59 | 12.17 | −5.43 |
13 | Michelia odora | 3.81 | 5.69 | 10.48 | 9.28 | 2.80 | 11.47 | −5.97 |
14 | Michelia chapensis | 3.83 | 5.42 | 10.26 | 8.60 | 4.11 | 11.80 | −8.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, Y.; Shen, L.; Wu, Z.; Li, H.; Hu, M.; Liu, Q.; Chen, C.; Hu, X.; Zhong, Y. Evaluation of Wood Anatomical Properties from 18 Tree Species in the Subtropical Region of China. Forests 2023, 14, 2344. https://doi.org/10.3390/f14122344
Wang Y, Wang Y, Shen L, Wu Z, Li H, Hu M, Liu Q, Chen C, Hu X, Zhong Y. Evaluation of Wood Anatomical Properties from 18 Tree Species in the Subtropical Region of China. Forests. 2023; 14(12):2344. https://doi.org/10.3390/f14122344
Chicago/Turabian StyleWang, Yunpeng, Yiping Wang, Le Shen, Zhaoxiang Wu, Huihu Li, Miao Hu, Qiaoli Liu, Caihui Chen, Xiaokang Hu, and Yongda Zhong. 2023. "Evaluation of Wood Anatomical Properties from 18 Tree Species in the Subtropical Region of China" Forests 14, no. 12: 2344. https://doi.org/10.3390/f14122344
APA StyleWang, Y., Wang, Y., Shen, L., Wu, Z., Li, H., Hu, M., Liu, Q., Chen, C., Hu, X., & Zhong, Y. (2023). Evaluation of Wood Anatomical Properties from 18 Tree Species in the Subtropical Region of China. Forests, 14(12), 2344. https://doi.org/10.3390/f14122344