Analysis of Eco-Environmental Quality of an Urban Forest Park Using LTSS and Modified RSEI from 1990 to 2020—A Case Study of Zijin Mountain National Forest Park, Nanjing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Pre-Processing
2.3. MRSEI
2.3.1. Landsat Enhanced Vegetation Index (EVI)
2.3.2. Wetness
2.3.3. Land Surface Temperature (LST)
2.3.4. Forest Disturbance Index (FDI)
2.3.5. Construction of MRSEI Model
2.3.6. Water Masking
2.4. Analysis of Driving Factors
2.4.1. Landscape Pattern Index
2.4.2. Analysis Method of Driving Factors
2.5. Analysis of Spatial-Temporal Variation of EEQ
2.5.1. Analysis of Temporal Variation
2.5.2. Spatial Variation Analysis
2.6. Future Change Trend Analysis of EEQ
3. Results
3.1. Change Analysis of Annual Mean EEQ
3.2. Analysis of EEQ Spatial-Temporal Variation
3.2.1. Temporal Variation Analysis
3.2.2. Spatial Auto-Correlation Analysis
3.2.3. Spatial Center Dynamic Analysis
3.3. Future Change Trends of EEQ
3.4. Analysis of EEQ Driving Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Niu, Z.; Li, J.H.; Gao, Z.H.; Gong, E.D.; Zhang, S.M.; Zhang, J.; Liu, S.; Ouyang, X.Y.; Zhang, R. Progress and future of China’s annual report on remote sensing monitoring of global ecosystem and environment. J. Remote Sens. 2018, 22, 672–685. [Google Scholar] [CrossRef]
- Jing, S.W.; Xiao, H.; Wang, F. Review of research progress and methodology of ecological environment quality assessment. Environ. Sci. Technol. 2013, S2, 448–453. [Google Scholar]
- Gasparovic, M.; Dobrinic, D. Comparative assessment of machine learning methods for urban vegetation mapping using multitemporal sentinel-1 imagery. Remote Sens. 2020, 12, 1952. [Google Scholar] [CrossRef]
- Willis, K.S. Remote sensing change detection for ecological monitoring in United States protected areas. Biol. Conserv. 2015, 182, 233–242. [Google Scholar] [CrossRef]
- Powell, S.L.; Cohen, W.B.; Healey, S.P.; Kennedy, R.E.; Moisen, G.G.; Pierce, K.B.; Ohmann, J.L. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sens. Environ. 2010, 114, 1053–1068. [Google Scholar] [CrossRef]
- Kouli, M.; Loupasakis, C.; Soupios, P.; Vallianatos, F. Landslide hazard zonation in high-risk areas of Rethymno Prefecture, Crete Island, Greece. Nat. Hazards 2010, 52, 599–621. [Google Scholar] [CrossRef]
- Psomiadis, E.; Papazachariou, A.; Soulis, K.X.; Alexiou, D.S. Landslide mapping and susceptibility assessment using geospatial analysis and earth observation data. Land 2020, 9, 133. [Google Scholar] [CrossRef]
- Kumar, P.; Thakur, P.K.; Bansod, B.K.S.; Debnath, S.K. Multi-criteria evaluation of hydro-geological and anthropogenic parameters for the groundwater vulnerability assessment. Environ. Monit. Assess. 2017, 189, 564. [Google Scholar] [CrossRef]
- Beyer, S. Environmental law and policy in the People’s Republic of China. Chin. J. Int. Law 2006, 5, 185–211. [Google Scholar] [CrossRef]
- Cong, P.; Chen, K.; Qu, L.; Han, J. Dynamic changes in the wetland landscape pattern of the Yellow River Delta from 1976 to 2016 based on satellite data. Chin. Geogr. Sci. 2019, 29, 372–381. [Google Scholar] [CrossRef]
- Liu, G.; Wang, J.; Li, S.; Li, J.; Duan, P. Dynamic evaluation of ecological vulnerability in a lake watershed based on RS and GIS technology. Pol. J. Environ. Stud. 2019, 28, 1785–1798. [Google Scholar] [CrossRef] [PubMed]
- An, M.; Xie, P.; He, W.; Wang, B.; Huang, J.; Khanal, R. Spatiotemporal change of ecologic environment quality and human interaction factors in three gorges ecologic economic corridor, based on RSEI. Ecol. Indic. 2022, 141, 109090. [Google Scholar] [CrossRef]
- Ye, Y.; Liang, Y.; Shen, Y.; Xie, L. Some Issues Related to “Technical Criterion for Eco-environmental Status Evaluation (Trial Implementation). Trop. Geogr. 2009, 29, 404–406. Available online: http://www.rddl.com.cn/CN/Y2009/V29/I4/404 (accessed on 1 August 2023).
