Tree Biomass Modeling Based on the Exploration of Regression and Artificial Neural Networks Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field and Laboratory Studies
2.2. Method
2.2.1. Seemingly Unrelated Regression Model (SUR)
2.2.2. Artificial Neural Network Modeling
2.2.3. Statistical Evaluation Criteria
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, L.; Zhang, L.; Li, F. A compatible system of biomass equations for three conifer species in Northeast, China. For. Ecol. Manag. 2014, 329, 306–317. [Google Scholar] [CrossRef]
- Zhao, D.; Kane, M.; Markewitz, D.; Teskey, R.; Clutter, M. Additive tree biomass equations for midrotation loblolly pine plantations. For. Sci. 2015, 61, 613–623. [Google Scholar] [CrossRef]
- Xiao, C.-W.; Yuste, J.C.; Janssens, I.; Roskams, P.; Nachtergale, L.; Carrara, A.; Sanchez, B.; Ceulemans, R. Above-and belowground biomass and net primary production in a 73-year-old Scots pine forest. Tree Physiol. 2003, 23, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Czapowskyj, M.M.; Robison, D.J.; Briggs, R.D.; White, E.H. Component Biomass Equations for Black Spruce in Maine; Research Paper NE-564; US Department of Agriculture, Forest Service, Northeastern Forest Experiment Station: Broomall, PA, USA, 1985; Volume 564.
- Parresol, B.R. Additivity of nonlinear biomass equations. Can. J. For. Res. 2001, 31, 865–878. [Google Scholar] [CrossRef]
- Poudel, K.; Temesgen, H. Methods for estimating aboveground biomass and its components for Douglas-fir and lodgepole pine trees. Can. J. For. Res. 2016, 46, 77–87. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, X.; Wang, X.; Lu, F. Biomass and its allocation of Chinese forest ecosystems: Ecological Archives E095-177. Ecology 2014, 95, 2026. [Google Scholar] [CrossRef]
- He, Q.; Chen, E.; An, R.; Li, Y. Above-ground biomass and biomass components estimation using LiDAR data in a coniferous forest. Forests 2013, 4, 984–1002. [Google Scholar] [CrossRef]
- De-Miguel, S.; Pukkala, T.; Assaf, N.; Shater, Z. Intra-specific differences in allometric equations for aboveground biomass of eastern Mediterranean Pinus brutia. Ann. For. Sci. 2014, 71, 101–112. [Google Scholar] [CrossRef]
- Özçelık, R.; Diamantopoulou, M.J.; Eker, M.; Gürlevık, N. Artificial neural network models: An alternative approach for reliable aboveground pine tree biomass prediction. For. Sci. 2017, 63, 291–302. [Google Scholar]
- Uğurlu, S.; Araslı, B.; Sun, O. Stepe Geçiş Yörelerindeki Sarıçam Meşcerelerinde Biyolojik Kütlenin Saptanması; Ormancılık Araştırma Enstitüsü Yayınları: Ankara, Türkiye, 1976. [Google Scholar]
- Sun, O.; Ugurlu, S.; Ozer, E. Kizilçam (P. brutia Ten.) Türüne ait Biyolojik Kütlenin Saptanması; Technical Bulletin No: 104; Türkiye Foresty Research Institute: Ankara, Türkiye, 1980; 32p. [Google Scholar]
- Saraçoğlu, N. Biomass tables of beech (Fagus orientalis Lipsky). Turk. J. Agric. For. 1998, 22, 93–100. [Google Scholar]
- Durkaya, B. Zonguldak Orman Bölge Müdürlüğü Meşe Meşcerelerinin Biyokütle Tablolarının Düzenlenmesi; Yüksek Lisans Tezi, Zonguldak Karaelmas Üniversitesi: Zonguldak, Türkiye, 1998. [Google Scholar]
- İkinci, O. Zonguldak Orman Bölge Müdürlüğü kestane meşcerelerinin biyokütle tablolarının düzenlenmesi; Basılmamış Yüksek Lisans Tezi, Zonguldak Karaelmas Üniversitesi: Zonguldak, Türkiye, 2000. [Google Scholar]
- Ülküdür, M. Antalya Orman Bölge Müdürlüğü Sedir Meşcerelerinin Biyokütle Tablolarının Düzenlenmesi; Yüksek Lisans Tezi, Bartın Üniversitesi: Bartın, Türkiye, 2010. [Google Scholar]
- Aydın, A.C. Toros Sediri (Cedrus libani A. Rich.)’nde Biyokütle Araştırmaları. Ph.D. Thesis, Suleyman Demirel University, Isparta, Turkey, 2016. [Google Scholar]
- Sakici, O.E.; Seki, M.; Saglam, F. Above-ground biomass and carbon stock equations for crimean pine stands in Kastamonu region of Turkey. Fresenius Environ. Bull. 2018, 27, 7079–7089. [Google Scholar]
- Güner, Ş.T.; Diamantopoulou, M.J.; Poudel, K.P.; Çömez, A.; Özçelik, R. Employing artificial neural network for effective biomass prediction: An alternative approach. Comput. Electron. Agric. 2022, 192, 106596. [Google Scholar] [CrossRef]
- Weiskittel, A.R.; MacFarlane, D.W.; Radtke, P.J.; Affleck, D.L.; Temesgen, H.; Woodall, C.W.; Westfall, J.A.; Coulston, J.W. A call to improve methods for estimating tree biomass for regional and national assessments. J. For. 2015, 113, 414–424. [Google Scholar] [CrossRef]
- Patterson, D.W. Artificial Neural Networks: Theory and Applications; Prentice Hall Singapore: Singapore, 1996. [Google Scholar]
- Aggarwal, C.C. Neural Networks and Deep Learning; Springer: Berlin/Heidelberg, Germany, 2018; Volume 10, p. 3. [Google Scholar]
