Responses of Vegetation Phenology to Urbanization in Plateau Mountains in Yunnan, China
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. Data Collection
2.3. Methodology
2.3.1. Extraction of Vegetation Phenology Parameters
- (1)
- Reconstruction of MODIS EVI time-series data
- (2)
- Extraction of phenological parameters
2.3.2. Analysis of Spatio-Temporal Trend of Vegetation Phenology
2.3.3. Analysis of the Impact of Urbanization on Vegetation Phenology
- (1)
- Impact of land urbanization on vegetation phenology
- (2)
- Impact of population on vegetation phenology
3. Results
3.1. Spatial Pattern of Vegetation Phenology in UACY
3.2. Responses of Vegetation Phenology to Urban Expansion
3.2.1. Trend of Vegetation Phenology on the Urban–Rural Gradient
3.2.2. Responses of Vegetation Phenology to UI
3.2.3. Responses of Vegetation Phenology to Population
3.3. Analysis of the Impact of the Altitude Gradient on Vegetation Phenology in UACY
4. Discussion
- (1)
- Impact of landform on vegetation phenology
- (2)
- Impact of impervious expansion on vegetation phenology
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guangtao, W.; Fen, L.; Nannan, G.; Xiang, L. Perspective on study of urban science. Bull. Chin. Acad. Sci. 2022, 37, 177–187. [Google Scholar]
- Han, G.; Xu, J.; Yuan, X. Impact of urbanization on vegetation phenology in major cities in Yangtze River Delta region. Chin. J. Appl. Ecol. 2008, 19, 1803–1809. [Google Scholar]
- Ren, Q.; He, C.; Huang, Q.; Shi, P.; Zhang, D.; Güneralp, B. Impacts of urban expansion on natural habitats in global drylands. Nat. Sustain. 2022, 5, 869–878. [Google Scholar] [CrossRef]
- Li, G.; Fang, C.; Li, Y.; Wang, Z.; Sun, S.; He, S.; Qi, W.; Bao, C.; Ma, H.; Fan, Y.; et al. Global impacts of future urban expansion on terrestrial vertebrate diversity. Nat. Commun. 2022, 13, 1628. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Ciais, P.; Friedlingstein, P.; Peylin, P.; Reichstein, M.; Luyssaert, S.; Margolis, H.; Fang, J.; Barr, A.; Chen, A.; et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 2008, 451, 49–52. [Google Scholar] [CrossRef]
- Ge, Q.; Dai, J.; Zheng, J. The progress of phenology studies and challenge to modern phenology research in China. Bull. Chin. Acad. Sci. 2010, 25, 310–316. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, Y.; Ge, Q. Spatiotemporal variations in maize phenology of China under climate change from 1981 to 2010. Acta Geogr. Sin. 2018, 75, 906–916. [Google Scholar] [CrossRef]
- Dai, J.; Wang, H.; Ge, Q. Changes of spring frost risks during the flowering period of woody plants in temperate monsoon area of China over the past 50 years. Acta Geogr. Sin. 2013, 68, 593–601. [Google Scholar]
- Liu, J.; Li, Y.; Liu, H.; Ge, Q.; Dai, J. Climate chnage and peach blossom viewing: Impact and adaptation. Geogr. Res. 2016, 35, 504–512. [Google Scholar] [CrossRef]
- Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant phenology and global climate change: Current progresses and challenges. Glob. Change Biol. 2019, 25, 1922–1940. [Google Scholar] [CrossRef]
- Shen, M.; Wang, S.; Jiang, N.; Sun, J.; Cao, R.; Ling, X.; Fang, B.; Zhang, L.; Zhang, L.; Xu, X.; et al. Plant phenology changes and drivers on the Qinghai–Tibetan Plateau. Nat. Rev. Earth Environ. 2022, 3, 633–651. [Google Scholar] [CrossRef]
- Yu, L.; Liu, T.; Bu, K.; Yan, F.; Yang, J.; Chang, L.; Zhang, S. Monitoring the long term vegetation phenology change in Northeast China from 1982 to 2015. Sci. Rep. 2017, 7, 14770. [Google Scholar] [CrossRef] [PubMed]
- Qiu, T.; Song, C.; Zhang, Y.; Liu, H.; Vose, J.M. Urbanization and climate change jointly shift land surface phenology in the northern mid-latitude large cities. Remote Sens. Environ. 2020, 236, 111477. [Google Scholar] [CrossRef]
- Hu, Z.; Dai, H.; Hou, F.; Li, E. Spatio-temporal change of urban-rural vegetation phenology and its response to land surface temperature in Northeast China. Acta Ecol. Sin. 2020, 40, 4137–4145. [Google Scholar] [CrossRef]