- Zhang, Y.; Jing, F.W.; Huang, Y.; Wu, Y.; Li, H. Problems and discussions on the calculation of indicators for evaluating the ecological environment status. Hebei Ind. Sci. Technol. 2008, 25, 363–365. [Google Scholar]
- Xu, H.Q. Remote sensing evaluation index of regional ecological environment change. China Environ. Sci. 2013, 33, 889–897. [Google Scholar]
- Luyssaert, S.; Ciais, P.; Piao, S.L.; Schulze, E.D.; Jung, M.; Zaehle, S.; Schelhaas, M.J.; Reichstein, M.; Churkina, G.; Papale, D. The European carbon balance. Part 3: Forests. Glob. Chang. Biol. 2010, 16, 1429–1450. [Google Scholar] [CrossRef]
- Liping, C.; Yujun, S.; Saeed, S. Monitoring and predicting land use and land cover changes using remote sensing and GI-S techniques—A case study of a hilly area, Jiangle, China. PLoS ONE 2018, 13, e0200493. [Google Scholar] [CrossRef]
- Han, X.; Sun, T.; Cao, T. Study on landscape quality assessment of urban forest parks: Take Nanjing Zijinshan National Forest Park as an example. Ecol. Indic. 2021, 120, 106902. [Google Scholar] [CrossRef]
- Holtmann, L.; Philipp, K.; Becke, C.; Fartmann, T. Effects of habitat and landscape quality on amphibian assemblages of urban stormwater ponds. Urban Ecosyst. 2017, 20, 1249–1259. [Google Scholar] [CrossRef]
- Yue, H.; Liu, Y.; Li, Y.; Lu, Y. Eco-environmental quality assessment in China’s 35 major cities based on remote sensing eco-logical index. IEEE Access 2019, 7, 51295–51311. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, Q.Y.; Zhang, L.; Wu, C.Y. NDBSI: A normalized difference bare soil index for remote sensing to improve bare soil mapping accuracy in urban and rural areas. Catena 2022, 214, 106265. [Google Scholar] [CrossRef]
- Xian, H.F.; Zhi, L.Z. Natural Driving Forces of Vegetation Cover Characteristics and Change Trends in the Guangdong-Hong Kong-Macao Greater Bay Area. Ecol. Environ. 2022, 31, 1713. [Google Scholar] [CrossRef]
- Li, H.J.; Zheng, L.; Lei, Y.P.; Li, C.Q.; Zhou, K. Comparison of NDVI and EVI based on EOS/MODIS data. Prog. Geogr. 2007, 26, 26–32. [Google Scholar]
- Masek, J.G.; Huang, C.Q.; Wolfe, R.; Cohen, W.; Hall, F.; Kutler, J.; Nelson, P. North American forest disturbance mapped from a decadal Landsat record. Remote Sens. Environ. 2008, 112, 2914–2926. [Google Scholar] [CrossRef]
- Yang, C.; Shen, R.; Yu, D.; Liu, R.; Chen, J. Forest disturbance monitoring based on the time-series trajectory of remote sensing index. Remote Sens. 2013, 17, 1246–1263. [Google Scholar]
- Cheng, Y.R.; Zhang, X.P. Microclimate’s affection on the composition of plant community on southern and northern slope of purple mountain. J. Anhui Norm. Univ. (Nat. Sci.) 2012, 35, 44–48. [Google Scholar]
- Yan, W.J.; Kong, F.H.; Yin, H.W.; Sun, C.F.; Xu, F.; Li, W.C.; Zhang, X.T. Analysis of factors contributing to the cooling effects of Purple Mountain Forest Park. Acta Ecol. Sin. 2014, 34, 3169–3178. [Google Scholar] [CrossRef]
- Li, M.Y.; Cheng, Y.; Xu, T.; Jiang, W.Q. Multi-Cultural Characteristics and Multi-Functional Management Countermeasures of Zijin Mountain National Forest Park. J. Beijing For. Univ. (Soc. Sci.) 2012, 11, 49–54. [Google Scholar]
- Li, M.Y.; Liu, M.L.; Liu, M. Spatially balanced sampling for monitoring forest resources and ecological system. J. Southwest For. Univ. 2010, 30, 1–5. [Google Scholar]
- Wang, Z.; Li, M.Y.; Zhang, X.H.; Song, L.Y. Modeling the scenic beauty of autumnal tree color at the landscape scale: A case study of Purple Mountain, Nanjing, China. Urban For. Urban Green. 2020, 47, 126526. [Google Scholar] [CrossRef]