- Russell, S.J.; Norvig, P. Artificial Intelligence a Modern Approach; Prentice Hall: London, UK, 2010. [Google Scholar]
- Gurney, K. An Introduction to Neural Networks; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Diamantopoulou, M.J. Predicting fir trees stem diameters using Artificial Neural Network models. S. Afr. For. J. 2005, 205, 39–44. [Google Scholar] [CrossRef]
- Vieira, G.C.; de Mendonça, A.R.; da Silva, G.F.; Zanetti, S.S.; da Silva, M.M.; Dos Santos, A.R. Prognoses of diameter and height of trees of eucalyptus using artificial intelligence. Sci. Total Environ. 2018, 619, 1473–1481. [Google Scholar] [CrossRef] [PubMed]
- Ercanlı, İ. Innovative deep learning artificial intelligence applications for predicting relationships between individual tree height and diameter at breast height. For. Ecosyst. 2020, 7, 12. [Google Scholar] [CrossRef]
- Boydak, M. Regeneration of Lebanon cedar (Cedrus libani A. Rich.) on karstic lands in Turkey. For. Ecol. Manag. 2003, 178, 231–243. [Google Scholar] [CrossRef]
- Fischer, R.; Lorenz, M.; Kohl, M.; Becher, G.; Granke, O.; Christou, A. The Conditions of Forests in Europe: 2008 Executive Report; United Nations Economic Commission for Europe, Convention on Long-Range Trans Boundary Air Pollution, International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests; ICP Forests: Eberswalde, Germany, 2008; p. 23. [Google Scholar]
- Li, R.; Weiskittel, A.R. Comparison of model forms for estimating stem taper and volume in the primary conifer species of the North American Acadian Region. Ann. For. Sci. 2010, 67, 302. [Google Scholar] [CrossRef]
- Alemdag, I. Manual of Data Collection and Processing for the Development of Forest Biomass Relationships; Environment Canada, Canadian Forestry Service, Petawawa National Forestry Institute: Chalk River, ON, Canada, 1980.
- Alemdag, I. Aboveground-Mass Equations for Six Hardwood Species from Natural Stands of the Research Forest at Petawawa; Environment Canada, Canadian Forestry Service, Petawawa National Forestry Institute: Chalk River, ON, Canada, 1981.
- Porte, A.; Trichet, P.; Bert, D.; Loustau, D. Allometric relationships for branch and tree woody biomass of Maritime pine (Pinus pinaster Aıt.). For. Ecol. Manag. 2002, 158, 71–83. [Google Scholar] [CrossRef]
- Parresol, B.R. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 1999, 45, 573–593. [Google Scholar]
- Wang, L.-H.; Xing, Y.-Q. Remote sensing estimation of natural forest biomass based on an artificial neural network. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2008, 19, 261–266. [Google Scholar]
- Canga, E.; Diéguez-Aranda, U.; Elias, A.; Cámara, A. Above-ground biomass equations for Pinus radiata D. Don in Asturias. For. Syst. 2013, 22, 408–415. [Google Scholar] [CrossRef]
- Park, R.E. Estimation with heteroscedastic error terms. Econom. (Pre-1986) 1966, 34, 888. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/SHARE® 9.4: User’s Guide, 2nd ed.; SAS Institute Inc.: Cary, NC, USA, 2016. [Google Scholar]
- Belsley, D.A. A guide to using the collinearity diagnostics. Comput. Sci. Econ. Manag. 1991, 4, 33–50. [Google Scholar] [CrossRef]
- Specht, D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Diamantopoulou, M.J. Assessing a reliable modeling approach of features of trees through neural network models for sustainable forests. Sustain. Comput. Inform. Syst. 2012, 2, 190–197. [Google Scholar] [CrossRef]
- Dreyfus, G. Neural Networks: Methodology and Applications; Springer Science & Business Media: Berlin, Germany, 2005. [Google Scholar]
- de Bragança Pereira, B.; Rao, C.R.; de Oliveira, F.B. Statistical Learning Using Neural Networks: A Guide for Statisticians and Data Scientists with Python; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Belete, D.M.; Huchaiah, M.D. Grid search in hyperparameter optimization of machine learning models for prediction of HIV/AIDS test results. Int. J. Comput. Appl. 2022, 44, 875–886. [Google Scholar] [CrossRef]
- Riedmiller, M.; Braun, H. A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In Proceedings of the IEEE International Conference on Neural Networks, San Francisco, CA, USA, 28 March–1 April 1993; pp. 586–591. [Google Scholar]
- Florescu, C.; Igel, C. Resilient backpropagation (RPROP) for batch-learning in tensorflow. In Proceedings of the 6th International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018; pp. 1–5. [Google Scholar]
- Karatepe, Y.; Diamantopoulou, M.J.; Özçelik, R.; Sürücü, Z. Total tree height predictions via parametric and artificial neural network modeling approaches. Iforest-Biogeosci. For. 2022, 15, 95. [Google Scholar] [CrossRef]
- Matlab, Version R2022a; The MathWorks Inc.: Natick, MA, USA, 2022.