- Meng, D.; Liu, X.; Zhang, C. Responses of plant phenology to urban heat island effects in Beijing. Chin. J. Ecol. 2021, 40, 844–854. [Google Scholar] [CrossRef]
- Liu, J.; Guo, H.; Zhang, L.; Lu, L. Impact of urbanization on vegetation phenology research in Beijing-Tianjin-Tangshan region. Remote Sens. Technol. Appl. 2014, 29, 286–292. [Google Scholar] [CrossRef]
- Meng, L.; Mao, J.; Zhou, Y.; Richardson, A.D.; Lee, X.; Thornton, P.E.; Ricciuto, D.M.; Li, X.; Dai, Y.; Shi, X.; et al. Urban warming advances spring phenology but reduces the response of phenology to temperature in the conterminous United States. Proc. Natl. Acad. Sci. USA 2020, 117, 4228–4233. [Google Scholar] [CrossRef]
- Su, F.; Fu, D.; Yan, F.; Xiao, H.; Pan, T.; Xiao, Y.; Kang, L.; Zhou, C.; Meadows, M.; Lyne, V.; et al. Rapid greening response of China’s 2020 spring vegetation to COVID-19 restrictions Implications for climate change. Sci. Adv. 2021, 35, eabe8044. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, L.; Zohner, C.M.; Crowther, T.W.; Li, M.; Shen, F.; Guo, M.; Qin, J.; Yao, L.; Zhou, C. Direct and indirect impacts of urbanization on vegetation growth across the world’s cities. Sci. Adv. 2022, 8, eabo0095. [Google Scholar] [CrossRef]
- Jia, W.; Zhao, S.; Zhang, X.; Liu, S.; Henebry, G.M.; Liu, L. Urbanization imprint on land surface phenology: The urban-rural gradient analysis for Chinese cities. Glob. Change Biol. 2021, 27, 2895–2904. [Google Scholar] [CrossRef]
- Yang, J.; Luo, X.; Jin, C.; Xiao, X.; Xia, J. Spatiotemporal patterns of vegetation phenology along the urban–rural gradient in Coastal Dalian, China. Urban. For. Urban. Green. 2020, 54, 126784. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Zhang, L.; Liu, S. Remotely sensed assessment of urbanization effects on vegetation phenology in China’s 32 major cities. Remote Sens. Environ. 2016, 176, 272–281. [Google Scholar] [CrossRef]
- Jeong, S.J.; Park, H.; Ho, C.H.; Kim, J. Impact of urbanization on spring and autumn phenology of deciduous trees in the Seoul Capital Area, South Korea. Int. J. Biometeorol. 2019, 63, 627–637. [Google Scholar] [CrossRef]
- Lai, X.; Li, M.; Liu, C.; Zhong, Y.; Lin, L.; Wang, H. The phenological responses of plants to the heat island effect in the main urban area of Chongqing. Acta Ecol. Sin. 2019, 39, 7025–7034. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Y.; Feng, Z. Response of vegetation phenology to urbanization in urban agglomeration areas: A dynamic urban-rural gradient perspective. Sci. Total Environ. 2023, 864, 161109. [Google Scholar] [CrossRef]
- Wang, L.; De Boeck, H.J.; Chen, L.; Song, C.; Chen, Z.; McNulty, S.; Zhang, Z. Urban warming increases the temperature sensitivity of spring vegetation phenology at 292 cities across China. Sci. Total Environ. 2022, 834, 155154. [Google Scholar] [CrossRef]
- Du, H.; Wang, M.; Liu, Y.; Guo, M.; Peng, C.; Li, P. Responses of autumn vegetation phenology to climate change and urbanization at northern middle and high latitudes. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103086. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, L.; Chen, Z. Climbing characteristics of typical valley-type urban construction land and its ecological quality influence. Mt. Res. 2022, 40, 570–580. [Google Scholar] [CrossRef]
- Peng, J.; Xie, P.; Liu, Y.; Hu, X. Integrated ecological risk assessment and spatial development trade-offs in low-slope hilly land: A case study in Dali Bai Autonomous Prefecture, China. Acta Ecol. Sin. 2015, 70, 1747–1761. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, E. Spatial-temporal changes in ecosystem services and the trade-off relationship in mountain regions: A case study of Hengduan Mountain region in Southwest China. J. Clean. Prod. 2020, 264, 121573. [Google Scholar] [CrossRef]