- Bontemps, S.; Arias, M.; Cara, C.; Dedieu, G.; Guzzonato, E.; Hagolle, O.; Inglada, J.; Matton, N.; Morin, D.; Popescu, R. Building a data set over 12 globally distributed sites to support the development of agriculture monitoring applications with Sentinel-2. Remote Sens. 2015, 7, 16062–16090. [Google Scholar] [CrossRef]
- Wen, X.; Ming, Y.; Gao, Y.G.; Hu, X.Y. Dynamic monitoring and analysis of ecological quality of Pingtan comprehensive experimental zone, a new type of sea island city, based on RSEI. Sustainability 2019, 12, 21. [Google Scholar] [CrossRef]
- Yang, Y.; Cai, Z. Ecological security assessment of the Guanzhong Plain urban agglomeration based on an adapted ecological footprint model. J. Clean. Prod. 2020, 260, 120973. [Google Scholar] [CrossRef]
- Canty, M.J.; Nielsen, A.A.; Schmidt, M. Automatic radiometric normalization of multitemporal satellite imagery. Remote Sens. Environ. 2004, 91, 441–451. [Google Scholar] [CrossRef]
- Chen, S.W.; Pellequer, J.L. DeStripe: Frequency-based algorithm for removing stripe noises from AFM images. BMC Struct. Biol. 2011, 11, 7. [Google Scholar] [CrossRef] [PubMed]
- Kauth, R.J.; Thomas, G.S. The tasselled cap-a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. LARS Symp. 1976, p. 159. Available online: https://docs.lib.purdue.edu/lars_symp/159/ (accessed on 1 August 2023).
- Huang, C.; Wylie, B.; Yang, L.; Homer, C.; Zylstra, G. Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. Int. J. Remote Sens. 2002, 23, 1741–1748. [Google Scholar] [CrossRef]
- Baig, M.H.A.; Zhang, L.; Shuai, T.; Tong, Q. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 2014, 5, 423–431. [Google Scholar] [CrossRef]
- Todd, S.W.; Hoffer, R.M. Responses of spectral indices to variations in vegetation cover and soil background. Photogramm. Eng. Remote Sens. 1998, 64, 915–922. [Google Scholar]
- Chander, G.; Markham, B. Revised Landsat-5 TM radiometric calibration procedures and post calibration dynamic ranges. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2674–2677. [Google Scholar] [CrossRef]
- Crist, E.P. A TM tasseled cap equivalent transformation for reflectance factor data. Remote Sens. Environ. 1985, 17, 301–306. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.G.; Wolfe, R.E. Automated registration and orthorectification package for Landsat and Landsat-like data processing. J. Appl. Remote Sens. 2009, 3, 033515. [Google Scholar] [CrossRef]
- Nichol, J. Remote sensing of urban heat islands by day and night. Photogramm. Eng. Remote Sens. 2005, 71, 613–621. [Google Scholar] [CrossRef]
- Ziskin, D.; Baugh, K.; Hsu, F.C.; Ghosh, T.; Elvidge, C. Methods used for the 2006 radiance lights. Proc. Asia-Pac. Adv. Netw. 2010, 30, 131. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jimenez-Munoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Shan, W.; Jin, X.; Ren, J.; Wang, Y.; Xu, Z.; Fan, Y.; Gu, Z.; Hong, C.; Lin, J.; Zhou, Y. Ecological environment quality assessment based on remote sensing data for land consolidation. J. Clean. Prod. 2019, 239, 118126. [Google Scholar] [CrossRef]
- Xu, H. A study on information extraction of water body with the modified normalized difference water index (MNDWI). J. Remote Sens. 2005, 9, 595. [Google Scholar]
- Zhou, Z.X.; Li, J. The correlation analysis on the landscape pattern index and hydrological processes in the Yanhe watershed, China. J. Hydrol. 2015, 524, 417–426. [Google Scholar] [CrossRef]
- Kayano, M.T.; Oliveira, C.P.; Andreoli, R.V. Interannual relations between South American rainfall and tropical sea surface temperature anomalies before and after 1976. Int. J. Clim. 2009, 29, 1439–1448. [Google Scholar] [CrossRef]