- Burden, F.; Winkler, D. Bayesian regularization of neural networks. In Artificial Neural Networks; Methods in Molecular Biology Book Series; Springer: Berlin/Heidelberg, Germany, 2009; pp. 23–42. [Google Scholar]
- Kayri, M. Predictive abilities of Bayesian regularization and Levenberg–Marquardt algorithms in artificial neural networks: A comparative empirical study on social data. Math. Comput. Appl. 2016, 21, 20. [Google Scholar] [CrossRef]
- Olson, D.L.; Delen, D. Advanced Data Mining Techniques; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- Hurvich, C.M.; Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 1989, 76, 297–307. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- Poudel, K.P.; Temesgen, H.; Gray, A.N. Evaluation of sampling strategies to estimate crown biomass. For. Ecosyst. 2015, 2, 1. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, Y.; Quackenbush, L.J.; Zhen, Z. Estimation of Individual Tree Biomass in Natural Secondary Forests Based on ALS Data and WorldView-3 Imagery. Remote Sens. 2022, 14, 271. [Google Scholar] [CrossRef]
- Özçelik, R.; Diamantopoulou, M.J.; Trincado, G. Evaluation of potential modeling approaches for Scots pine stem diameter prediction in north-eastern Turkey. Comput. Electron. Agric. 2019, 162, 773–782. [Google Scholar] [CrossRef]
- Thanh, T.N.; Tien, T.D.; Shen, H.L. Height-diameter relationship for Pinus koraiensis in Mengjiagang Forest Farm of Northeast China using nonlinear regressions and artificial neural network models. J. For. Sci. 2019, 65, 134–143. [Google Scholar]
Variables | n | Min | Max | Mean | Std. Dev. |
---|---|---|---|---|---|
Diameter at breast height (D, cm) | 55 | 10.00 | 58.70 | 30.09 | 13.72 |
Total height (H, m) | 55 | 7.88 | 27.10 | 17.22 | 5.01 |
Dry aboveground biomass (dwtotal, kg) | 55 | 36.32 | 1750.76 | 554.00 | 492.80 |
Dry stem biomass without bark (dwstem, kg) | 55 | 10.97 | 966.89 | 294.79 | 270.41 |
Dry crown biomass (dwcrown, kg) | 55 | 10.46 | 844.91 | 210.56 | 199.70 |
Dry bark biomass (dwbark, kg) | 55 | 2.40 | 150.50 | 48.65 | 38.29 |
Model | Parameter | Estimate (SE) | Approx Pr. > |t| | Weight Factors |
---|---|---|---|---|
41.2232 (7.6996) | <0.0001 | |||
0.2378 (0.0069) | <0.0001 | |||
−5.6033 (0.8017) | <0.0001 | |||
0.0322 (0.0069) | <0.0001 | |||
1.5266 (0.0469) | <0.0001 | |||
1.2929 (0.0686) | <0.0001 | |||
0.0137 (0.0084) | 0.1110 | |||
1.6064 (0.1999) | <0.0001 | |||
CN:160 |
Model | Biomass Component | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GRNN | dwstem | dwbark | dwcrown | |||||||||||||||
number of nodes | ||||||||||||||||||
I | P | S | O | I | P | S | O | I | P | S | O | |||||||
* 2 (38) | 39 | 2 | 1 | 2 (38) | 39 | 2 | 1 | 2 (38) | 39 | 2 | 1 | |||||||
RPNN | dwstem | dwbark | dwcrown | |||||||||||||||
number of nodes | ||||||||||||||||||
I | H | O | I | H | O | I | H | O | ||||||||||
2 | 4 | 1 | 2 | 3 | 1 | 2 | 8 | 1 | ||||||||||
BRNN | dwstem | dwbark | dwcrown | |||||||||||||||