- Antonelli, A.; Kissling, W.D.; Flantua, S.G.A. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 2018, 11, 718–725. [Google Scholar] [CrossRef]
- Rahbek, C.; Borregaard, M.K.; Antonelli, A.; Colwell, R.K. Building mountain biodiversity: Geological and evolutionary processes. Science 2019, 365, 1114–1119. [Google Scholar] [CrossRef]
- Misra, G.; Asam, S.; Menzel, A. Ground and satellite phenology in alpine forests are becoming more heterogeneous across higher elevations with warming. Agric. For. Meteorol. 2021, 303, 108383. [Google Scholar] [CrossRef]
- Wang, J.; Feng, L.; Palmer, P.I.; Liu, Y.; Fang, S.; Bosch, H.; O’Dell, C.W.; Tang, X.; Yang, D.; Liu, L.; et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature 2020, 586, 720–723. [Google Scholar] [CrossRef]
- Yi, S. Urban mountaineering and farmers entering cities: Yunnan’s path choice for protecting cultivated land. Creation 2011, 9, 30–35. [Google Scholar]
- Ming, Q.; Wang, J.; Zhang, W. A geographical interpretation of mountain exploitation and construction of mountainous towns: A case study of Yunnan. J. Yunnan Norm. Univ. (Humanit. Soc. Sci. Ed.) 2012, 44, 48–53. [Google Scholar]
- Yunnan Statistical Bureau. Yunnan Statistical Yearbook 2021; Yunnan Statistical Bureau: Yunnan, China, 2021. [Google Scholar]
- Zhou, C.; Cheng, W.; Qian, J.; Li, B.; Zhang, B. Research on the Classification System of Digital Land Geomorphology of 1:1000,000 in China. J. Geo-Inf. Sci. 2009, 11, 707–724. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Ding, H.; Bu, Y.; Xu, L. Spatial and temporal variation of the plant phenology and its response to the urbanization trend in the Yangtze River delta. J. Saf. Environ. 2021, 21, 1352–1360. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- Liu, Z.; Ding, Y.; Jiao, Y.; Wang, J.; Liu, C.; Xu, Q. Spatiotemporal Variation of Impervious Surface and Abnormal Climate Phenomenon in Central Yunnan Urban Agglomeration. Acta Geogr. Sin. 2022, 77, 1775–1793. [Google Scholar] [CrossRef]
- Cai, Z.; Jönsson, P.; Jin, H.; Eklundh, L. Performance of smoothing methods for reconstructing NDVI time-series and estimating vegetation phenology from MODIS data. Remote Sens. 2017, 9, 1271. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Nong, L.; Cheng, F.; Zhang, Y. Spatio-temporal variation of vegetation phenology and its response to climate in the tropic of cancer (Yunnan section) based on MODIS time-series data. Ecol. Environ. Sci. 2021, 30, 274–287. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. Indag. Math. 1950, 12, 173. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Li, X.; Gong, P.; Zhou, Y.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Xiao, Y.; Xu, B.; Yang, J.; et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environ. Res. Lett. 2020, 15, 094044. [Google Scholar] [CrossRef]
- Ge, M.; Feng, Z. Polulation distribution of China based on GIS: Classification of population density and curve of population gravity centers. Acta Geogr. Sin. 2009, 64, 202–210. [Google Scholar]
- Yang, Y.; Luo, X.; Li, R.; Wang, Y.; Wen, R.; Yang, G.; Jiao, M.; Zhang, Q.; Zhang, X. A review of the effect of meteorological factors on plant phenology and its driving mechanisms. J. Meteorol. Environ. 2016, 32, 154–159. [Google Scholar]
- Li, T.; Guo, Z.; Ma, C. Spatiotemporal changes of piedmont phenology in the transitional zone between the second and third steps, China. Geogr. Res. 2022, 41, 3000–3020. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Zhao, D.; Li, F.; Wang, R. Effects of ground surface hardening on plant eco-physiological processes in urban landscapes. Acta Ecol. Sin. 2010, 30, 3923–3932. [Google Scholar]
- Xu, H.; Li, C.; Wang, H.; Zhou, R.; Liu, M.; Hu, Y. Long-Term Spatiotemporal Patterns and Evolution of Regional Heat Islands in the Beijing–Tianjin–Hebei Urban Agglomeration. Remote Sens. 2022, 14, 2478. [Google Scholar] [CrossRef]