- Cao, R.; Jiang, W.; Yuan, L.; Wang, W.; Lv, Z.; Chen, Z. Inter-annual variations in vegetation and their response to climatic factors in the upper catchments of the Yellow River from 2000 to 2010. J. Geogr. Sci. 2014, 24, 963–979. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Tosic, I. Spatial and temporal variability of winter and summer precipitation over Serbia and Montenegro. Theor. Appl. Climatol. 2004, 77, 47–56. [Google Scholar] [CrossRef]
- Dormann, C.F.; McPherson, J.M.; Araujo, M.B.; Bivand, R.; Bolliger, J.; Carl, G.; Davies, R.G.; Hirzel, A.; Jetz, W.; Daniel, K.W. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 2007, 30, 609–628. [Google Scholar] [CrossRef]
- Yaojun, Z.; Zheng, W.R. Factors affecting population distribution in mountainous areas: Geographically Weighted Regression using data from Bijie. Popul. Res. 2012, 36, 53. [Google Scholar]
- John, R.; Chen, J.; Lu, N.; Guo, K.; Liang, C.; Wei, Y.; Noormets, A.; Ma, K.; Han, X. Predicting plant diversity based on remote sensing products in the semi-arid region of Inner Mongolia. Remote Sens. Environ. 2008, 112, 2018–2032. [Google Scholar] [CrossRef]
- Liao, W.; Jiang, W. Evaluation of the spatiotemporal variations in the eco-environmental quality in China based on the remote sensing ecological index. Remote Sens. 2020, 12, 2462. [Google Scholar] [CrossRef]
- Li, D.; Wu, S.; Liang, Z.; Li, S. The impacts of urbanization and climate change on urban vegetation dynamics in China. Urban For. Urban Green. 2020, 54, 126764. [Google Scholar] [CrossRef]
- Zhang, H.; Du, P.; Luo, J.; Li, E. Analysis of ecological changes in Nanjing based on remote sensing ecological indexes. Geospat. Inf. 2017, 15, 58–62. [Google Scholar]
- Zhang, P.; Lin, C.; Du, P.J.; Wang, X.; Tang, P.F. Accurate monitoring of ecological redline areas in Nanjing City using high resolution satellite image-ry. Remote Sens. Land Resour. 2020, 32, 157–164. [Google Scholar] [CrossRef]
- Wang, B.; Chen, L.; Li, L.; Xie, H.; Zhang, Y. Ecological response to land use change: A case study from the Chaohu lake basin, China. Bulg. Chem. Commun. 2017, 49, 200–206. [Google Scholar]
- Lu, D.; Song, K.; Zang, S.; Jia, M.; Du, J.; Ren, C. The effect of urban expansion on urban surface temperature in Shenyang, China: An analysis with Landsat imagery. Environ. Model. Assess. 2015, 20, 197–210. [Google Scholar] [CrossRef]
- Zhu, Q.; Cai, Y. Integrating ecological risk, ecosystem health, and ecosystem services for assessing regional ecological s-ecurity and its driving factors: Insights from a large river basin in China. Ecol. Indic. 2023, 155, 110954. [Google Scholar] [CrossRef]
- Li, C.; Chai, G.; Li, Z.; Jia, X.; Lei, L.; Chen, L.; Zhang, X. Spatial temporal variation of ecological environment quality and driving factors from 2000 to 2020 in Wu liang su Lake Basin, Northern China. Front. Ecol. Evol. 2023, 11, 1240514. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, Y.; Sun, W.; Chang, J.; Zhu, J.; Chen, L.; Wang, X.; Guo, Y.; Zhang, H.; Yu, L.; et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Sci. China Life Sci. 2022, 65, 861–895. [Google Scholar] [CrossRef] [PubMed]
- Seddon, A.W.R.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 2016, 531, 229–232. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, H.; Yin, P.; Jia, D.; Li, G. Remote sensing classification method of vegetation dynamics based on time series Landsat image: A case of opencast mining area in China. EURASIP J. Image Video Process. 2018, 2018, 113. [Google Scholar] [CrossRef]
Image ID | Acquisition Date | Sensor Type | Cloud Coverage/% | Data Level |