number of nodes | ||||||||||||||||||
I | H | O | I | H | O | I | H | O | ||||||||||
2 | 3 | 1 | 2 | 4 | 1 | 2 | 4 | 1 |
ANN Model | Output | Dataset | CV% | Correlation Coefficient, r | 45-Degree Line Test Slope |
---|---|---|---|---|---|
GRNN | dwstem | fitting | 8.85 | 0.9962 | 45.34 |
test | 10.03 | 0.9899 | 43.78 | ||
dwbark | fitting | 10.84 | 0.9928 | 44.91 | |
test | 11.15 | 0.9831 | 43.99 | ||
dwcrown | fitting | 10.08 | 0.9948 | 45.16 | |
test | 11.96 | 0.9878 | 43.69 | ||
RPNN | dwstem | fitting | 10.30 | 0.9935 | 44.90 |
test | 15.59 | 0.9824 | 44.90 | ||
dwbark | fitting | 26.18 | 0.9408 | 42.33 | |
test | 26.38 | 0.9402 | 39.61 | ||
dwcrown | fitting | 31.00 | 0.9535 | 42.50 | |
test | 31.46 | 0.9145 | 40.11 | ||
BRNN | dwstem | fitting | 11.47 | 0.9921 | 44.41 |
test | 15.43 | 0.9824 | 44.37 | ||
dwbark | fitting | 26.15 | 0.8934 | 43.41 | |
test | 28.46 | 0.8387 | 41.21 | ||
dwcrown | fitting | 28.55 | 0.9249 | 44.89 | |
test | 34.51 | 0.8492 | 41.13 |
Model | Biomass | R2 | BIAS% | RMSE | CV% | MAB | AICc |
---|---|---|---|---|---|---|---|
NSUR | dwcrown | 0.8823 | 2.67 | 70.45 | 33.46 | 45.80 | 210 |
GRNN | 0.9845 | −0.05 | 25.14 | 11.94 | 14.01 | 161 | |
RPNN | 0.8866 | 3.02 | 67.73 | 32.17 | 40.25 | 208 | |
BRNN | 0.8842 | −2.62 | 68.20 | 32.39 | 44.07 | 208 | |
NSUR | dwstem | 0.9751 | −2.61 | 43.84 | 14.87 | 28.94 | 187 |
GRNN | 0.9881 | 0.35 | 29.65 | 10.06 | 19.74 | 168 | |
RPNN | 0.9842 | −0.82 | 34.09 | 11.56 | 24.34 | 175 | |
BRNN | 0.9819 | −0.04 | 36.61 | 12.42 | 24.27 | 178 | |
NSUR | dwbark | 0.8793 | 0.21 | 13.55 | 27.86 | 9.53 | 131 |
GRNN | 0.9802 | −0.26 | 5.40 | 11.09 | 3.79 | 90 | |
RPNN | 0.8877 | 3.54 | 13.21 | 27.14 | 9.70 | 129 | |
BRNN | 0.8761 | 0.59 | 13.49 | 27.75 | 9.49 | 131 | |
NSUR | dwtotal | 0.9753 | −0.35 | 83.77 | 15.12 | 51.02 | 194 |
GRNN | 0.9920 | 0.14 | 44.07 | 7.95 | 28.74 | 187 | |
RPNN | 0.9884 | 1.02 | 75.67 | 13.66 | 50.87 | 213 | |
BRNN | 0.9883 | −0.97 | 75.32 | 13.60 | 50.90 | 213 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalkanlı Genç, Ş.; Diamantopoulou, M.J.; Özçelik, R. Tree Biomass Modeling Based on the Exploration of Regression and Artificial Neural Networks Approaches. Forests 2023, 14, 2429. https://doi.org/10.3390/f14122429
Kalkanlı Genç Ş, Diamantopoulou MJ, Özçelik R. Tree Biomass Modeling Based on the Exploration of Regression and Artificial Neural Networks Approaches. Forests. 2023; 14(12):2429. https://doi.org/10.3390/f14122429
Chicago/Turabian StyleKalkanlı Genç, Şerife, Maria J. Diamantopoulou, and Ramazan Özçelik. 2023. "Tree Biomass Modeling Based on the Exploration of Regression and Artificial Neural Networks Approaches" Forests 14, no. 12: 2429. https://doi.org/10.3390/f14122429
APA StyleKalkanlı Genç, Ş., Diamantopoulou, M. J., & Özçelik, R. (2023). Tree Biomass Modeling Based on the Exploration of Regression and Artificial Neural Networks Approaches. Forests, 14(12), 2429. https://doi.org/10.3390/f14122429