- Yang, Q.; Huang, X.; Yang, J.; Liu, Y. The relationship between land surface temperature and artificial impervious surface fraction in 682 global cities: Spatiotemporal variations and drivers. Environ. Res. Lett. 2021, 16, 024032. [Google Scholar] [CrossRef]
- Flynn, D.F.B.; Wolkovich, E.M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytol. 2018, 219, 1353–1362. [Google Scholar] [CrossRef]
- Zheng, Q.; Teo, H.C.; Koh, L.P. Artificial Light at Night Advances Spring Phenology in the United States. Remote Sens. 2021, 13, 399. [Google Scholar] [CrossRef]
- Lindberg, F.; Grimmond, C.S.B. Nature of vegetation and building morphology characteristics across a city: Influence on shadow patterns and mean radiant temperatures in London. Urban. Ecosyst. 2011, 14, 617–634. [Google Scholar] [CrossRef]
- Moriwaki, R.; Watanabe, K.; Morimoto, K. Urban dry island phenomenon and its impact on cloud base level. J. JSCE 2013, 1, 521–529. [Google Scholar] [CrossRef]
- Chithra, S.V.; Nair, M.V.H.; Amarnath, A.; Anjana, N.S. Impacts of Impervious Surfaces on the Environment. Int. J. Eng. Sci. Invent. 2015, 4, 27–31. [Google Scholar]
- Wohlfahrt, G.; Tomelleri, E.; Hammerle, A. The urban imprint on plant phenology. Nat. Ecol. Evol. 2019, 3, 1668–1674. [Google Scholar] [CrossRef]
- Liu, Q.; Fu, Y.H.; Zhu, Z.; Liu, Y.; Liu, Z.; Huang, M.; Janssens, I.A.; Piao, S. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Glob. Change Biol. 2016, 22, 3702–3711. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Du, P.; Chen, D.; Lin, C.; Zheng, H.; Guo, S. Characterizing urbanization-induced land surface phenology change from time-series remotely sensed images at fine spatio-temporal scale: A case study in Nanjing, China (2001–2018). J. Clean. Prod. 2020, 274, 122487. [Google Scholar] [CrossRef]
Type of Data | Resolution | Data Description | Data Sources |
---|---|---|---|
Landform data | 1 km | China’s topographic map at 1:1 million scale | https://www.resdc.cn/Default.aspx (accessed on 3 March 2023) |
Vegetation index | 250 m | MOD13Q1, from 2000 to 2021, 503 images, temporal resolution: 16 days, | https://www.earthdata.nasa.gov/ (accessed on 30 July 2022) |
Impervious surface | 30 m | GAIA, from 1985 to 2018 | http://data.ess.tsinghua.edu.cn/ (accessed on 1 September 2022) |
Population density | 1 km | LandScan, from 2001 to 2020 | https://www.satpalda.com/product/landscan/ (accessed on 1 September 2022) |
Rank | Type | Value | Rank | Type | Value |
---|---|---|---|---|---|
1 | basic no-man’s land | 0–1 | 6 | low concentration zone | 201–400 |
2 | extreme sparse area | 2–25 | 7 | moderate concentration zone | 401–500 |
3 | sparse area | 26–50 | 8 | high concentration zone | 501–1000 |
4 | relatively sparse area | 51–100 | 9 | the concentration core zone | >1000 |
5 | general transition zone | 101–200 |
Terrain Types | SOS/Days | EOS/Days | LOS/Days |
---|---|---|---|
plain | 123.32 | 352.23 | 242.18 |
plateau | 126.93 | 353.13 | 231.55 |
hills | 122.49 | 349.89 | 231.68 |
small undulating mountains | 116.93 | 348.34 | 238.75 |
medium undulating mountains | 116.64 | 348.78 | 244.53 |
large undulating mountains | 110.76 | 339.30 | 245.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Yang, K.; Wang, J.; Ran, W.; Rao, X. Responses of Vegetation Phenology to Urbanization in Plateau Mountains in Yunnan, China. Forests 2023, 14, 2347. https://doi.org/10.3390/f14122347
Sun M, Yang K, Wang J, Ran W, Rao X. Responses of Vegetation Phenology to Urbanization in Plateau Mountains in Yunnan, China. Forests. 2023; 14(12):2347. https://doi.org/10.3390/f14122347
Chicago/Turabian StyleSun, Mengzhu, Kun Yang, Jiasheng Wang, Wenjing Ran, and Xun Rao. 2023. "Responses of Vegetation Phenology to Urbanization in Plateau Mountains in Yunnan, China" Forests 14, no. 12: 2347. https://doi.org/10.3390/f14122347
APA StyleSun, M., Yang, K., Wang, J., Ran, W., & Rao, X. (2023). Responses of Vegetation Phenology to Urbanization in Plateau Mountains in Yunnan, China. Forests, 14(12), 2347. https://doi.org/10.3390/f14122347