---|---|---|---|---|
LT51200381990304HAJ00 | 31 October 1990 | Landsat TM | 0.02 | L1TP |
LT51200381992294BJC01 | 20 October 1992 | Landsat TM | 11.86 | L1T |
LT51200381994139HAJ00 | 19 May 1994 | Landsat TM | 0.00 | L1T |
LT51200381996113HAJ00 | 12 April 1996 | Landsat TM | 0.00 | L1T |
LT51200381998150ULM00 | 30 May 1998 | Landsat TM | 0.00 | L1T |
LT51200382000284BJC00 | 10 October 2000 | Landsat TM | 0.00 | L1T |
LT51200382002193BJC00 | 12 July 2002 | Landsat TM | 0.00 | L1T |
LE71200382004127EDC02 | 6 May 2004 | Landsat ETM+ | 0.00 | L1TP |
LT51200382006092BJC00 | 2 April 2006 | Landsat TM | 0.00 | L1T |
LE71200382008122EDC00 | 1 May 2008 | Landsat ETM+ | 1.00 | L1TP |
LE71200382010095EDC00 | 5 April 2010 | Landsat ETM+ | 1.00 | L1TP |
LE71200382012293EDC00 | 19 October 2012 | Landsat ETM+ | 0.00 | L1TP |
LC81200382014162LGN01 | 11 June 2014 | Landsat OLI_TIRS | 8.86 | L1TP |
LE71200382016256EDC00 | 12 September 2016 | Landsat ETM+ | 2.00 | L1TP |
LC81200382018301LGN00 | 28 October 2018 | Landsat OLI_TIRS | 0.06 | L1TP |
LE71200382020139EDC00 | 18 May 2020 | Landsat ETM+ | 4.00 | L1TP |
Year | Variable | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|---|
1990 | Covariance eigenvalue (%) | 73.54 | 17.23 | 7.84 | 1.39 |
1992 | Covariance eigenvalue (%) | 79.81 | 14.53 | 4.76 | 0.91 |
1994 | Covariance eigenvalue (%) | 82.13 | 13.89 | 2.88 | 1.11 |
1996 | Covariance eigenvalue (%) | 80.27 | 11.13 | 7.04 | 1.55 |
1998 | Covariance eigenvalue (%) | 86.49 | 10.78 | 2.28 | 0.45 |
2000 | Covariance eigenvalue (%) | 85.52 | 11.62 | 2.31 | 0.55 |
2002 | Covariance eigenvalue (%) | 86.91 | 10.20 | 2.30 | 0.60 |
2004 | Covariance eigenvalue (%) | 82.47 | 12.48 | 4.33 | 0.71 |
2006 | Covariance eigenvalue (%) | 81.98 | 13.15 | 3.96 | 0.92 |
2008 | Covariance eigenvalue (%) | 82.66 | 10.89 | 5.78 | 0.67 |
2010 | Covariance eigenvalue (%) | 77.32 | 12.31 | 8.60 | 1.78 |
2012 | Covariance eigenvalue (%) | 75.52 | 15.92 | 7.47 | 1.09 |
2014 | Covariance eigenvalue (%) | 82.65 | 13.87 | 3.16 | 0.32 |
2016 | Covariance eigenvalue (%) | 77.83 | 14.91 | 6.51 | 0.75 |
2018 | Covariance eigenvalue (%) | 76.34 | 18.56 | 4.75 | 0.34 |
2020 | Covariance eigenvalue (%) | 78.53 | 15.76 | 5.21 | 0.50 |
Impact Factor | Correlation |
---|---|
Greenness | 0.611 ** |
Month temperature | 0.606 ** |
Patch similarity | −0.439 * |
Patch connectivity | 0.440 * |
Forest Disturbance Index | −0.458 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, F.; Xu, J.; Wu, Y.; Li, T.; Li, M. Analysis of Eco-Environmental Quality of an Urban Forest Park Using LTSS and Modified RSEI from 1990 to 2020—A Case Study of Zijin Mountain National Forest Park, Nanjing, China. Forests 2023, 14, 2458. https://doi.org/10.3390/f14122458
Ren F, Xu J, Wu Y, Li T, Li M. Analysis of Eco-Environmental Quality of an Urban Forest Park Using LTSS and Modified RSEI from 1990 to 2020—A Case Study of Zijin Mountain National Forest Park, Nanjing, China. Forests. 2023; 14(12):2458. https://doi.org/10.3390/f14122458
Chicago/Turabian StyleRen, Fang, Jiaoyang Xu, Yi Wu, Tao Li, and Mingyang Li. 2023. "Analysis of Eco-Environmental Quality of an Urban Forest Park Using LTSS and Modified RSEI from 1990 to 2020—A Case Study of Zijin Mountain National Forest Park, Nanjing, China" Forests 14, no. 12: 2458. https://doi.org/10.3390/f14122458
APA StyleRen, F., Xu, J., Wu, Y., Li, T., & Li, M. (2023). Analysis of Eco-Environmental Quality of an Urban Forest Park Using LTSS and Modified RSEI from 1990 to 2020—A Case Study of Zijin Mountain National Forest Park, Nanjing, China. Forests, 14(12), 2458. https://doi.org/10.3390/f14122458